
National Conference on Future Aspects of Artificial intelligence in Industrial Automation (NCFAAIIA 2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

15

Genetic Algorithms based Partitioning of VLSI Circuit

Systems

Nikhil Gupta

MTU, Noida, U.P.
Department of ECE

IIMT Engg. College, Meerut

Deepak Garg

MTU, Noida, U.P.
Department of ECE

IIMT Engg. College, Meerut

Soniya Gupta
MTU, Noida, U.P.
Department of AS

M.I.T., Meerut

ABSTRACT

Circuit partitioning problem is a well known NP hard

problem. The potential of Genetic Algorithm has been used to

solve many computationally intensive problems (NP hard

problems) because existing conventional methods are unable

to perform the required breakthrough in terms of complexity,

time and cost. The presented work deals with the problem of

partitioning of a circuit using Genetic Algorithm. The

program inputs the adjacency matrix, generates graph of the

circuit and partitions the circuit based on crossover operator.

The program produces a set of vertices that are highly

connected to each other but highly disconnected from the

other partitions.

Keywords

Genetic Algorithm, circuit partitioning, chromosomes,

crossover, mutation.

1. INTRODUCTION
With the advancement of VLSI technology the number of

circuit components implemented on the VLSI chip is

increasing day by day. Millions of transistors along with their

numerous interconnections can be placed on a single chip

today. With so many interconnections running over the chip

area, it is important to find ways to reduce the overall length

of the running wires across the chip area because this can

affect various parameters of the interconnects like time delay

in signal propagation, power consumption in the

interconnections, area of chip acquired by the

interconnections.

Circuit partitioning is an important step in VLSI physical

design. This involves the breakup of a circuit into smaller

parts for ease of design, layout and testability

The problem involves dividing the circuit net list into two

subsets and some of the connections (edges) are also cut. The

number of edges belonging to two different partitions is the

cost of a partition. The objective function captures the

interconnection information and partitioning solution is

optimized with respect to interconnection between the

partitions with the constraint of forming balanced partitions.

2. REVIEW OF PARTITIONING

ALGORITHMS
In 1970, Kernighan and Lin [6] proposed a simple graph-

based heuristic that iteratively improves an initial partitioning

by using a semi-greedy graph search technique, since then

numerous combinatorial optimization techniques have been

applied to solve the graph and circuit partitioning problems

like constructive algorithms, iterative improvement

algorithms. Then Fiduccia and Mattheyses[7] proposed a

more efficient method for implementing Kernighan and Lin‟s

algorithm leading to a fast linear time algorithm for

partitioning (the F-M algorithm). Krishnamurthy proposed

Look-Ahead (LA) mechanism. S. Dutt and W. Deng proposed

a new probability-based augmentation of the graph

partitioning algorithm, called the probabilistic gain

computation approach (PROP). L. A. Sanchis modified

Krishnamurthy‟s algorithm to perform multiway partitioning.

Wei and Cheng, introduced the ratio-cut-algorithm

Among the various well-know stochastic optimization

methods, the simulated annealing algorithm has been widely

used for solving numerous VLSI layout optimization

problems. Yih and Mazumder [8] have presented a neural

network model for circuit partitioning, using iterative

improvement techniques. Genetic Algorithm (GA) was

invented by Prof. John Holland [9] at the University of

Michigan in 1975. Later, Prof. David Goldberg [5] at the

University of Illinois made this topic popular.

3. CIRCUIT PARTITIONING
It is the task of dividing a circuit into smaller parts. The

objective is to partition the circuit into parts such that the size

of the components is within prescribed ranges and the number

of connections between the components is minimized.

Different partitioning results in different circuit

implementations. Therefore a good partitioning can

significantly improve the circuit performance and reduce

layout cost.

4.CIRCIT PARTITIONING BY GENETIC

ALGORITHM

4.1 Design Entry

Figure 1. shows the genetic algorithm for circuit partitioning.

The algorithm starts with the design entry of the circuit to be

partitioned, in to the program. An adjacency matrix is first

prepared for the circuit to be partitioned. An adjacency matrix

is a matrix which describes how the various components of

the circuit are connected with each other. The components are

treated as nodes and the interconnections are treated as edges

of a graph. The program takes the Gate level implementation

National Conference on Future Aspects of Artificial intelligence in Industrial Automation (NCFAAIIA 2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

16

Figure 1. Flow chart of Genetic Algorithm for Circuit Partitioning

of a 4-bit comparator circuit [10] as the object of analysis.

