
International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

6

A Review of Cascade Correlation Neural Network for

Software Cost Estimation

Vinayak Suresh Dhole
ME Student

Department of Computer Engineering
R. C. Patel Institute of Technology

Shirpur, Maharashtra, India

Nitin N. Patil
Associate Professor,

Department of Computer Engineering
R. C. Patel Institute of Technology

Shirpur, Maharashtra, India

ABSTRACT

Cascade-Correlation is a new architecture and supervised

learning algorithm for artificial neural networks and

classification techniques. Rather than adjusting the weights in

a network of predefined topology, Cascade-Correlation begins

with a minimal network and it automatically trains, adds new

hidden units one after the other by creating a multi-layer

structure. As soon as a new hidden unit has been added to the

network, its input-side weights are getting fixed. After that

these unit then becomes a permanent feature-identifier in the

network, present for producing outputs, then cascade-

correlation is behaves as more complex feature detectors. The

Cascade-Correlation networks have several benefits over

existing algorithms as it learns very fast. It determines its own

size and topology fast. It maintains the structures which it has

built even after the training set changes, and it doesn’t need

back-propagation of error signals through the connections of

the network and its component. Cascade Correlation Neural

Network (CCNN) types such as recurrent CCNN, evolving

CCNN, genetic CCNN are used to predict software effort

from Use Case diagrams in advance manner which helps

further for software cost estimation. The use case diagrams

are developed in the early stages of the software development

and they are used for input. This paper is an overview of

cascade-correlation neural networks in which we study

different types of cascade-correlation neural network. They

are based on a special architecture which autonomously

adapts to the application and makes the training much more

efficient than the widely used backpropagation algorithm.

This review focuses on different types of CCNN and also

describes the cascade-correlation architecture variants.

General Terms

Cascade-correlation neural network, artificial neural network,

Keywords

Neural network, cascade architecture, evolving.

1. INTRODUCTION

Artificial neural networks are universal function approximates

which makes them suitable for the most applications.

However, their training is usually cumbersome and requires

proper tuning of the learning algorithm based on deep

knowledge about the problem. Without this care their answer

can converge very slowly resulting a never ending learning

process. Furthermore, the widely used backpropagation

learning algorithm requires the network structure to be

provided. This structure has a serious impact on the learning

capabilities, so it has to be designed properly for the

application. Because of these reasons the constructive training

algorithms have become appealing where the structure is

adaptively built during the training process. The constructive

methods have two main classes. One uses evolutionary

algorithms to evolve the network structure by training and

combining many networks at the same time. This approach

has huge computational costs compared to backpropagation

and so it is usually infeasible. The other is represented by

cascade-correlation neural networks (CCNN). They have a

special network architecture which autonomously adapts to

the application. They also have a special training process

which reduces the computational costs and cures many

problems of the backpropagation algorithm at once. The rest

of this section shortly covers ANNs in general and considers

backpropagation training problems. This paper also

investigates how the ANN training can be improved by curing

the previously discussed problems and presents more CCNN

variants. A Neural Network (NN) is an adaptive system that

learns from examples using interconnected processing nodes.

Artificial neural networks serve as general purpose

mechanisms for training a machine by examples. This neural

network is to be used for software cost estimation in recent

ten decades [1]. Neural networks are classified as artificial

intelligence because of their ability to learn and its basis in

biological activities of the human brain. They are modeled

after the human brain, which are perceived as highly

connected network of neurons termed as nodes. It has three

parts (layers): an input layer, a hidden layer and the output

layer [2]. The number of input, hidden, and the output nodes

is referred to as the neural network topology or the network

architecture. Figure 1 below shows a network of nodes, left-

hand nodes x1, x2 and x3 are the input node and constitute the

input layer [3]. The input nodes represent the predictor

variables. The two middle nodes z1 and z2 are the hidden

nodes and constitute the hidden layer. The right-hand node

(Y) is the output node and makes up the output layer. The

output layer represents the target variable. The heart of the

neural network algorithm involves series of mathematical

operations that use the weights to compute a weighted sum of

the inputs at each node [4]. For a particular example, the net

input to a unit in a hidden or output layer is given by:

 netij= ∑ w i j x i j (1)

Where xij represents the input to node, represents the weight

associated with the ith input to node and there are I+1 inputs to

the node is the activation of unit j [5].

