
International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

12

A Review on Soft Computing-based Software Effort

Estimation Models

Puja D Saraf
Assistant Professor

Department of Computer Engineering
R. C. Patel Institute of Technology, Shirpur

ABSTRACT

Accurately estimating the code size, cost, effort and

schedule is probably the leading vital challenge facing code

developers lately. It’s major implications for the management

of code development as a consequences of every the

overestimates and underestimates have direct impact for

inflicting damage to code companies. Heap of models square

measure projected over the years by varied researchers for

ending effort estimations. in addition variety of the studies for

early stage effort estimations promoter the importance of early

estimations. New paradigms offeralternatives to estimate the

code development effort, specially the machine Intelligence

(CI) that exploits mechanisms of interaction between humans

and processes domain information with the intention of

building intelligent systems (IS). Among IS, Artificial Neural

Network and logic unit of quantity the two most popular soft

computing techniques for code development effort estimation.

The aim of this study is to research soft computing techniques

inside the there models and to bring thorough review of code

and project estimation techniques existing in trade.

Keywords

Effort Estimation, Fuzzy Logic, Soft Computing, COCOMO,

LOC, Putnam model

1. INTRODUCTION
Software Estimation is responsive to the man blems y prothe

software industry has experienced in creating significant cost

and time estimates. Software estimation is base on measuring

of software attributes which are typically related to the

product, the process and the resources of software

development [1]. This kind of measuring can be used as

parameters in project management models [2] which provide

assessments to software project managers in managing

software projects to avoid problems such as cost overrun and

behind the schedule. One of the most widely researched areas

of software measurement is software effort estimation.

Software effort estimation models divided into two main

categories: algorithmic and non-algorithmic.

The most popular algorithmic estimation models include

Boehm’s COCOMO [3], Putnam’s SLIM [4]. These models

require as inputs, accurate estimate of certain attributes such

as line of code (LOC), complexity and so on which are

difficult to obtain during the early stage of a software

development project. Software development effort estimation

is a vital aspect that deals with planning, prediction of amount

of time and cost that will be incurred in developing of

software project [5].

Despite considerable research and practical experience it is

still a formidable challenge to understand and predict what

happens in a large software projects. In 1995, Standish Group

surveyed over 8,000 software projects for the purpose of

budget analysis. It was found that 90% of these projects

exceeded its initially computed budget. Moreover, 50% of the

completed projects lack the original requirements [6]. From

these statistics, it can be seen how prevalent the estimation

problem is. Improving the accuracy of the cost estimation

models leads to effective control of time and budget during

software development. In order to make accurate estimates

and avoid large errors, several cost estimation models have

been proposed. Among those techniques, COCOMO is the

most commonly used because of its simplicity for estimating

the effort in person month for a project at different stages [7].

2. SOFTWARE EFFORT ESTIMATION

MODELS
Software effort estimation models helps in estimating the

quantity of effort that has to be place in to develop the

package. However, the method estimation is unsure in nature

because it for the most part depends upon some attributes that

square measure quite unclear throughout the first stages of

development; however it has to be allotted as large

investments square measure concerned in building the

package [8]. package effort estimation models divided into 2

main categories: recursive models and non-algorithmic

models. recursive models square measure supported the

applied mathematics analysis of historical information (past

projects), e.g. package Life Cycle Management (SLIM) and

COCOMO and Albrecht’s perform purpose. These models

rely on correct estimate of size of package in terms of line of

code (LOC), variety of user screen, interfaces, complexity,

etc., at a time once uncertainty is generally gift within the

package [8]. The limitations of algorithmic models have led to

the exploration of non algorithmic models which are based

upon soft computing techniques. Non-algorithmic techniques

are based on new approaches such as, Parkinson, Expert

Judgment, Price-to-Win and machine learning approaches.

The soft computing techniques include methodologies like

artificial neural networks, fuzzy logic and evolutionary

computations. Due to their inherent nature these techniques

are used to handle imprecision and uncertainty [9].

2.1. Algorithmic Methods

2.1.1. Expert Judgment Method
Expert judgment techniques involve consulting with software

package value estimation knowledgeable or a bunch of the

consultants to use their expertise Associate in nursing

understanding of the projected project to attain an estimate of

its value. Typically speaking, a bunch agreement technique,

metropolis technique, is that the best thanks to be used. The

strengths and weaknesses are complementary to the strengths

and weaknesses of recursive technique. to supply a

sufficiently broad communication information measure for the

consultants to exchange the degree of data necessary to

calibrate their estimates with those of the opposite

consultants, a band metropolis technique is introduced over

commonplace metropolis technique [11]. The estimating steps
victimization this method: organizers gift every

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

13

knowledgeable with a specification Associate in Nursing an

estimation type Coordinator calls a bunch meeting during

which the consultants discuss estimation problems with the

organizer and every different. Consultants fill out types

Associate in nursing ominously organizer prepares and

distributes a outline of the estimation on an iteration form.

