
2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

14

An Approach for Process Migration using Task
Scheduling

Chandu Vaidya
M-Tech (2

nd
 Year)

RKNEC Nagpur
WCE Sangali

Prof. M.B. Chandak
HOD RKNEC

Nagpur

ABSTRACT
Given paper contain proposed approached for task scheduling

which is done on a group of computers. Analysis of process

data part by dividing them into number of fixed part & merge

into single set that as good as previous original data set.

Parallelism an approach for doing jobs in amount of time i.e

very fast. The paper contain dynamic approach for process

migration using thread level paradigm. Creating a thread of

process into number of task, that leads to reduce total

execution time of process. An algorithm is used to calculate

PCB for decision purpose to achieve load balancing. Fair

share approach is considered to allocating task to every

processor using preemption strategy. The MPI[4] [10]is used

for process communication. This system has defined to reduce

total execution time on onboard & between board times. Open

knoppix & MOSIX platform(Middleware) are used to show

the results. Prime number calculation code is used to show

parallel architecture like SIMD computer. Cluster computing

is way of resource managing & scheduling strategy.

General Terms
Cluster server, Middleware, Node, Resources.

Keywords
Cluster computing, MOSIX, MPI, load balancing, threads,

Task load. Onboard-time, betweenbord time.

1. INTRADUCTION

The objective is to develop an algorithm for load sharing by

inducing parallelism mechanism on a group of interconnected

machines. This algorithm is useful only when the cost factor

can be underestimated when compared to time. The algorithm

developed should be smart enough to migrate thread to other

node in the cluster [3]only when the time requirement for

completion of process can be reduced by doing so.

Traditionally, computer software has been written for serial

computation. To solve a problem, an algorithm is constructed

and implemented as a serial stream of instruction. These

instructions are executed on a CPU on one computer. Only

one instruction may execute at a time after that instruction is

finished, the next is executed. If load increase or more load is

given the time requirement for execution will be more. For

reducing the execution time to get output concept of Parallel

Computing arises. Parallel computing uses multiple

processing elements simultaneously to solve a problem. This

is accomplished by breaking the problem into independent

parts so that each processing element can execute its part of

the algorithm with the others. A computer cluster is a group of

linked computers, working together closely thus in many

respects forming a single computer. The components of a

cluster are commonly, but not always, connected to each other

through fast LAN. Clusters are usually deployed to improve

performance and availability over that of a single computer,

while typically being much more cost-effective than single

computers of comparable speed or availability. Load

balancing [1][2]is when multiple computers are linked

together to share computational workload or function as a

single virtual computer. Logically, from the user side, they are

multiple machines, but function as a single virtual machine.

Requests initiated from the user are managed by, and

distributed among, all the standalone computers to form a

cluster. This results in balanced computational work among

different machines, improving the performance of the cluster

systems. Scheduling refers to the way processes are assigned

to run on the available CPUs. This assignment is carried out

by software known as scheduler and dispatcher. Scheduler

and dispatcher operate with the help of a software known as

middleware’s. Middleware is computer software that connects

software components or people and their applications. The

software consists of a set of services that allows multiple

processes running on noe or more machines to interact. The

middleware we are using is MPICH2. MPICH2 is an high

performance and widely portable implementation of the

Message Passing Interface standard. It efficiently support

different computation and communication platforms including

commodity clusters, SMPs, massively parallel systems and

high-speed networks.

2. BACKGROUND

This system is refined from the concept of executing of tasks

using single processor. Uni-processor system functioning

includes preemptive scheduling scheme. We change this by

using multiple processors to execute a particular task in

proportional manner to reduce time to execute the task in

relatively short time. The processors are connected with each

other in a Cluster, such that it is viewed as a single coherent

entity .Non-preemptive scheduling scheme is used for this

project. This improves the performance of execution of tasks

as compared to earlier type. This project uses fair scheduling

approach for providing fair access to users.

This system is an example of a distributed system[8]. This

project is a scheduling system that provides allocation of

system resources of one or more processor sets among groups

of processes. Each of the process groups is assigned a fixed

number of shares, which is the number that is used to allocate

system resources among processes of various process groups

within a given processor set. The described fair share

scheduler considers each processor set to be a separate virtual

computer.

Cluster computing[9][10] (or the use of computational

Clusters) is the application of several computers to a single

problem at the same time usually to a scientific or technical

problem that requires a great number of computer processing

cycles or access to large amounts of data.A Cluster can

provide significant processing power for users with

extraordinary needs. Animation software, for instance, which

is used by students in the arts, architecture, and other

departments, eats up vast amounts of processor capacity.

Description:

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

15

The main function of client/user is to submit the process in the

process pool related with a processor. The processes in the

process pool are waiting for the execution. From these

processes the higher priority process is selected by using the

appropriate scheduler and is given to the Cluster server.

 The process division is a function that divides the

process into the pieces or threads.

Fig-Simple model.

Thread distribution distributes these threads proportionally

among the several nodes in the Cluster network[10]. Thread

execution is a function that executes each thread

independently on different nodes. The threads are executed

using Fair-Share Scheduling. It allocates equal CPU time for

each node. While executing threads, the resources required for

the execution of that thread on the node, the load on the node

and the complexity of each threads are taken into account.