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

7

Figure 1: Simple Neural Networks

All Artificial neural networks (ANN) were inspired by the

human brain. They contain simple processing elements

(neurons) and connections among them which the data can

“flow” on. Each neuron has many inputs, outputs and an

activation function. The computational model of a neuron can

be described by the

 y = f (wk ∗ xk𝑛
𝑘=1) (2)

equation where y is the output value transferred further by all

the output connections, xk is the kth input, wk is the weight of

the connection related to the kth input and f is the activation

function which is usually the signum (sign) or the sigmoid (¾)

function defined as

 Sign(x) = 1 if x > 0 (3)

A neuron can be efficiently trained by the perceptron learning

algorithm to solve any linearly separable problem. However,

most of the problems are not linearly separable, so an

individual neuron cannot give an acceptable solution. For

these problems the neurons have to be structured and

connected to form a network ANNs with many neurons are

usually organized into layers [6]. Each network has an input,

an output and may have hidden layers. Figure 1 shows an

ANN with an input, an output and two hidden layers. The

input layer contains only special neurons with one input,

many outputs and the identity of an activation function is with

them, so these neurons were feed the data in a network [7].

The ANN of Figure 1 has only connections which go into

subsequent layers. These kind of networks are called feed

forward ANNs. A network with connections going to the

same or to a previous layer is called recurrent ANN.

Figure 2: Artificial Neural Network

It is known that a feed forward ANN with one hidden layer is

an universal function approximator [8], so it can approximate

any bounded continuous function with arbitrary precision

(however it needs exponentially many neurons for this).

Furthermore, any feed forward ANN can be trained (in the

supervised way) by the backpropagation algorithm. It

calculates the error at the output and propagates it back to the

neurons of the previous layer which can be trailed

accordingly. Then the locally corrugated errors are propagated

further to the previous layer and so forth until the input layer

is reached. Technically this algorithm calculates the gradient

of the network according to the connection weights. One of

the most robust backpropagation variant, called quick prop,

was published by Fahlman (1988) [9].

The cascade-correlation architecture, published by Fahlman

and Lebiere (1990) [10], has two key ideas. First it grows the

network on demand, so it only adds new neurons when they

can help for solving the problem. Second the new neurons are

added and trained one by one which can eliminate many of

the problems presented in the previous section. At the

beginning the learning algorithm starts with an “empty”

network which has only the input and the output layers and

does not have any hidden layers. Because of the absence of

hidden neurons this network can be learned by a simple

gradient descent algorithm applied for each output neuron

individually [11]. During the learning process new neurons

are added to the network one by one. Each of them is placed

into a new hidden layer and connected to all the preceding

input and hidden neurons. Once a neuron is finally added to

the network (activated), its input connections become frozen

and do not change anymore. The neuron-creation step can be

divided into two parts. First a new, so called candidate neuron

is connected to all the input and hidden neurons by trainable

input connections, but its output is not connected to the

network. Then the weights of the candidate neuron can be

trained while all the other weights in the network are frozen.

This state is illustrated on Figure 3, where the dashed

connections are trained [12].

Figure 3: The cascade-correlation architecture

The empty layer shows the place of the candidate neuron

where it is activated to after its input weights are learned and

become frozen [13]. Second the candidate is connected to the

output neurons (activated) and then all the output connections

(all the input connections of any neuron in the output layer)

are trained. The whole process is repeated until the desired

network accuracy is obtained.

2. LITERATURE SURVEY

2.1 Cascade Correlation Neural Network
An important but difficult problem in neural network

modeling is the selection of the appropriate number of hidden

units. The cascade correlation algorithm, proposed by

Fahlman and Lebiere, addresses this issue by recruiting new

units according to the residual approximation error. The

algorithm succeeds in giving structure to the network and

reducing the training time necessary for a given task [14].

