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ABSTRACT 

Cascade-Correlation is a new architecture and supervised 

learning algorithm for artificial neural networks and 

classification techniques. Rather than adjusting the weights in 

a network of predefined topology, Cascade-Correlation begins 

with a minimal network and it automatically trains, adds new 

hidden units one after the other by creating a multi-layer 

structure. As soon as a new hidden unit has been added to the 

network, its input-side weights are getting fixed. After that 

these unit then becomes a permanent feature-identifier in the 

network, present for producing outputs, then cascade-

correlation is behaves as more complex feature detectors. The 

Cascade-Correlation networks have several benefits over 

existing algorithms as it learns very fast. It determines its own 

size and topology fast. It maintains the structures which it has 

built even after the training set changes, and it doesn’t need 

back-propagation of error signals through the connections of 

the network and its component. Cascade Correlation Neural 

Network (CCNN) types such as recurrent CCNN, evolving 

CCNN, genetic CCNN are used to predict software effort 

from Use Case diagrams in advance manner which helps 

further for software cost estimation. The use case diagrams 

are developed in the early stages of the software development 

and they are used for input. This paper is an overview of 

cascade-correlation neural networks in which we study 

different types of cascade-correlation neural network. They 

are based on a special architecture which autonomously 

adapts to the application and makes the training much more 

efficient than the widely used backpropagation algorithm. 

This review focuses on different types of CCNN and also 

describes the cascade-correlation architecture variants. 

General Terms 

Cascade-correlation neural network, artificial neural network,  

Keywords 

Neural network, cascade architecture, evolving. 

1. INTRODUCTION 

Artificial neural networks are universal function approximates 

which makes them suitable for the most applications. 

However, their training is usually cumbersome and requires 

proper tuning of the learning algorithm based on deep 

knowledge about the problem. Without this care their answer 

can converge very slowly resulting a never ending learning 

process. Furthermore, the widely used backpropagation 

learning algorithm requires the network structure to be 

provided. This structure has a serious impact on the learning 

capabilities, so it has to be designed properly for the 

application. Because of these reasons the constructive training 

algorithms have become appealing where the structure is 

adaptively built during the training process. The constructive 

methods have two main classes. One uses evolutionary 

algorithms to evolve the network structure by training and 

combining many networks at the same time. This approach 

has huge computational costs compared to backpropagation 

and so it is usually infeasible. The other is represented by 

cascade-correlation neural networks (CCNN). They have a 

special network architecture which autonomously adapts to 

the application. They also have a special training process 

which reduces the computational costs and cures many 

problems of the backpropagation algorithm at once. The rest 

of this section shortly covers ANNs in general and considers 

backpropagation training problems. This paper also 

investigates how the ANN training can be improved by curing 

the previously discussed problems and presents more CCNN 

variants. A Neural Network (NN) is an adaptive system that 

learns from examples using interconnected processing nodes. 

Artificial neural networks serve as general purpose 

mechanisms for training a machine by examples. This neural 

network is to be used for software cost estimation in recent 

ten decades [1]. Neural networks are classified as artificial 

intelligence because of their ability to learn and its basis in 

biological activities of the human brain. They are modeled 

after the human brain, which are perceived as highly 

connected network of neurons termed as nodes. It has three 

parts (layers): an input layer, a hidden layer and the output 

layer [2]. The number of input, hidden, and the output nodes 

is referred to as the neural network topology or the network 

architecture. Figure 1 below shows a network of nodes, left-

hand nodes x1, x2 and x3 are the input node and constitute the 

input layer [3]. The input nodes represent the predictor 

variables. The two middle nodes z1 and z2 are the hidden 

nodes and constitute the hidden layer. The right-hand node 

(Y) is the output node and makes up the output layer. The 

output layer represents the target variable. The heart of the 

neural network algorithm involves series of mathematical 

operations that use the weights to compute a weighted sum of 

the inputs at each node [4]. For a particular example, the net 

input to a unit in a hidden or output layer is given by:                                  

                               netij= ∑ w i j x i j                    ( 1 ) 

Where xij represents the input to node, represents the weight 

associated with the ith input to node and there are I+1 inputs to 

the node is the activation of unit j [5].  
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Figure 1: Simple Neural Networks 

All Artificial neural networks (ANN) were inspired by the 

human brain. They contain simple processing elements 

(neurons) and connections among them which the data can 

“flow” on. Each neuron has many inputs, outputs and an 

activation function. The computational model of a neuron can 

be described by the 

                 y = f (  wk ∗ xk𝑛
𝑘=1 )                     (2) 

equation where y is the output value transferred further by all 

the output connections, xk is the kth input, wk is the weight of 

the connection related to the kth input and f is the activation 

function which is usually the signum (sign) or the sigmoid (¾) 

function defined as 

               Sign(x) = 1 if x > 0                      (3) 