Each node may require same or different resources for the

execution of the thread. These resources must be provided to

each node. Above simple model(fig) show the general idea

regarding project. Finally the output from each node is

combined and the final output is given to the Cluster server.

3. EXPLANATIONS RELATED TO

STRUCTURE
The object model of the given system includes different

classes with the data objects having attributes of particular

attribute values. These classes contain the functions which are

dedicated to perform the appropriate tasks. Also the processes

submitted to the system are moving in a specific manner

undergoing some events. Processes are going through

different states as shown in state diagram.

Above description about the Cluster system is discussed in

following modules:

1. Cluster server: This class derived from Cluster setup as a

client or a user supplies a set of process to the Cluster server

the main objective of Cluster server[9] is to select an

appropriate process for execution purpose. The basic idea is

that every process is concerned with its priority, so each time

a process with highest priority is selected by Cluster server

from the process pool related it. To check the priority of the

processes, process priority operation is used and a select

process function grabs a particular process for execution.

2.Middleware: The main objective of middleware is to

communicate with and manipulate heterogeneous hardware

and data sets. It brings co-ordination between Cluster nodes

and their resources. Middleware has well defined standards as

its attributes. These standards have control over security and

communication purpose of the Cluster system.

3.Resources: Resources are including the attributes as

database and support files. They help in execution of the tasks

given to the nodes. Each node completely relies on a set of

resources such that a particular node is concerned with

execution of some specific tasks only. The manage operation

has a record of each node and its related resources.

4.Node: Node class actually executes the threads given after

distribution in Cluster. Server or Cluster node is also

subclasses of node. Thus execution of thread is operation of

node class. Node has associated with scheduler and scheduler

uses Fair-Share Scheduling scheme which allocates

proportional CPU usage to nodes.

4. TECHNOLOGY PREFER
MPI:-MPI[10] (Message Passing Interface) is the

middleware. Middleware is computer software that connects

software components or people and their applications. The

software consist of a set of services that allows multiple

processes running on one or more machines to interact. The

middleware we are using is MPICH2.

MPICH2:- MPICH2 is an high performance and widely

portable implementation of the Message Passing Interface

standard. It efficiently support different computation and

communication platforms including commodity clusters,

SMPs, massively parallel systems and high-speed networks.

POSIX:-POSIX is a “Portable Operating System Interface for

Unix” API. It efficiently support different computation and

communication platforms including commodity clusters,

SMPs, massively parallel systems and high-speed networks.

OpenMOSIX:-OpenMOSIX was a free cluster management

system that provided single-system image (SSI) capabilities,

e.g. automatic work distribution among nodes. It allowed

program processes (not threads) to migrate to machines in the

node's network that would be able to run that process faster

(process migration). It was particularly useful for running

parallel and intensive input/output (I/O) applications.

1.mosps :- shows MOSIX and related processes.

2. migrate : - to migrate a process to the given computer.

Syntax:-“migrate {pid} {hostname or IP-address or node-

number}”

3.moskillall : - to kill all your MOSIX processes (with the

SIGTERM signal).

Syntax:-moskillall [-{signum} | -{symbolic_signal}] -

G[{class}] [-J{jobid}]

Controlling running processes (migrate)

If we transfer the state of a process from one

machine to another, we have migrated the process. Process

migration is most interesting in systems where the involved

processors do not share main memory, as otherwise the state

transfer is trivial. A typical environment where process

migration is interesting is autonomous computers connected

by a network.

you can manually migrate the processes of all users send them

away bring them back to home move them to other nodes

freeze or unfreeze (continue) them, overriding the MOSIX[7]

system decisions as well as the placement preferences of

users. Even though as the Super-User you can technically do

so, you should never kill (signal) guest processes. Instead, if

you find guest processes that you don’t want running on one

of your nodes, you can use ”migrate” to send them away (to

their home-node or to any other node).

A checkpoint/restart facility is one which will

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

16

allow a process to save its state to a checkpoint this

checkpoint will later be subjected to a restart procedure which

will resume execution of the check pointed process

at the point at which the checkpoint was made.

Such a facility is referred to as a "Checkpoint/Restart"

mechanism; such mechanisms have been available in

operating systems since the 1960s.

Syntax : migrate {{pid}|-j{jobID}} {node-number|IP-

address|host}

5. IMPLEMENTATION

Implementation purpose some steps are considered throughout

the project that are as follows .

BASIC STEPS

1.Clustering.

2.Stasatical collection.

3.Setting Threshold.

4.Thread Creation

5.Making Decision

6.Process migration.

7.Process Execution.

8.Collecting Back & Merge.

9.Analysis.

10. Deployment on Kernel code.

Algorithms used

Algorithm schedule process

Input: none

Output: none

{

while (no process picked to execute)

 {

 for (every process on run queue) pick highest

priority process that is loaded in memory;

 if (no process eligible to execute)

 idle the machine;

/* interrupt takes machine out of idle state */

}

remove chosen process from run queue;

switch context to that of chosen process, resume its execution;

}

Example of SIMD Application:

Prime No. Generation Using MPI :

 Algorithm:

1] Start.