Figure 2 shows a network trained and structured using

cascade correlation. Assume for the moment that a single

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

8

output unit is required [15]. The algorithms start with zero

hidden units and add one at a time according to the residual

error. The output unit is trained to minimize the quadratic

error. Training stops when the error has leveled off. If the

average quadratic error is still greater than the desired upper

bound, we must add a hidden unit and retrain the network.

The motivation behind this step is to specialize on hidden unit

to the detection of the residual error of the network [16]. The

backpropagation algorithm is applied as usual and it will take

care to compute with the sign of the argument with an

absolute value operator. Another way of overcoming this

drawback is to take an absolute values at all, is to train a

weight at the output of the hidden unit, so that it assumes the

appropriate sign (see Exercise 1). Once the hidden unit H1 has

been trained, i.e., when the correlation level cannot be further

improvised, the present unit is added to the network as figure

shows in Figure 4 (left diagram). The weights of the hidden

unit are frozen. The output unit receives information now

from the input sites and from the hidden unit H1.

Figure 4: The cascade correlation architecture

All the weights of the output unit are retrained until the error

levels off and we test if a new hidden unit is necessary. Any

new hidden unit receives an input from the input sites and

from all other previously defined hidden units. The algorithm

continues adding hidden units until we are satisfied with the

approximation error [17]. The advantage of the algorithm,

regarding learning time is that on iteration of a single layer of

weights has to be trained. Basically, we only train one

sigmoidal unit in an iteration whenever they trained. The final

network which we get has more structure than the usual flat

feed-forward networks and, if training results correctly, we

have to stop when the minimum number of necessary hidden

units has been selected. To guarantee this, several hidden

units can be trained at each step and the one with the highest

correlation selected for inclusion in the network [18]. In the

case of more than one output unit, the average of the

correlation of all output units is maximized at each step. The

previously discussed network structures have two important

drawbacks. First of all, one of the network types has to be

selected. After that, also the number of units in the hidden

layer has to be chosen. Both choices are not trivial. A

cascade-correlation approach solves this problem and makes a

combination of the simple methods which are easy to train.

The concept of original cascade-correlation algorithm [19] is

to identify not only the weights, as well as the network

structure of the network at the same time. This can be happen

in a positive constructive way; by means of only one neuron

at a time is trained and then added to the network structure.

While each time only one starts with a network without any

hidden unit, and then in a network hidden neurons which are

needed are added, one by one, until some stopping criterion is

occurred. As soon as a hidden neuron is being added to the

network, its obtained weights are remains final throughout the

rest of the procedure. This also means that, besides the actual

input vector in a network, the output values of these current

hidden units are to be used as extra inputs for any new hidden

neuron in a network. At the output level, a linear combination

function can be used effectively [20].

The assumption is that its correlation with the residual error

will make a new neuron useful in reducing the residual error

and improving the prediction of the actual target in a network.

The increase values are done by computing the gradient of the

network and performing some form of gradient ascent. Instead

of training only one examine candidate neuron at a single

time, a collection of neurons called pool is initialized with

random values of weights, can be trained. At the end, the best

one is selected. This increases the chance that a good

candidate will be identified. As well as the best candidate is

selected and added to the selected network, the output weights

for the updated network can be updated automatically.

Whether a linear function is used at the output level, the

output weights can be obtained by simple linear regression.

