
International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

14

Review on Dynamic Task Scheduling to Support OoO

Execution in an MPSoC Environment

Ruchika Bamnote
ME Student

Department of Electronics and Telecommunication
Engineering (VLSI & Embedded Systems)
D. Y. College of Engg. Akurdi, Pune, India

Priya M. RavaleNerkar
Assistant professor

Department of Electronics and Telecommunication
Engineering (VLSI & Embedded Systems)
D. Y. College of Engg. Akurdi, Pune, India

ABSTRACT

In this work, we present a survey of the different task

scheduling parallel programming models in order to support

Out-of-Order (OoO) execution for high performance

computing in an Multiprocessor System on Chip (MPSoC)

environment. Thus, we review different parallel programming

approaches, as well as current heterogeneous parallel

programming models. In addition, we analyze different OoO

execution architectures to solve the data dependency issues.

The characteristics, strengths, and weaknesses are presented

in all the cases. The study shows that the availability of multi-

core CPUs has given new impulse to the OoO programming

approach.

Keywords

Out-of-Order execution, MPSoC, heterogeneous parallel

programming model.

1. INTRODUCTION
The past decades shows a tremendous invasion of MPSoC,

especially in high-performance parallel computing domains.

Since more processors are being increasingly integrated into a

single chip, it is possible to bring higher computation abilities

to heterogeneous platforms for various applications. In

particular, the Field Programming Gate Array (FPGA)-based

MPSoC and Graphic Processing Unit (GPU)-based

heterogeneous architectures have been regarded as the

promising future microprocessor design paradigms [5]. But

FPGA can provide a more flexible framework to construct

prototypes for different applications as efficiently as

compared to the GPU architectures. The integration of

hundreds of cores into the current supercomputing machines

is possible because of the remarkable evolution of

heterogeneous multi-core research paradigms and the

intrusion of reconfigurable hardware accelerators.

One of the most promising future processor architectures is

considered as the combination of reconfigurable computing

and multi-core technologies. However, critical issues like raw

computational capabilities, programmability, flexibility,

scalability and power consumption are becoming increasingly

important. This scenario and raising demands have led to the

emergence of FPGA based MPSoC which is composed of a

variety of heterogeneous computational units. However, on

heterogeneous MPSoC platforms task partitioning and

scheduling approaches have encountered serious challenges,

especially with intertask dependencies, including structural

dependencies, Read-After-Write (RAW), Write-After-Write

(WAW), and Write-After-Read (WAR) data dependencies.

The task-level parallelism confined by different tasks using

same source or destination parameters may cause tasks to run

in sequence. Scoreboarding and Tomasulo are the traditional

hazards detection and elimination solutions to address the data

dependencies problem at instruction level. Both the

algorithms provide OoO instruction execution engines when

there are sufficient computing resources.

The structure of the paper is broke down as the following.

Section 2 outlines different heterogeneous parallel

programming models. Section 3 describes the task level

parallelism with their different architectures. Section 4

presents the comparison of different task scheduling

architectures available for OoO execution. Finally, the paper

is concluded in Section 5.

2. PROGRAMMING MODELS
Due to the enhancement in GPU and FPGA based research

approaches, reconfigurable heterogeneous hardware

accelerators can achieve both high performance and

promising flexibility along with increasingly speedups to

diverse embedded systems and applications. Also the

involvement of reconfigurable hardware platforms decreases

the embedded system design time and space costs, as well as

shortens the time-to-market (TTM) simultaneously very

efficiently. But in particular programmability for MPSoC is

still posing serious challenges. Programming models and

middleware architecture support should invisibly fill the gaps

between different architectures since the hardware is adapted

to fit in the applications. Alternatively, there have been

creditable MPSoC programming models such as StarSs [6]

and CellSs [8], devoted to specific hardware architectures.

StarSs and CellSs are the MPSoC programming models which

help to attack the programming wall problem with the

tremendous invasion of chip integration. These models

implicitly schedule work and data, thereby saving the

programmer of explicitly managing parallelism. These models

share conceptual similarities with out-of order superscalar

pipelines, such as dynamic data dependency analysis and

dataflow scheduling.