2] Input no. of tasks.

3] Calculate Rank of each Task.

4] i) calculate Stride distance using ,

 stride=2 * tasks;

 ii) Fork the tasks & assign start to each Task using,

 start = rank * 2 + 1;

5]for each task,

 i]calculate largest prime no.

 ii]store it in slarge, & increment prime count;

6]synchronize outputs of all task & calculate largest prime no.

7]finalize output & display time as,

 i) total time.

 ii) communication time.

 I]On board communication time.

 II]Between board communication time.

 iii) execution time.

8] Stop.

For Demonstration purposed we select on task that is finding

largest prime no. up to 25000000 as well as total number of

prime numbers;

Time taken by Standalone Computer for above problem =

750.87 sec we want to reduce this huge execution time by

using our approached

Between board communication time is nearly constant for any

number of tasks. Because system bus speed between board is

nearly constant at any time.

On-board communication time varies with the no. of tasks.

 obt α n

Where,

 obt = onboard communication time.

 n = number of tasks

. Total communication time (tcm) varies with no. of

tasks.

tcm = obt + bbt

Total Execution time is calculated as :

Total time = communication time + Execution time

 = (Onboard time + Between Board time) +

Execution time

Consider,

Tob=On Board time

N=no. of tasks

Texe= execution time

Tob α N

Texe α 1/N

Our simple model contain the basic architecture of the project

that indicate how the flow of project goes. We conclude that

implementation of task scheduling which lead to fair share

process allocation and load balancing as well as the total

execution time. We have been able to collect the information

of all nodes in Cluster environment. We have been able to

perform load balancing by considering available resources

such as free memory and CPU utilization for migratable

processes. This increases the performance of the Cluster by

decreasing the execution time for the processes. For testing

purpose we have select Prime number generation program

using MPI programming it’s. good enough to success this

approached. Deployment of our approached on kernel code so

that we will in the position to developed one component

module that will beneficial to someone.

6. ACKNOWLEDGMENTS
Success is the manifestation of diligence, inspiration,

motivation and innovation. I attribute my success in this

venture to my seminar guide Prof. M. B. Chandak, (HOD)

who showed the guiding light at every stage of my seminar

preparation.

I indebted to Dr.N.V Thakur, M-Tech Coordinate of the

Department Computer Science & Engineering, who has

provided facilities and the infrastructure to work at an

extended ends.

Last but not the least I am also thankful to all the faculty

members for helping directly or indirectly to accomplish the

seminar work. I would like to thank My Mind for not letting

me down at the time of crisis and showing me the silver lining

in the dark clouds.

7. REFERENCES
[1] M. Willekk-Lemair and A.P. Reeves, Strategies for

dynamic load-balancing on highly parallel computers,

IEEE Transaction on Parallel and Distribured Systems,

(4)9, September 1993, Pages 979-993.

[2] M. Wu and W. Sbu, A load balancing algorithm for n-

cube, Proceedings of rhe 1996 Inremarwnal

Conference on Parallel Processing, IEEE Computer

Society, 1996, Pages 148-155.

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

17

[3] H. Shan, J.P. Singh, L. Oliker and R. Biswas, “Messge

passing and shared address space parallelism on an SMP

cluster,” Parallel Computing, vol 29, 2003, pp. 167-186.

[4] W. Pan, L. Chan, J. Zhang, Y. Li, L. Wan and F. Xia,

“Research on MPI+OpenMP hybrid programming

paradigm based on SMP cluster,” Application Research

of Computers, vol. 26, 2009, pp. 4492–4594

[5] M.Cosnard, E. Jeannot, and L. Rougeot, Low

MemoryCostDynamicSchedulingofLargeCoarseGrainTa

skGraphs,Proc.Int'lParallelProcessingSymp./Symp.Parall

elandDistributedProces-sing(IPPS/SPDP), Mar.1998

[6] Rewini,H.H.Ali,andT.G.Lewis,TaskSchedulingin

MultiprocessingSystems, Computer, pp.27-37,Dec.1995.

[7] Oren LA’ADAN Amnon BARAK

andAmnonSHILOH.ScalableclustercomputingwithMOSI

XforLINUX.InProc.LinuxExpo’99,pages95–

100,May1999.

[8] N. Islam and A. Prodromidis and M. S. Squillante,

"Dynamic Partitioning in Different Distributed-Memory

Environments", Proceedings of the 2nd Workshop on

Job Scheduling Strategies for Parallel Processing, pages

155-170,April 1996.

[9] Huajie Zhang School of Math, Physics and Information

Engineering College of Zhejiang Normal University,

Jinhua 321004, China” On Load Balancing Model for

Cluster Computers”, IJCSNS International Journal of

Computer Science and Network Security, VOL.8 No.10,

October 2008.

[10] Amith R. Mamidala Rahul Kumar Debraj De D. K.

Panda Department of Computer Science and

Engineering” MPI Collectives on Modern Multicore

Clusters: Performance Optimizationsand Communication

Characteristics”, Eighth IEEE International Symposium

on Cluster Computing and the Grid.