The concept of cascade-correlation networks can be extended

to networks for learning aggregate functions. The crucial

difference is that instead of the simple collection of hidden

neurons, we can use units that can process bags are used

effectively. These units come from the simple networks

presented above. The sym, hsum, hmax, hsmx and lrc units can

all be used as aggregation units in the hidden layer of the

cascade-correlation network which to construct. For the

remaining, the network and the training of network of it work

in the same way as for the feedforward cascade-correlation

networks are examined effectively [21]. A schema of an

aggregate cascade-correlation network for 2 input vectors is

shown in figure 1. With all parts of the aggregate cascade-

correlation network explained, it only remains to discuss the

training of the network in more detail. Each time a new unit

should be added to the hidden layer to be selected and a

collection of neurons called a pool of units is created of all

possible types. Weights are initialized randomly. After that,

all units in the pool are trained and examine for a number of

iterations of same values, similar to backpropagation in a

networks. This training is basically a gradient ascent,

maximizing the correlation with the outputs. The computation

of the gradient depends of course on the type of unit. As

described, this method has the advantage that the step size is

determined automatically and convergence is faster than for a

finalized step size in a network. The basic concept behind it is

to increase the step size and value when the sign of the

gradient remains the same, and decrease the step size when

the sign changes. When all units in the pool have been trained,

the best one is chosen. In this case, the best unit is the one

with the highest correlation. When the unit with the highest

correlation has been chosen, it is admitted in the network and

the obtained output weights have to be learned and examine

again. As a linear activation functions in a network are used

for the output, while the output weights can be identified with

least squares linear regression. Ali Bou Nassif et al. proposed

that Software cost estimation is a crucial element in project

management. If we failed to use a proper cost estimation

method might lead to project failures. If we conduct software

cost estimation in the early stages of the software life cycle

then it is important and this would be helpful to project [22].

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

9

Figure 5: Cascade-Correlation Network after the Addition

of Three Hidden Units

M. Mohammed et al. proposed that the performance and

capacity of multicast routing protocols over ANN. They

summarized traffic models for multicast routing protocols in

ANN. They also evaluated the performance of the existing

multicast protocols in ANN using similar traffic models to

justify their proposal. Multicast routing protocols were

categorized into tree-based, mesh based, stateless, hybrid-

based and flooding protocols and proposed with a focus on

how to rise above the constraints present in the previously

proposed multicast protocols for better result in ANN.

M. Azzeh et al. proposed that Software effort estimation at

early stage is a crucial task for project bedding and feasibility

study. Since collected data at early stage of software

development lifecycle is always imprecise and uncertain, it is

very hard to deliver exact estimated value. In an analogy-

based estimation, which is currently is the one of the popular

estimation methods, is frequently used at early stage because

of uncertainty associated with attribute measurement and data

availability. In order to improve performance of analogy-

based estimation at earl stage, using all available early data,

we integrated it with Fuzzy numbers and new software project

similarity measure and a new adaptation technique based on

Fuzzy numbers in order to support analogy-based estimation

at early stage of software development lifecycle [23]. In all

data sets the empirical evaluations have shown that the

proposed similarity measure and adaptation techniques

method were able to remarkably improve the performance of

analogy-based estimation at early stage of software

development and in effort calculation. The results obtained

are matches with proposed method outperforms some well

know estimation techniques such as case-based reasoning and

stepwise regression. It is concluded that the proposed

estimation model could form a useful approach for early stage

estimation especially when data is almost uncertain. Software

effort estimation at early stage is a crucial task for project

bedding and feasibility study. Since collected data at early

stage of software development lifecycle is always imprecise

and uncertain, it is very hard to deliver accurate estimate.

Analogy-based estimation, which is one of the popular

estimation methods, is rarely used at early stage because of

uncertainty associated with attribute measurement and data

availability. In order to improve performance of analogy-

based estimation at early stage, using all available early data,

we integrated it with ANN [24].

2.2 Recurrent CCNNs
When the order of samples has specific patterns, recurrent

neural networks (RNN) can fit better for the problem than

feedforward ones. RNNs have feedback connections going

into the current or previous layers and so they can circulate

data inside the network. Using these data they can simulate a

short-term memory which is capable of recognizing input

patterns and adapt the outputs accordingly. Unfortunately

there is not any known efficient learning algorithm for general

RNNs. Only a few special recurrent architecture have efficient

learning methods including the recurrent cascade-correlation

(RCC) architecture published by Fahlman (1991).

Figure 6: Recurrent Cascade-Correlation Network

Because the CCNN training does not change any weights of a

frozen neuron, the new candidate neurons cannot have

feedback connections going to activated neurons. So the only

option, applied by the RCC architecture, when each neuron

has a self-recurrent connection (its own output act as an input

too) which can be trained during candidate learning and

become frozen later [25].