A neuron can be efficiently trained by the perceptron learning 

algorithm to solve any linearly separable problem. However, 

most of the problems are not linearly separable, so an 

individual neuron cannot give an acceptable solution. For 

these problems the neurons have to be structured and 

connected to form a network ANNs with many neurons are 

usually organized into layers [6]. Each network has an input, 

an output and may have hidden layers. Figure 1 shows an 

ANN with an input, an output and two hidden layers. The 

input layer contains only special neurons with one input, 

many outputs and the identity of an activation function is with 

them, so these neurons were feed the data in a network [7]. 

The ANN of Figure 1 has only connections which go into 

subsequent layers. These kind of networks are called feed 

forward ANNs. A network with connections going to the 

same or to a previous layer is called recurrent ANN. 

 

Figure 2: Artificial Neural Network 

It is known that a feed forward ANN with one hidden layer is 

an universal function approximator [8], so it can approximate 

any bounded continuous function with arbitrary precision 

(however it needs exponentially many neurons for this). 

Furthermore, any feed forward ANN can be trained (in the 

supervised way) by the backpropagation algorithm. It 

calculates the error at the output and propagates it back to the 

neurons of the previous layer which can be trailed 

accordingly. Then the locally corrugated errors are propagated 

further to the previous layer and so forth until the input layer 

is reached. Technically this algorithm calculates the gradient 

of the network according to the connection weights. One of 

the most robust backpropagation variant, called quick prop, 

was published by Fahlman (1988) [9]. 

The cascade-correlation architecture, published by Fahlman 

and Lebiere (1990) [10], has two key ideas. First it grows the 

network on demand, so it only adds new neurons when they 

can help for solving the problem. Second the new neurons are 

added and trained one by one which can eliminate many of 

the problems presented in the previous section. At the 

beginning the learning algorithm starts with an “empty” 

network which has only the input and the output layers and 

does not have any hidden layers. Because of the absence of 

hidden neurons this network can be learned by a simple 

gradient descent algorithm applied for each output neuron 

individually [11]. During the learning process new neurons 

are added to the network one by one. Each of them is placed 

into a new hidden layer and connected to all the preceding 

input and hidden neurons. Once a neuron is finally added to 

the network (activated), its input connections become frozen 

and do not change anymore. The neuron-creation step can be 

divided into two parts. First a new, so called candidate neuron 

is connected to all the input and hidden neurons by trainable 

input connections, but its output is not connected to the 

network. Then the weights of the candidate neuron can be 

trained while all the other weights in the network are frozen. 

This state is illustrated on Figure 3, where the dashed 

connections are trained [12].  

 

Figure 3: The cascade-correlation architecture 

The empty layer shows the place of the candidate neuron 

where it is activated to after its input weights are learned and 

become frozen [13]. Second the candidate is connected to the 

output neurons (activated) and then all the output connections 

(all the input connections of any neuron in the output layer) 

are trained. The whole process is repeated until the desired 

network accuracy is obtained. 

2. LITERATURE SURVEY 

2.1 Cascade Correlation Neural Network 
An important but difficult problem in neural network 

modeling is the selection of the appropriate number of hidden 

units. The cascade correlation algorithm, proposed by 

Fahlman and Lebiere, addresses this issue by recruiting new 

units according to the residual approximation error. The 

algorithm succeeds in giving structure to the network and 

reducing the training time necessary for a given task [14]. 

Figure 2 shows a network trained and structured using 

cascade correlation. Assume for the moment that a single 
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output unit is required [15]. The algorithms start with zero 

hidden units and add one at a time according to the residual 

error. The output unit is trained to minimize the quadratic 

error. Training stops when the error has leveled off. If the 

average quadratic error is still greater than the desired upper 

bound, we must add a hidden unit and retrain the network. 

The motivation behind this step is to specialize on hidden unit 

to the detection of the residual error of the network [16]. The 

backpropagation algorithm is applied as usual and it will take 

care to compute with the sign of the argument with an 

absolute value operator. Another way of overcoming this 

drawback is to take an absolute values at all, is to train a 

weight at the output of the hidden unit, so that it assumes the 

appropriate sign (see Exercise 1). Once the hidden unit H1 has 

been trained, i.e., when the correlation level cannot be further 

improvised, the present unit is added to the network as figure 

shows in Figure 4 (left diagram). The weights of the hidden 

unit are frozen. The output unit receives information now 

from the input sites and from the hidden unit H1. 