4.2 Initial Population Generation

A random initial population is generated. This population

represents a number of possible solutions or ways to partition

the circuit. Each of these ways is coded in to a binary string

called chromosome. Thus a set of chromosomes are generated

and termed as the initial population.

4.3 Population Evaluation

All the chromosomes are evaluated by a predefined fitness

function. This function calculates the number of cuts imposed

by the partition as suggested by the chromosome. The total

cuts value is then converted into a fitness value using the

sigma scaling function.

4.4 Sigma Scaling

In each generation, two parents are selected probabilistically,

with the probability of selection proportional to their fitness.

The evaluation function determines and stores the cost or

badness of each chromosome. From this cost, the fitness of

each individual is determined by sigma scaling as follows.

A reference worst cost is determined by

Cw =Cav + S x sd. Where Cav is the average cost,

S is the user defined sigma scaling factor, Sd is the standard

deviation of the population cost

In case Cw is less than the real worst cost in the population,

then only the individuals with cost lower than Cw are allowed

to participate in the crossover.

The fitness of each individual is determined by

F = Cw –C ; if Cw < C, where C is the cost of individual

population. Two different individual are then randomly

selected as parents, with selection probability directly

proportional to the fitness.

If S is large, Cw is large, and the fitness of the members of the

population is relatively closer to each other. This causes the

difference in selection probabilities to decrease, and the

algorithm to be less selective in choosing parents. This may

affect the algorithm in many complex ways, such as reduction

of premature convergence of the population.

On the other hand, if S is small, the ratio of the least to the

highest fitness in the population increases, and the algorithm

becomes more selective in choosing parents. In fact, in this

case, some high cost members of the population may not be

able to participate in the algorithm at all. This may, in certain

condition, speed up the algorithm, while compromising the

final result quality.

4.5 Sorting

When all the chromosomes are evaluated and their fitness

values are calculated, the chromosomes are sorted according

to their decreasing value of their fitness value. Thus the

chromosome with the highest fitness value is placed at the top

and the lowest one at the bottom of the list.

4.6 Selection

In order to perform the crossover operation over the initial

population of the chromosomes, it is required to select two

chromosomes randomly; those are treated as parent

chromosomes and are mated to obtain the offspring

National Conference on Future Aspects of Artificial intelligence in Industrial Automation (NCFAAIIA 2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

17

chromosomes. The chromosome with the highest fitness value

is taken as the first parent and it is mated with other

chromosomes one by one and a set of child chromosomes are

obtained.

4.7 Crossover

Figure 2. shows the crossover operation. The crossover

operator is the most important part of the genetic algorithm. In

this the chromosome with highest fitness value is selected as

parent chromosome and it is mated with other chromosomes

to obtain two child chromosomes.

4.8 Evaluation of the offspring

The child chromosomes obtained after each crossover

operation are evaluated by the fitness function and compared

with the existing chromosomes of the population.

4.9 Duplicate check and incorporation

After the evaluation of each child chromosome obtained in the

crossover operation, the fitness value of the child

chromosome is compared with the chromosomes of the

existing population. If the fitness value of the child

chromosome is greater than the worst fitness value of the

existing chromosome population, the child chromosome will

replace the worst chromosome in the population, other wise

the child chromosome is discarded.

Also if the child chromosome is same as the parent

chromosome in the current population, the child chromosome

is discarded.

4.10 Mutation

In this operation one bit of the chromosome is flipped. If it is

„0‟, it is changed to „1‟ and vice-versa. In this way the

chromosome characteristics is changed irrespective of their

parent‟s characteristics. Thus a new chromosome is generated.

The mutated chromosome is evaluated and if its fitness value

is greater than the others, it is included in the current

population else it is discarded. If the decrement in the fitness

value is within the predefined limits, then also the new

chromosome may be included in the population. The

probability of this has to be predefined, which is called the

probability of acceptance.