Organizer calls a bunch meeting, specially specializing in

having the consultants discuss points wherever their estimates

varied wide. Consultants fill out forms, once more

anonymously, and steps four and six are iterated for as several

rounds as acceptable. The band metropolis Technique has

after been utilized in variety of studies and price estimation

activities [12].

The advantages of this technique are: The consultants will

think about variations between past project expertise and

needs of the projected project. The consultants will think

about project impacts caused by new technologies,

architectures, applications and languages concerned within the

future project and might conjointly think about exceptional

personnel characteristics and interactions, etc.

The disadvantages include: This technique can not be

quantified. It’s exhausting to document the factors employed

by the consultants or consultants cluster. Knowledgeable

could also be some biased, optimistic, and pessimistic, even if

they need been bated by the cluster agreement. The

knowledgeable judgment technique perpetually compliments

the opposite value estimating strategies like recursive

technique [11].

2.1.2. COCOMO Models
One very widely used algorithmic software cost model is the

Constructive Cost Model (COCOMO). The basic COCOMO

model [4] has a very simple form MAN MONTHS = K1*

(Thousands of Delivered Source Instructions) K2 Where K1

and K2 are two parameters dependent on the application and

development environment. Estimates from the basic

COCOMO model can be made more accurate by taking into

account other factors concerning the required characteristics

of the software to be developed, the qualification and

experience of the development team, and the software

development environment. Many of these factors affect the

person months required by an order of magnitude or more.

COCOMO assumes that the system and software

requirements have already been defined, and that these

requirements are stable. This is often not the case. COCOMO

model is a regression model. It is based on the analysis of 63

selected projects. The primary input is KDSI. The problems

are: In early phase of system life cycle, the size is estimated

with great uncertainty value. So, the accurate cost estimate

cannot be arrived at. The cost estimation equation is derived

from the analysis of 63 selected projects. It usually has some

problems outside of its particular environment. For this

reason, the recalibration is necessary [13].

2.1.3. Putnam model
Another popular software cost model is the Putnam model.

The form of this model is:

Technical constant C= size * B1/3 * T 4/3 Total Person

Months B=1/T 4*(size/C) 3

T= Required Development Time in years Size is estimated in

LOC Where: C is a parameter dependent on the development

environment and it is determined on the basis of historical

data of the past projects. Rating: C=2,000 (poor), C=8000

(good) C=12,000 (excellent) The Putnam model is very

sensitive to the development time: decreasing the

development time can greatly Increase the person months

needed for development [13].

2.2. Non-Algorithmic Methods
2.2.1. Neural Networks
Neural networks square measure nets of process parts that

square measure able to learn the mapping existent between

input and output information. The vegetative cell computes a

weighted add of its inputs ANd generates an output if the add

exceeds an exact threshold. This output then becomes AN

simulative positive) or restrictive (negative) input to

alternative neurons within the network. the method continues

till one or additional outputs square measure generated [14]. It

reports the employment of neural networks for predicting

package irresponsibleness, together with experiments with

each feed forward and Jordan networks with a cascade

correlation learning algorithmic rule The Neural Network is

initialized with random weights and step by step learns the

relationships underlying a coaching information set by

adjusting its weights once conferred to those information. The

network generates effort by propagating the initial inputs

through ulterior layers of process parts to the ultimate output

layer. every vegetative cell within the network computes a

non linear operate of its inputs and passes the result

hymenopter price on its output [15]. The favored activation

operate is Sigmoid operate given among the many obtainable

coaching algorithms the error back propagation is that the

most utilized by package metrics researchers [16]. One in all

the strategies is that the use of ripple Neural Network (WNN)

to forecast the package development effort. The effectiveness

of the WNN variants is compared with other techniques such

as multiple linear regressions in terms of the error measure

which is mean magnitude relative error (MMRE) obtained on

Canadian financial (CF) dataset and IBM data processing

services (IBMDPS) dataset [15]. Based on the experiments

conducted, it is observed that the WNN outperformed all the

other techniques. Another method is proposed to use radial

basis neural network for effort estimation. A case study based

on the COCOMO81 database compares the proposed neural

network model with the Intermediate COCOMO. The results

are analyzed using different criterions and it is observed that

the Radial Basis Neural network provided better results

2.2.2. Genetic Programming
Genetic programming is one amongst the organic process

ways for effort estimation. Organic process computation

techniques area unit characterized by the very fact that the

answer is achieved by suggests that of a cycle of generations

of candidate solutions that area unit cropped by the factors

'survival of the fittest’ [18]. Once GA is employed for the

resolution of world issues, a population comprised of a

random set of people is generated. The population is evaluated

throughout the evolution method. for every individual a rating

is given, reflective the degree of adaptation of the individual

to the atmosphere. A share of the foremost custom-made

people is unbroken, whereas that the others area unit

discarded. The people unbroken within the choice method will

suffer modifications in their basic characteristics through a

mechanism of replica [17].