 

Figure 4: The cascade correlation architecture 

All the weights of the output unit are retrained until the error 

levels off and we test if a new hidden unit is necessary. Any 

new hidden unit receives an input from the input sites and 

from all other previously defined hidden units. The algorithm 

continues adding hidden units until we are satisfied with the 

approximation error [17]. The advantage of the algorithm, 

regarding learning time is that on iteration of a single layer of 

weights has to be trained. Basically, we only train one 

sigmoidal unit in an iteration whenever they trained. The final 

network which we get has more structure than the usual flat 

feed-forward networks and, if training results correctly, we 

have to stop when the minimum number of necessary hidden 

units has been selected. To guarantee this, several hidden 

units can be trained at each step and the one with the highest 

correlation selected for inclusion in the network [18]. In the 

case of more than one output unit, the average of the 

correlation of all output units is maximized at each step. The 

previously discussed network structures have two important 

drawbacks. First of all, one of the network types has to be 

selected. After that, also the number of units in the hidden 

layer has to be chosen. Both choices are not trivial. A 

cascade-correlation approach solves this problem and makes a 

combination of the simple methods which are easy to train. 

The concept of original cascade-correlation algorithm [19] is 

to identify not only the weights, as well as the network 

structure of the network at the same time. This can be happen 

in a positive constructive way; by means of only one neuron 

at a time is trained and then added to the network structure. 

While each time only one starts with a network without any 

hidden unit, and then in a network hidden neurons which are 

needed are added, one by one, until some stopping criterion is 

occurred. As soon as a hidden neuron is being added to the 

network, its obtained weights are remains final throughout the 

rest of the procedure. This also means that, besides the actual 

input vector in a network, the output values of these current 

hidden units are to be used as extra inputs for any new hidden 

neuron in a network. At the output level, a linear combination 

function can be used effectively [20].  

The assumption is that its correlation with the residual error 

will make a new neuron useful in reducing the residual error 

and improving the prediction of the actual target in a network. 

The increase values are done by computing the gradient of the 

network and performing some form of gradient ascent. Instead 

of training only one examine candidate neuron at a single 

time, a collection of neurons called pool is initialized with 

random values of weights, can be trained. At the end, the best 

one is selected. This increases the chance that a good 

candidate will be identified. As well as the best candidate is 

selected and added to the selected network, the output weights 

for the updated network can be updated automatically. 

Whether a linear function is used at the output level, the 

output weights can be obtained by simple linear regression. 

The concept of cascade-correlation networks can be extended 

to networks for learning aggregate functions. The crucial 

difference is that instead of the simple collection of hidden 

neurons, we can use units that can process bags are used 

effectively. These units come from the simple networks 

presented above. The sym, hsum, hmax, hsmx and lrc units can 

all be used as aggregation units in the hidden layer of the 

cascade-correlation network which to construct. For the 

remaining, the network and the training of network of it work 

in the same way as for the feedforward cascade-correlation 

networks are examined effectively [21]. A schema of an 

aggregate cascade-correlation network for 2 input vectors is 

shown in figure 1. With all parts of the aggregate cascade-

correlation network explained, it only remains to discuss the 

training of the network in more detail. Each time a new unit 

should be added to the hidden layer to be selected and a 

collection of neurons called a pool of units is created of all 

possible types. Weights are initialized randomly. After that, 

all units in the pool are trained and examine for a number of 

iterations of same values, similar to backpropagation in a 

networks. This training is basically a gradient ascent, 

maximizing the correlation with the outputs. The computation 

of the gradient depends of course on the type of unit. As 

described, this method has the advantage that the step size is 

determined automatically and convergence is faster than for a 

finalized step size in a network. The basic concept behind it is 

to increase the step size and value when the sign of the 

gradient remains the same, and decrease the step size when 

the sign changes. When all units in the pool have been trained, 

the best one is chosen. In this case, the best unit is the one 

with the highest correlation. When the unit with the highest 

correlation has been chosen, it is admitted in the network and 

the obtained output weights have to be learned and examine 

again. As a linear activation functions in a network are used 

for the output, while the output weights can be identified with 

least squares linear regression. Ali Bou Nassif et al. proposed 

that Software cost estimation is a crucial element in project 

management. If we failed to use a proper cost estimation 

method might lead to project failures. If we conduct software 

cost estimation in the early stages of the software life cycle 

then it is important and this would be helpful to project [22]. 
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Figure 5: Cascade-Correlation Network after the Addition 

of Three Hidden Units 

M. Mohammed et al. proposed that the performance and 

capacity of multicast routing protocols over ANN. They 

summarized traffic models for multicast routing protocols in 

ANN. They also evaluated the performance of the existing 

multicast protocols in ANN using similar traffic models to 

justify their proposal. Multicast routing protocols were 

categorized into tree-based, mesh based, stateless, hybrid-

based and flooding protocols and proposed with a focus on 

how to rise above the constraints present in the previously 

proposed multicast protocols for better result in ANN. 