2.1 StarSs
StarSs is a task-based programming model. Regardless of the

target architecture it enables exploitation of task-level

parallelism. In StarSs, the programmer has to identify pieces

of code that can be executed as tasks, as well as their inputs

and outputs; for that it provides programmers with pragmas

which are annotations added to the serial code. Thereafter, the

runtime system (RTS) determines the dependencies between

tasks and schedules ready tasks onto worker cores. By

enabling programmers to explicitly expose task side-effects,

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

15

the StarSs programming model supports out-of-order

execution of tasks through annotating operands of kernel

functions as input, output, or inout (bidirectional). Thus the

model can decouple the execution of the thread generating the

tasks, from their decoding and execution.

2.2 CellSs
Cell superscalar (CellSs) is an alternative to traditional

parallel programming models. Its main objective is to offer a

simple and flexible programming model for parallel and

heterogeneous architectures. It addresses the automatic

exploitation of the functional parallelism of a sequential

program through the different processing elements of the Cell

BE architecture. A source to source compiler generates the

necessary code based on a simple annotation of the source

code and a runtime library exploits the existing parallelism by

building at runtime a task dependency graph. The runtime

deals with the task scheduling and data handling among

different processors of heterogeneous architectures. Besides,

in order to reduce the overhead of data transfers a locality-

aware task scheduling has been implemented. Since the

system complexity is growing, the problem of how to design a

flexible programming model is becoming increasingly

challenging. Both approaches provide superscalar or renaming

techniques allowing OoO execution of tasks, but they are

limited by their architecture requirements as it is hard to

directly apply them to the reconfigurable MPSoC

architectures.

3. TASK BASED PARALLELISM
Parallel task execution models have been studied for parallel

computing machines during past decades. Taskbased parallel

programming model are quite popular to enhance ILP to TLP,

such as Cilk [12]. In order to significantly reduce the

workload of programmers, this state-of the-art programming

paradigm focuses on symmetric multiprocessors. But one of

the major drawbacks of this approach is that automatic

parallelization is not fully supported, which means

programmers are required to handle the task mapping and

scheduling schemes manually. Thus the speedup achieved is

largely confined by the inadequate experiences of

programmers. As a side effect, this could also increase the

burden of programmers with synchronization and task

scheduling on the symmetric multiprocessor architectures.

Meanwhile, compared to symmetric processors,

heterogeneous processors are becoming increasingly

dominating in embedded and high performance computing

domains. One approach is to utilize reconfigurable FPGA

platform and integrate acceleration engine, such as Chimaera

[9]. Moreover, there are several creditable general FPGA

research platforms, such as Platune [12] and MOLEN [10].

These studies focus on providing reconfigurable FPGA based

environments with software tool chains to construct

application specific MPSoC. Some other works like Wave

Scalar [11] combine both static and dynamic dataflow

analysis in order to exploit more parallelism. A common

concept of these literatures is to split a large task window into

small threads that can be executed in parallel. However, the

performance is seriously constrained by inter-task data

dependencies. Inter-task data dependency analysis and

synchronization problem has posed a significant challenge in

order to run tasks OoO for coarse-grained parallelization.

Traditional algorithms, such as Scoreboarding and Tomasulo,

explore ILP with multiple arithmetic units, which can

dynamically schedule the instructions for OoO execution. In

this section a brief overview of some of these papers is

studied.

3.1 Task Superscalar
Task Superscalar pipeline [7] is an abstraction of out-of-order

superscalar pipelines which operates at the task-level. It is a

sequential program based framework that achieves function-

level parallel execution. It eases runtime analysis of inter-task

data dependencies, and out-of-order task execution. Task

superscalar requires the user to identify function parameters

using pragma (#) directives in which dependences may occur.

It builds a dynamic task-flow graph in prior to parallel

execution based on memory locations. It uses a master thread

to farm out work to other threads. It renames data, potentially

incurring high memory usage. Furthermore, it targets the

CellBE architecture and is implemented in simulation instead

of FPGA-based real hardware implementation. Task

superscalar generalizes the operational flow of dynamically

scheduled out-of-order processors, and provides a native,

task-based, dataflow execution engine. Task superscalar

therefore combines the effectiveness of out-of-order

processors in uncovering parallelism together with the task

abstraction. Thus it provides a unified management layer for

chip multiprocessors (CMPs) which effectively employ

processors as functional units. The task superscalar pipeline

dynamically detects intertask data dependencies, identifies

task-level parallelism, and executes tasks out -of-order. While

simultaneously simplifying the programming model, Task

superscalar enables programmers to exploit many core

systems effectively.

