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ABSTRACT 

Circuit partitioning problem is a well known NP hard 

problem. The potential of Genetic Algorithm has been used to 

solve many computationally intensive problems (NP hard 

problems) because existing conventional methods are unable 

to perform the required breakthrough in terms of complexity, 

time and cost. The presented work deals with the problem of 

partitioning of a circuit using Genetic Algorithm. The 

program inputs the adjacency matrix, generates graph of the 

circuit and partitions the circuit based on crossover operator. 

The program produces a set of vertices that are highly 

connected to each other but highly disconnected from the 

other partitions.  
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1. INTRODUCTION 
With the advancement of VLSI technology the number of 

circuit components implemented on the VLSI chip is 

increasing day by day. Millions of transistors along with their 

numerous interconnections can be placed on a single chip 

today. With so many interconnections running over the chip 

area, it is important to find ways to reduce the overall length 

of the running wires across the chip area because this can 

affect various parameters of the interconnects like time delay 

in signal propagation, power consumption in the 

interconnections, area of chip acquired by the 

interconnections.  

Circuit partitioning is an important step in VLSI physical 

design. This involves the breakup of a circuit into smaller 

parts for ease of design, layout and testability  

The problem involves dividing the circuit net list into two 

subsets and some of the connections (edges) are also cut. The 

number of edges belonging to two different partitions is the 

cost of a partition. The objective function captures the 

interconnection information and partitioning solution is 

optimized with respect to interconnection between the 

partitions with the constraint of forming balanced partitions.  

2. REVIEW OF PARTITIONING 

ALGORITHMS  
In 1970, Kernighan and Lin [6] proposed a simple graph-

based heuristic that iteratively improves an initial partitioning 

by using a semi-greedy graph search technique, since then 

numerous combinatorial optimization techniques have been 

applied to solve the graph and circuit partitioning problems 

like constructive algorithms, iterative improvement 

algorithms. Then Fiduccia and Mattheyses[7] proposed a 

more efficient method for implementing Kernighan and Lin‟s 

algorithm leading to a fast linear time algorithm for 

partitioning (the F-M algorithm). Krishnamurthy proposed 

Look-Ahead (LA) mechanism. S. Dutt and W. Deng proposed 

a new probability-based augmentation of the graph 

partitioning algorithm, called the probabilistic gain 

computation approach (PROP). L. A. Sanchis modified 

Krishnamurthy‟s algorithm to perform multiway partitioning. 

Wei and Cheng, introduced the ratio-cut-algorithm  

 

Among the various well-know stochastic optimization 

methods, the simulated annealing algorithm has been widely 

used for solving numerous VLSI layout optimization 

problems. Yih and Mazumder [8] have presented a neural 

network model for circuit partitioning, using iterative 

improvement techniques. Genetic Algorithm (GA) was 

invented by Prof. John Holland [9] at the University of 

Michigan in 1975. Later, Prof. David Goldberg [5] at the 

University of Illinois made this topic popular.  

 

3. CIRCUIT PARTITIONING 
It is the task of dividing a circuit into smaller parts. The 

objective is to partition the circuit into parts such that the size 

of the components is within prescribed ranges and the number 

of connections between the components is minimized. 

Different partitioning results in different circuit 

implementations. Therefore a good partitioning can 

significantly improve the circuit performance and reduce 

layout cost.  

4.CIRCIT PARTITIONING BY GENETIC 

ALGORITHM 

4.1 Design Entry  

Figure 1. shows the genetic algorithm for circuit partitioning. 

The algorithm starts with the design entry of the circuit to be 

partitioned, in to the program. An adjacency matrix is first 

prepared for the circuit to be partitioned. An adjacency matrix 

is a matrix which describes how the various components of 

the circuit are connected with each other. The components are 

treated as nodes and the interconnections are treated as edges 

of a graph. The program takes the Gate level implementation
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Figure 1. Flow chart of Genetic Algorithm for Circuit Partitioning 
 

of a 4-bit comparator circuit [10] as the object of analysis.  

4.2 Initial Population Generation 

A random initial population is generated. This population 

represents a number of possible solutions or ways to partition 

the circuit. Each of these ways is coded in to a binary string 

called chromosome. Thus a set of chromosomes are generated 

and termed as the initial population. 

4.3 Population Evaluation 

All the chromosomes are evaluated by a predefined fitness 

function. This function calculates the number of cuts imposed 

by the partition as suggested by the chromosome. The total 

cuts value is then converted into a fitness value using the 

sigma scaling function. 

4.4 Sigma Scaling 

In each generation, two parents are selected probabilistically, 

with the probability of selection proportional to their fitness. 

The evaluation function determines and stores the cost or 

badness of each chromosome. From this cost, the fitness of 

each individual is determined by sigma scaling as follows. 

A reference worst cost is determined by  

Cw =Cav + S x sd. Where Cav is the average cost, 

S is the user defined sigma scaling factor, Sd is the standard 

deviation of the population cost 

In case Cw is less than the real worst cost in the population, 

then only the individuals with cost lower than Cw are allowed 

to participate in the crossover. 