2.3 Evolving Cascade Neural Networks
A new learning algorithm for Evolving Cascade Neural

Networks (ECNNs) is described here. An ECNN starts to

learn with one input node and then adding new inputs as well

as new hidden neurons which is actually participates in it. The

trained ECNN consist of less or min number of input along

with hidden neurons along with present connections. The

algorithms of ECNN were implemented successfully to

classify artifacts and normal segments in clinical

electroencephalograms (EEGs). The EEG segments were

visually identified by EEG-viewer segments. The trained

ECNN has correctly classified 96.69% of the testing

segments. It is slightly better than a standard fully connected

neural network. The training algorithm was applied to a real-

world problem related to classification of normal segments

and artifacts in the EEG recordings. The EEG segments are

characterized by several noisy and unexpected irrelative

features. The obtained result in the EEG recordings of two

patients was visually labeled by obtained segments of EEG-

viewer segments. The ECNN has been found that it learns to

detect automatically classification of the EEG segments. The

ECNN, trained on the EEG segments, has correctly classified

96.69% of the testing segments. A standard feed-forward

network using a PCA preprocessing applied to the same

datasets has provided 94.46% of correct classifications on the

given records [26]. Hence, the ECNN algorithm implemented

on the EEG problem efficiently that has performed slightly

better than a standard neural network technique. Evolving

Cascade Neural Networks (ECNNs) and a new training

algorithm were capable of selecting informative features

which elaborated widely in classification. The ECNN initially

learns with one input node and then adding new inputs as well

as new hidden neurons which is actually participates in it. The

resultants ECNN were consist of less number of hidden

neurons and inputs that was applied on ECNN efficiently.

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

10

Figure 7: The structure of an ECNN trained to recognize

the EEG artifacts

The ECNN starts to learn with one neuron, and new inputs as

well as new neurons are added to the network while its

performance increases. As a result, the ECNN has a near

optimal complexity. The ECNN was applied for recognizing

artifacts in the clinical EEGs recorded from newborns during

sleep hours. The artifacts in these EEG were visually labeled

by Reviewers. Some of the spectral and statistical features,

calculated to present the EEGs for an automated recognition,

were noisy and redundant. In our experiments with the artifact

recognitions in the EEGs, the ECNNs, learnt from the data,

has slightly outperformed the standard FNNs with a fixed

structure. The ECNN has also outperformed the evolutionary

GMDH-type as well as the standard decision tree techniques

[27].

2.4 Genetic Cascade Neural Networks
A genetic algorithm has been applied within the Cascade-

Correlation architecture to train connection weights given in a

network. The performance of the Genetic Cascade-Correlation

program when implemented on the two-spiral and eight-bit

parity problems compares favorably with the original

Cascade-Correlation program that used the Quickprop

algorithm to train connection weights in a network. Though

Quickprop solved both problems with less number of hidden

units, the genetic algorithm required less epochs in the case of

the two-spiral problem and only slightly more epochs than

Quickprop in the case of the eight-bit parity problem in

calculations. If the creation of compact widely used networks

is expected, the genetic algorithm can be lower down to find

solutions with less hidden units at the contribution of

additional training epochs. The performance of the genetic

algorithm is encouraging considering it uses no gradient

information (thus doesnot require differentiable transfer

functions) and depends entirely on generic recombination

operators. The advantage of the Quickprop algorithm is that it

is significantly more efficient than the genetic algorithm when

gradient information is available. However, in applications

such as non-linear neural control where an error gradient is

sometimes not computable, genetic algorithms may provide a

reasonable alternative. Future work will consist of applying

the Genetic Cascade-Correlation algorithm to such an

application [28]. A comparison of the genetic algorithm

performance with and without the crossover operator did not

demonstrate a statistically significant increase in performance

when standard two-point crossover was applied. Still we can

say, the earlier attempts to use genetic algorithms to train

neural networks demonstrated the crossover operator

significantly decreased the performance due to incompatible

feature-detector mappings onto hidden units. The empirical

results of this paper indicate that the application of crossover

within the Cascade-Correlation architecture does not suffer

from this defect which identified above. In future it may lead

to alternate genetic representations within the Cascade-

Correlation architecture that will enable the crossover

operator to demonstrate a significant performance

contribution. The results are inconclusive as to whether the

genetic algorithm reduces the possibility of convergence to

suboptimal local minimum solutions. Both Genetic Cascade-

Correlations and Quickprop Cascade-Correlation consistently

found acceptable solutions to the two-spiral and eight-bit

parity problems [29].