A comparison is usually recommended by supported the

accepted Desharnais knowledge set of eighty one computer

code comes derived from a Canadian computer code house. It

shows that Genetic Programming a suggestion some

important enhancements quality and has the potential to be a

legitimate extra tool for computer code effort estimation. A

genetic formula needs genetic illustration of the answer

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

14

domain and also the fitness performs for that. However the

genetic formula works will be clearly understood by the

pseudo code as follows:

Step 1 Initialize: To initialize the program me give initial

random values to genes in population

Step 2 Evaluation: Evaluate This Gene Population. Each gene

is tested in the present population and its fitness is calculated

as a solution to the problem. If any gene has solved the

problem, or it provides a good enough fit, depending on the

application and its requirements, then terminate the

programmer, go to SOLVED

Step 3 Next population: Generation of new genes by

crossover from pairs of the highest fitness (scoring) last

population genes. Randomly mutate or modify the values of a

small fraction of a small number of these new genes

Step 4 Go to Evaluation.

Step 5 Solved: Finished

2.2.3. Fuzzy Logic
Fuzzy logic could be a valuable tool, which may be wont to

solve extremely complicated issues wherever a Mathematical

model is simply too troublesome or not possible to form. It’s

additionally wont to cut back the complexness of existing

solutions likewise as increase the accessibility of management

theory [21]. The event of software package has forever been

characterized by parameters that possess sure level of

Fuzziness study showed that mathematical logic model

includes a place in software package effort estimation [16].

the applying of mathematical logic is in a position to beat a

number of the issues that area unit inherent in existing effort

estimation techniques. Mathematical logic isn't solely helpful

for effort prediction, however that it's essential so as to boost

the standard of current estimating models. Mathematical logic
permits linguistic illustration of the input and output of a

model to tolerate inexactness. it's significantly appropriate for

effort estimation as several software package attributes area

unit measured on Nominal or ordinal scale kind that could be

a specific case of linguistic values. a technique is projected as

a Fuzzy Neural Network (FNN) approach for embedding

artificial neural network into fuzzy abstract thought processes

so as to derive the software package effort estimates [23].

Artificial neural network is employed to see the numerous

fuzzy rules in fuzzy abstract thought processes. The results

showed that applying FNN for software package effort

estimates resulted in slightly smaller mean magnitude of

relative error (MMRE) and chance of a project having a

relative error of but or adequate zero.25 (Pred (0.25)) as

compared with the results obtained by simply exploitation

Artificial neural network and therefore the original model.

Another proposal is that the use of set choice rule supported

mathematical logic for analogy software package effort

estimation models. Validation exploitation 2 established

datasets shows that exploitation fuzzy options set choice rule

in analogy software package effort estimation contribute to

vital results [11]. Empirical study is finished not solely on the

ten comes of NASA however additionally compared their

results to the present models. Comparative study shows higher

results therefore methodology projected is general enough to

be applied to different models supported perform purpose

ways and to different areas of quantitative software package

Engineering. Fuzzy logic is a logic that is represented by

fuzzy expressions which satisfies the following: Truth values,

0 and 1, and variables xi (Î[0,1], i = 1, 2, ..., n) are fuzzy

expression

If f is a fuzzy expression, ~f (not f) is also a fuzzy expression

If f and g are fuzzy expressions, f Ù g and f Ú g are also fuzzy

expressions As in fuzzy expression, a fuzzy proposition can

have its

Truth value in the interval [0, 1]

f: [0, 1] →[0,1]

3. CONCLUSIONS
This paper has totally different models for estimation however

there’s no estimation technique which might present the most

effective estimates all varied things and every technique will

be appropriate. The square compute several code value

estimation strategies accessible as well as algorithmic

strategies, estimating by correspondence, professional

judgment technique, high down technique, and bottom up

technique. No technique is essentially higher or worse than

the opposite, in fact their strengths and weaknesses are

measure usually complimentary to every different. In

Associate in nursing absolute sense, none of the models

perform well at estimating code development effort,

particularly long the MMRE dimension. However in a very

relative sense ANN approach is competitive with ancient

models. Once more as a comparative analysis, genetic

programming will be wont to match advanced functions and

might be simply taken. Genetic Programming will realize a lot

of advanced function between KLOC and energy. Particle

crowd improvement alone provides virtually same results as

basic models. Project data and the traditional algorithmic

model into one general framework that can have a wide range

of applicability in software cost estimation, software quality

estimation and risk analysis.