The fitness of each individual is determined by 

F = Cw –C ; if Cw < C, where C is the cost of individual 

population. Two different individual are then randomly 

selected as parents, with selection probability directly 

proportional to the fitness. 

If S is large, Cw is large, and the fitness of the members of the 

population is relatively closer to each other. This causes the 

difference in selection probabilities to decrease, and the 

algorithm to be less selective in choosing parents. This may 

affect the algorithm in many complex ways, such as reduction 

of premature convergence of the population. 

On the other hand, if S is small, the ratio of the least to the 

highest fitness in the population increases, and the algorithm 

becomes more selective in choosing parents. In fact, in this 

case, some high cost members of the population may not be 

able to participate in the algorithm at all. This may, in certain 

condition, speed up the algorithm, while compromising the 

final result quality. 

4.5 Sorting 

When all the chromosomes are evaluated and their fitness 

values are calculated, the chromosomes are sorted according 

to their decreasing value of their fitness value. Thus the 

chromosome with the highest fitness value is placed at the top 

and the lowest one at the bottom of the list. 

4.6 Selection 

In order to perform the crossover operation over the initial 

population of the chromosomes, it is required to select two 

chromosomes randomly; those are treated as parent 

chromosomes and are mated to obtain the offspring 
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chromosomes. The chromosome with the highest fitness value 

is taken as the first parent and it is mated with other 

chromosomes one by one and a set of child chromosomes are 

obtained. 

4.7 Crossover 

Figure 2. shows the crossover operation. The crossover 

operator is the most important part of the genetic algorithm. In 

this the chromosome with highest fitness value is selected as 

parent chromosome and it is mated with other chromosomes 

to obtain two child chromosomes.  

4.8 Evaluation of the offspring 

The child chromosomes obtained after each crossover 

operation are evaluated by the fitness function and compared 

with the existing chromosomes of the population. 

4.9 Duplicate check and incorporation 

After the evaluation of each child chromosome obtained in the 

crossover operation, the fitness value of the child 

chromosome is compared with the chromosomes of the 

existing population. If the fitness value of the child 

chromosome is greater than the worst fitness value of the 

existing chromosome population, the child chromosome will 

replace the worst chromosome in the population, other wise 

the child chromosome is discarded.  

Also if the child chromosome is same as the parent 

chromosome in the current population, the child chromosome 

is discarded. 

 

4.10 Mutation 

In this operation one bit of the chromosome is flipped. If it is 

„0‟, it is changed to „1‟ and vice-versa. In this way the 

chromosome characteristics is changed irrespective of their 

parent‟s characteristics. Thus a new chromosome is generated. 

The mutated chromosome is evaluated and if its fitness value 

is greater than the others, it is included in the current 

population else it is discarded. If the decrement in the fitness 

value is within the predefined limits, then also the new 

chromosome may be included in the population. The 

probability of this has to be predefined, which is called the 

probability of acceptance. 

 

5. RESULTS 

The Genetic Algorithm for circuit partitioning is implemented 

in „C‟ language. The program takes the number of iterations 

as input from the user and outputs the best chromosome and 

its fitness value after every iteration. The results are computed 

for three different parameters that can be altered in the 

program, namely number of iterations, initial population (P) 

and sigma scaling factor (S). Various graphs are drawn for the 

fitness value against different parameters like number of 

iterations, initial population and scaling factor for proper 

analysis of the results.  

In figure 3, the fitness value is plotted for different number of 

iterations keeping scaling factor constant. As the scaling 

factor is increased the fitness value increases, the program 

convergence slows down. It shows that the number of 

iterations required is reduced if S is increased. In figure 4, the 

fitness value is plotted for different number of iterations 

taking different initial population. As the initial population of 

chromosomes is increased the program converges very 

rapidly. 

 

  

Figure 2. Crossover operation 
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Figure 3. Fitness Vs Iterations for different Scaling Factor (S) 

 

Figure 4. Fitness Vs Iterations for Different Initial Population (P) 

 

Figure 5. Fitness Vs Iterations for different Initial Population (P) 

The quality of the results also decreases. Thus the initial 

population can not be increased abruptly. Typical value 

should be 10% of the number of node. In figure 5, the fitness 

value is plotted for different initial population keeping the 

Scaling factor constant. Scaling factor really does not matter 

so far as the dependence on initial population is concerned. 

However for higher values of scaling factor there can be a 

nominal advantage 

6. CONCLUSIONS 

The algorithm suggests a method for partitioning the circuit in 

to smaller sub-circuits such that the overall length of the 

various interconnects in the circuit can be minimized which in 

turn leads to reduction in delay, power dissipation and chip 

area. To achieve this, the partitioning should be such that the 

number of interconnects running between the partitioned 

groups should be minimized and thus reduce the overall 

length of the circuit interconnect. 
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