3. CONCLUSION
In this paper we studied about cascade correlation neural

networks which have an adaptively built architecture

autonomously fitting to the target application. We covered

different forms of cascade correlation networks which do not

suffer from the common problems of the backpropagation

algorithm. We considered many variants and showed

important applications where these networks can bring

significant improvements. Despite of the old age of cascade-

correlation neural networks, we studied the recurrent cascade-

correlation architecture. The study of evolving cascade-

correlation networks were usually based on comparisons

against fixed structure feed forward neural-networks trained

by the backpropagation algorithm. Cascade correlation neural

network also can be used in genetics for finding the optimal

solution of complex problems. The evolving CCNN is another

field where we can add more hidden units in CCNN with

previous output as a input to the next level of evolving

CCNN. The evolving CCNN can be used efficiently for

complex problems. RNNs have feedback connections going

into the current or previous layers and so they can circulate

data inside the network. Using these data they can simulate a

short-term memory which is capable of recognizing input

patterns and adapt the outputs. In future all of the forms of the

CCNN can be efficiently used for software cost estimation in

software engineering, in operating system for avoiding

deadlocks and in genetics as a basic fundamental unit for

implementing genetic algorithms. In future we can use ECNN,

RNN and genetic CNN can be used for software cost and

effort estimation.

4. REFERENCES
[1] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.

Multilayer Feedforward Networks Are Universal

Approximators. Neural Networks Vol. 2, Issue 5, pages

359–366, 1989

[2] Scott E. Fahlman. Faster-Learning Variations on Back-

Propagation: An Empirical Study. Proceedings1988

Connectionist Models Summer School, pages 38–51,

1988.

[3] Scott E. Fahlman and Christian Lebiere. The Cascade-

Correlation Learning Architecture. D. S. Touretzky (ed.),

Advances in Neural Information Processing Systems 2,

pages 524–532, 1990.

[4] Jean-Philippe Thivierge, Fracois Rivest, and Thomas R.

Schultz. A Dual-Phase Technique for Pruning

Constructive Networks. Proceedings of the International

Joint Conference on Neural Networks, 2003.

[5] Steffen Nissen. Large Scale Reinforcement Learning

using Q-SARSA and Cascading Neural Networks. MSc

Thesis, University of Copenhagen, 2007.

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Information Technology (NCETIT-2014)

11

[6] Dale Schuurmans and Finnegan Southey. Metric-Based

Methods for Adaptive Model Selection and

Regularization. Machine Learning, 48, pages 51–84,

2002.

[7] Shumeet Baluja and Scott E. Fahlman. Reducing

Network Depth in the Cascade-Correlation Network

Architecture. Technical Report CMU-CS-94-209, 1994.

[8] Scott E. Fahlman. The Recurrent Cascade-Correlation

Architecture. D. S. Touretzky (ed.), Advances in Neural

Information Processing Systems 3, pages 190–196, 1991.

[9] Schetinin, V.: Polynomial neural networks for classifying

EEG signals, In: Proceedings of NIMIA-SC2001 NATO

Advanced Study Institute on Neural Networks for

Instrumentation, Measurement, and Related Industrial

Applications, Crema, Italy, 2001.

[10] Müller JA, Lemke F. Self-Organizing Data Mining:

Extracting Knowledge from Data. Trafford Publishing,

Canada, 2003

[11] Thomas R. Schultz, Francois Rivest, L´aszl´o Egri, Jean-

Philippe Thivierge, and Fr´ed´eric Dandurand. Could

Knowledge-based Neural Learning Be Useful in

Developmental Robotics? The Case of KBCC.

International Journal of Humanoid Robotics Vol. 4, No.