4. REFERENCES
[1] N. E. Fenton, S. L. Pfleeger, Software Metrics, A PWS

Publishing Company, Thomso Publishing, Boston, 1997.

[2] A. R. Gray, S. G. MacDonell, “Applications of Fuzzy

Logic to Software Metric Models for Development

Effort Estimation”. Fuzzy Information Processing

Society 1997 NAFIPS’ 97, Annual Meeting of the North

American, 21 – 24, September 1997, pp. 394 – 399,

1997.

[3] B. W. Boehm, Software Engineering Economics,

Englewood Cliffs, NJ,Prentice Hall, 1981.

[4] L. H. Putnam, “A general empirical solution to the

macrosoftware sizing and estimating problem”. IEEE

Transactions on Software Engineering, SE-4(4) pp 345-

361, 1987.

[5] S. G. MacDonell and A. R. Gray, “A comparison of

techniques for software development effort prediction,”

International Conference on Neural Information

Processing and Intelligent Control Systems, New

Zealand, pp. 869-872, 1997.

[6] A. C. Hodgkinson and P. W. Garratt, “A neurofuzzy cost

estimator,”Proceedings of Third International

Conference on Software Engineering and Applications,

pp. 401-406, 1999.

[7] A. Idri, T. M. Khoshgoftaar, A. Abran. “Can neural

networks be easily interpreted in software cost

estimation”, IEEE Trans. Software Engineering,Vol. 2,

pp. 1162 – 1167,2002

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

15

[8] Z. Fei, X. Liu f-COCOMO: fuzzy constructive cost

model in software engineering. In: IEEE international

conference on fuzzy systems, pp 331–337, 2001.

[9] M. W. Nisar, J. W. Yong and M. Elahi, “Software

development effort estimation using fuzzy logic – A

survey,” IEEE International Conference on Fuzzy

Systems and Knowledge Discovery, vol. 1, pp. 421-427,

2008.

[10] P. Musilek, W. Pedrycz, G. Succi, and M.

Reformat,” Software cost estimation with fuzzy models,”

Applied Computing Review, vol. 2, pp. 24-29, 2000.

[11] Finnie, G. R., G.E. Wittig and J-M. Desharnais, "A

Comparison of Software Effort Estimation Techniques

Using Function Points with Neural Networks, Case-

Based Reasoning and Regression Models", Journal of

Systems and Software, Vol. 39, pp. 281-289, 1997.

[12] K.Ramesh and Karunanidhi, “ Literature Survey On

Algorithmic And Non- Algorithmic Models For

Software Development Effort Estimation”, International

Journal Of Engineering And Computer Science

ISSN:2319-7242 Volume 2 Issue Page No. 623-632, 3

March 2013.

[13] C.L. Martin, J.L. Pasquier, M.C. Yanez, and T.A.

Gutierrez, “Software Development Effort Estimation

Using Fuzzy Logic: A Case Study”, IEEE Proceedings

of the Sixth Mexican International Conference on

Computer Science (ENC’05), pp. 113-120, 2005.

[14] X. Huang, D. Ho, L. Capretz and J. Ren “Novel Neuro-

Fuzzy Models for Software Cost Estimation”, Proc.of

the Third International Conference on Quality Software,

IEEE Computer Society Press, Dallas, TX, USA,

2003.

[15] N. Karunanitthi, D. Whitley, and Y. K. Malaiya, (1992),

"Using Neural Networks in Reliability Prediction”,

IEEE Software, Vol. 9, no.4, pp. 53-59.

[16] Finnie, G. R., G.E. Wittig and J-M. Desharnais, (1997),

"A Comparison of Software Effort Estimation

Techniques Using Function Points with Neural

Networks, Case- Based Reasoning and Regression

Models", Journal of Systems and Software, Vol. 39, pp.

281-289.

[17] A.P. Engelbrecht, (2006), Fundamentals of

Computational Swarm Intelligence, JohnWiley & Sons,

New Jersy.

[18] Urkola Leire , Dolado J. Javier , Fernandez Luis and

Otero M. Carmen , (2002), "Software Effort Estimation:

the Elusive Goal in Project.

[19] “Fuzzy systems and neural networks” in software

engineering project management, Journal of Applied

Intelligence, no. 4, pp. 31-52.