5. RESULTS

The Genetic Algorithm for circuit partitioning is implemented

in „C‟ language. The program takes the number of iterations

as input from the user and outputs the best chromosome and

its fitness value after every iteration. The results are computed

for three different parameters that can be altered in the

program, namely number of iterations, initial population (P)

and sigma scaling factor (S). Various graphs are drawn for the

fitness value against different parameters like number of

iterations, initial population and scaling factor for proper

analysis of the results.

In figure 3, the fitness value is plotted for different number of

iterations keeping scaling factor constant. As the scaling

factor is increased the fitness value increases, the program

convergence slows down. It shows that the number of

iterations required is reduced if S is increased. In figure 4, the

fitness value is plotted for different number of iterations

taking different initial population. As the initial population of

chromosomes is increased the program converges very

rapidly.

Figure 2. Crossover operation

National Conference on Future Aspects of Artificial intelligence in Industrial Automation (NCFAAIIA 2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

18

Figure 3. Fitness Vs Iterations for different Scaling Factor (S)

Figure 4. Fitness Vs Iterations for Different Initial Population (P)

Figure 5. Fitness Vs Iterations for different Initial Population (P)

The quality of the results also decreases. Thus the initial

population can not be increased abruptly. Typical value

should be 10% of the number of node. In figure 5, the fitness

value is plotted for different initial population keeping the

Scaling factor constant. Scaling factor really does not matter

so far as the dependence on initial population is concerned.

However for higher values of scaling factor there can be a

nominal advantage

6. CONCLUSIONS

The algorithm suggests a method for partitioning the circuit in

to smaller sub-circuits such that the overall length of the

various interconnects in the circuit can be minimized which in

turn leads to reduction in delay, power dissipation and chip

area. To achieve this, the partitioning should be such that the

number of interconnects running between the partitioned

groups should be minimized and thus reduce the overall

length of the circuit interconnect.

7. ACKNOWLEDGMENTS

I would like to convey my heartfelt thanks to Prof. (Dr.)

Shankar Sarkar (former professor ECE deptt. IIT Roorkee),

Prof. (Dr.) Irene Sarkar (former professor Applied science

dppt IIT Roorkee) and Dr. B. K. Kaushik (Asst. Professor

department of Elecetronics & Computer Engineeinr. IIT

Roorkee) for giving me continued encouragement throughout

the research work.

National Conference on Future Aspects of Artificial intelligence in Industrial Automation (NCFAAIIA 2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

19

8. REFERENCES
 [1] Pinaki Mazumdar and Elizabeth M.Rudnick, “Genetic

Algorithms for VLSI design, Layout & Test

Automation,” Pearson Education, Inc, 1999.

[2] Akash deep, Baljit Singh, Arjan Singh, and Jatinder Singh,

“A Simple Efficient Circuit Partitioning by Genetic

Algorithm,” IJCSNS International Journal of Computer

Science and Network Security, VOL.9 No.4, April 2009.

[3] Sarrafzadeh M. & C.K.Wong, “Introduction to VLSI

Physical Design”, McGraw Hill, 1996

[4] Sandeep Singh Gill, Dr. Rajeevan Chandel, Dr. Ashwani

Chandel,” Genetic Algorithm Based Approach To

Circuit Partitioning,” International Journal of Computer

and Electrical Engineering, Vol. 2, No. 2, April, 2010 .

[5] Goldberg D.E., “Genetic Algorithms in Search,

Optimization and Machine learning”, Pearson Education,

2004.

[6] Kernighan B. W. and S. Lin, “An efficient heuristic

procedure for partitioning graphs,” Bell Systems

Technical Journal, vol. 49, pp. 291—307, 1970.

[7] Fiduccia C. M. and R. M. Mattheyses, “A linear-time

heuristic for improving network partitions,” Proc. Design

Automation Conf., pp. 175—181, 1982.

[8] Yih J S. and P. Mazumder, “A neural network design for

circuit partitioning,” IEEE Trans. Computer-Aided

Design, vol. 9, no. 10, Oct. 1990.

[9] Holland J. H., Adaptation in Natural and Artificial

Systems, Ann Arbor, M University of Michigan Press,

1975.

[10 M. Morris Mano, “Digital Design”, 2nd edition, Prentice

Hall of India, 2000.

[11] Sung-Mo kang and Yusuf Leblebici, “ CMOS Digital

Integrated Circuits”, Analysis and design, 3rd edition,

TMH, 2003.