2, pages 245–279, 2007

[12] M. Azzeh, D. Neagu and P. Cowling, "Fuzzy grey

relational analysis for software effort estimation,"

Empirical Software Engineering, vol. 15, pp. 60-90,

2010.

[13] M. Azzeh, D. Neagu and P. I. Cowling, "Analogy-based

software effort estimation using Fuzzy numbers,"

Journal of Systems and Software, vol. 84, pp. 270-284,

2011.

[14] A. Idri, A. Zakrani and A. Zahi, "Design of Radial Basis

Function Neural Networks for Software Effort

Estimation," International Journal of Computer Science

Issues, vol. 7, pp. 11-17, 2010.

[15] C. Lopez-Martin, "A fuzzy logic model for predicting the

development effort of short scale programs based upon

two independent variables," Applied Soft Computing, vol.

11, pp. 724- 732, 1, 2011.

[16] C. Lopez-Martin, "Applying a general regression neural

network for predicting development effort of short-scale

programs," Neural Computing & Applications, vol. 20,

pp. 389- 401, 2011.

[17] C. Lopez-Martin, C. Isaza and A. Chavoya, "Software

development effort prediction of industrial projects

applying a general regression neural network," Empirical

Software Engineering, vol. 17, pp. 1-19, 2011.

[18] W. L. Du, D. Ho and L. F. Capretz, "Improving Software

Effort Estimation Using Neuro-Fuzzy Model with SEER-

SEM," Global Journal of Computer Science and

Technology, vol. 10, pp. 52-64, 2010.

[19] Y. Li, M. Xie and T. Goh, "Adaptive ridge regression

system for software cost estimating on multi-collinear

datasets," Journal of Systems and Software, vol. 83, pp.

2332-2343, 2010.

[20] G. Kousiouris, T. Cucinotta and T. Varvarigou, "The

effects of scheduling, workload type and consolidation

scenarios on virtual machine performance and their

prediction through optimized artificial neural networks,"

Journal of Systems and Software, vol. 84, pp. 1270-1291,

2011.

[21] X. Huang, D. Ho, J. Ren and L. F. Capretz, "Improving

the COCOMO model using a neuro-fuzzy approach,"

Appl. Soft Comput., vol. 7, no. 1, pp. 29-40, 2007.

[22] A. Mittal, K. Parkash and H. Mittal, "Software cost

estimation using fuzzy logic," SIGSOFT Softw. Eng.

Notes, vol. 35, no. 1, pp. 1-7, 2010.

[23] A. B. Nassif, D. Ho and L. F. Capretz, "Regression

model for software effort estimation based on the use

case point method," in 2011 International Conference on

Computer and Software Modeling, Singapore, 2011, pp.

117-121.

[24] A. B. Nassif, L. F. Capretz and D. Ho, "Estimating

software effort based on use case point model using

sugeno fuzzy inference system," in 23rd IEEE

International Conference on Tools with Artificial

Intelligence, Florida, USA, 2011, pp. 393-398.

[25] A. B. Nassif, L. F. Capretz and D. Ho, " Software Effort

Estimation in the Early Stages of the Software Life Cycle

Using a Cascade Correlation Neural Network Model," in

13th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, Las Vegas, U.S.A,

2012, pp. 393-398

[26] Vitaly Schetinin, “A Learning Algorithm for Evolving

Cascade Neural Networks,” in TheorieLabor, Friedrich-

Schiller University of Jena Ernst-Abbe-Platz 4, 07740

Jena, Germany

[27] Vitaly Schetinin, “An Evolving Cascade Neural Network

Technique for Cleaning Sleep Electroencephalograms,”

in Computer Science Department, University of Exeter,

Exeter, EX4 4QF, UK

[28] G´abor Bal´azs, “Cascade-Correlation Neural Networks:

A Survey,” in Department of Computing Science,

University of Alberta, Edmonton, Canada

[29] Mitchell A. Potter, “A Genetic Cascade-Correlation

Learning Algorithm,” in Computer Science Department

George Mason University Fairfax, VA 22030 USA