M. Azzeh et al. proposed that Software effort estimation at 

early stage is a crucial task for project bedding and feasibility 

study. Since collected data at early stage of software 

development lifecycle is always imprecise and uncertain, it is 

very hard to deliver exact estimated value. In an analogy-

based estimation, which is currently is the one of the popular 

estimation methods, is frequently used at early stage because 

of uncertainty associated with attribute measurement and data 

availability. In order to improve performance of analogy-

based estimation at earl stage, using all available early data, 

we integrated it with Fuzzy numbers and new software project 

similarity measure and a new adaptation technique based on 

Fuzzy numbers in order to support analogy-based estimation 

at early stage of software development lifecycle [23]. In all 

data sets the empirical evaluations have shown that the 

proposed similarity measure and adaptation techniques 

method were able to remarkably improve the performance of 

analogy-based estimation at early stage of software 

development and in effort calculation. The results obtained 

are matches with proposed method outperforms some well 

know estimation techniques such as case-based reasoning and 

stepwise regression. It is concluded that the proposed 

estimation model could form a useful approach for early stage 

estimation especially when data is almost uncertain. Software 

effort estimation at early stage is a crucial task for project 

bedding and feasibility study. Since collected data at early 

stage of software development lifecycle is always imprecise 

and uncertain, it is very hard to deliver accurate estimate. 

Analogy-based estimation, which is one of the popular 

estimation methods, is rarely used at early stage because of 

uncertainty associated with attribute measurement and data 

availability. In order to improve performance of analogy-

based estimation at early stage, using all available early data, 

we integrated it with ANN [24]. 

2.2 Recurrent CCNNs 
When the order of samples has specific patterns, recurrent 

neural networks (RNN) can fit better for the problem than 

feedforward ones. RNNs have feedback connections going 

into the current or previous layers and so they can circulate 

data inside the network. Using these data they can simulate a 

short-term memory which is capable of recognizing input 

patterns and adapt the outputs accordingly. Unfortunately 

there is not any known efficient learning algorithm for general 

RNNs. Only a few special recurrent architecture have efficient 

learning methods including the recurrent cascade-correlation 

(RCC) architecture published by Fahlman (1991).  

 

Figure 6: Recurrent Cascade-Correlation Network  

Because the CCNN training does not change any weights of a 

frozen neuron, the new candidate neurons cannot have 

feedback connections going to activated neurons. So the only 

option, applied by the RCC architecture, when each neuron 

has a self-recurrent connection (its own output act as an input 

too) which can be trained during candidate learning and 

become frozen later [25]. 

2.3 Evolving Cascade Neural Networks 
A new learning algorithm for Evolving Cascade Neural 

Networks (ECNNs) is described here. An ECNN starts to 

learn with one input node and then adding new inputs as well 

as new hidden neurons which is actually participates in it. The 

trained ECNN consist of less or min number of input along 

with hidden neurons along with present connections. The 

algorithms of ECNN were implemented successfully to 

classify artifacts and normal segments in clinical 

electroencephalograms (EEGs). The EEG segments were 

visually identified by EEG-viewer segments. The trained 

ECNN has correctly classified 96.69% of the testing 

segments. It is slightly better than a standard fully connected 

neural network. The training algorithm was applied to a real-

world problem related to classification of normal segments 

and artifacts in the EEG recordings. The EEG segments are 

characterized by several noisy and unexpected irrelative 

features. The obtained result in the EEG recordings of two 

patients was visually labeled by obtained segments of EEG-

viewer segments. The ECNN has been found that it learns to 

detect automatically classification of the EEG segments. The 

ECNN, trained on the EEG segments, has correctly classified 

96.69% of the testing segments. A standard feed-forward 

network using a PCA preprocessing applied to the same 

datasets has provided 94.46% of correct classifications on the 

given records [26]. Hence, the ECNN algorithm implemented 

on the EEG problem efficiently that has performed slightly 

better than a standard neural network technique. Evolving 

Cascade Neural Networks (ECNNs) and a new training 

algorithm were capable of selecting informative features 

which elaborated widely in classification. The ECNN initially 

learns with one input node and then adding new inputs as well 

as new hidden neurons which is actually participates in it. The 

resultants ECNN were consist of less number of hidden 

neurons and inputs that was applied on ECNN efficiently.  
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Figure 7: The structure of an ECNN trained to recognize 

the EEG artifacts 

The ECNN starts to learn with one neuron, and new inputs as 

well as new neurons are added to the network while its 

performance increases. As a result, the ECNN has a near 

optimal complexity. The ECNN was applied for recognizing 

artifacts in the clinical EEGs recorded from newborns during 

sleep hours. The artifacts in these EEG were visually labeled 

by Reviewers. Some of the spectral and statistical features, 

calculated to present the EEGs for an automated recognition, 

were noisy and redundant. In our experiments with the artifact 

recognitions in the EEGs, the ECNNs, learnt from the data, 

has slightly outperformed the standard FNNs with a fixed 

structure. The ECNN has also outperformed the evolutionary 

GMDH-type as well as the standard decision tree techniques 

[27]. 

2.4 Genetic Cascade Neural Networks 
A genetic algorithm has been applied within the Cascade-

Correlation architecture to train connection weights given in a 

network. The performance of the Genetic Cascade-Correlation 

program when implemented on the two-spiral and eight-bit 

parity problems compares favorably with the original 

Cascade-Correlation program that used the Quickprop 

algorithm to train connection weights in a network. Though  

Quickprop solved both problems with less number of hidden 

units, the genetic algorithm required less epochs in the case of 

the two-spiral problem and only slightly more epochs than 

Quickprop in the case of the eight-bit parity problem in 

calculations. If the creation of compact widely used networks 

is expected, the genetic algorithm can be lower down to find 

solutions with less hidden units at the contribution of 

additional training epochs. The performance of the genetic 

algorithm is encouraging considering it uses no gradient 

information (thus doesnot require differentiable transfer 

functions) and depends entirely on generic recombination 

operators. The advantage of the Quickprop algorithm is that it 

is significantly more efficient than the genetic algorithm when 

gradient information is available. However, in applications 

such as non-linear neural control where an error gradient is 

sometimes not computable, genetic algorithms may provide a 

reasonable alternative. Future work will consist of applying 

the Genetic Cascade-Correlation algorithm to such an 

application [28]. A comparison of the genetic algorithm 

performance with and without the crossover operator did not 

demonstrate a statistically significant increase in performance 

when standard two-point crossover was applied. Still we can 

say, the earlier attempts to use genetic algorithms to train 

neural networks demonstrated the crossover operator 

significantly decreased the performance due to incompatible 

feature-detector mappings onto hidden units. The empirical 

results of this paper indicate that the application of crossover 

within the Cascade-Correlation architecture does not suffer 

from this defect which identified above. In future it may lead 

to alternate genetic representations within the Cascade-

Correlation architecture that will enable the crossover 

operator to demonstrate a significant performance 

contribution. The results are inconclusive as to whether the 

genetic algorithm reduces the possibility of convergence to 

suboptimal local minimum solutions. Both Genetic Cascade-

Correlations and Quickprop Cascade-Correlation consistently 

found acceptable solutions to the two-spiral and eight-bit 

parity problems [29]. 

3. CONCLUSION 
In this paper we studied about cascade correlation neural 

networks which have an adaptively built architecture 

autonomously fitting to the target application. We covered 

different forms of cascade correlation networks which do not 

suffer from the common problems of the backpropagation 

algorithm. We considered many variants and showed 

important applications where these networks can bring 

significant improvements. Despite of the old age of cascade-

correlation neural networks, we studied the recurrent cascade-

correlation architecture. The study of evolving cascade-

correlation networks were usually based on comparisons 

against fixed structure feed forward neural-networks trained 

by the backpropagation algorithm. Cascade correlation neural 

network also can be used in genetics for finding the optimal 

solution of complex problems. The evolving CCNN is another 

field where we can add more hidden units in CCNN with 

previous output as a input to the next level of evolving 

CCNN. The evolving CCNN can be used efficiently for 

complex problems. RNNs have feedback connections going 

into the current or previous layers and so they can circulate 

data inside the network. Using these data they can simulate a 

short-term memory which is capable of recognizing input 

patterns and adapt the outputs. In future all of the forms of the 

CCNN can be efficiently used for software cost estimation in 

software engineering, in operating system for avoiding 

deadlocks and in genetics as a basic fundamental unit for 

implementing genetic algorithms. In future we can use ECNN, 

RNN and genetic CNN can be used for software cost and 

effort estimation. 
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