3.2 OoOJava
The OoOJava [4] is a compiler-assisted approach that

leverages developer annotations along with static analysis to

provide an easy-to-use deterministic parallel programming

model. For out-of-order execution, OoOJava extends Java

with a task annotation that instructs the compiler to consider a

code block. As soon as the data dependences are resolved

OoOJava executes tasks and guarantees that the execution of

an annotated program preserves the exact semantics of the

original sequential program. Therefore, annotations merely

affect its performance and never affect the program’s

correctness. OoOJava uses the results of disjoint reachability

analysis to generate a handful of lightweight comparisons that

allow it to safely dynamically extract parallelism even when

the heap accesses cannot be statically determined to be

disjoint. It combines this with a new value forwarding

approach that is analogous to register renaming and eliminate

write-after-write and write-after-read hazards for variables.

Together, these techniques allow OoOJava to parallelize a

wide range of programs while requiring few changes to

sequential code. Thus OoOJava uses static analysis to

discover variable and heap dependences. To extract fine-

grained and unstructured parallelism, processors execute

instructions out-of-order in this model. OoOJava adapts out-

of-order execution techniques to parallelize code blocks in its

software runtime and guarantees that the execution respects

all dependences.

Program dependences can take two forms: control

dependences and data dependences. OoOJava handles control

dependences implicitly by constraining a task to have a single

exit. A task may have a data dependence on another task

through a variable or through conflicting heap accesses to the

same object. Different dynamic instances of the same task

access the same variables. Like register renaming in out-of-

order hardware, a critical component of parallelization is to

eliminate write-after-write and write-after-read hazards on

variables by forwarding values directly to the consuming task.

The task dependence relations are restricted to be only parent-

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

16

child or sibling-sibling in nature by OoOJava. It enforces this

structure by attributing a child’s dependences to its parent and

only retiring a task after all of its children have retired. This

structure simplifies the management of dependences by

localizing the problem; a parent manages the dependences

between itself and its children. Moreover, it allows the

implementation to parallelize dependence tracking and

therefore supports scaling to systems with a large number of

cores. But OoOJava have a strict strategy to serialize all I/O

operations in the program and it prohibits parallelism when

unrelated tasks access disjoint sets of file descriptors.

3.3 Dataflow execution model
Gupta and Sohi [3] introduced an object-based dataflow

execution with data dependencies analysis method to achieve

an even more dataflow-like execution and exploit higher

degrees of concurrency. The parallel execution of statically-

sequential programs is achieved by this model. In a dataflow

fashion, it dynamically parallelizes the execution of suitably-

written sequential programs on multiple processing cores.

Hence the execution is significantly race-free and determinate.

Thus the model facilitates the program development and yet

exploits available parallelism. Parallel tasks which are nothing

but the program functions are dynamically extracted from a

sequential program and executed in a dataflow fashion on

multiple processing cores using tokens associated with shared

data objects. And it employs a token protocol to manage the

dependences between tasks. Along with the token protocol,

decentralized scheduler is also employed to handle WAW

dependences. As the program is sequenced, dependent

functions are postponed, and they are introduced into the

deques after their dependences have been resolved. However,

the WAW and WAR data hazards cannot be solved by

renaming techniques in this model.

3.4 MP-Tomasulo
For MP-Tomasulo [2] is a dependency-aware automatic

parallel task execution engine for sequential programs. MP-

Tomasulo detects and eliminates WAW and WAR inter-task

dependencies in the dataflow execution by applying the

instruction-level Tomasulo algorithm to MPSoC

environments, so that it operates out-of-order task execution

on heterogeneous units. MP-Tomasulo algorithm runs as a

software kernel on the scheduler processor. If the scheduler

decides that the task cannot execute immediately, it will

monitor any changes in the function units and then decide

when the task can be issued. The scheduler also controls when

the results will be stored into the local parameter table after

returning the task. MP-Tomasulo divides the task issue and

execution process with five stages: issue stage, task partition

stage, execution stage, write results stage, and commit stage.

With the task-adaptive partitioning and scheduling schemes, it

can detect RAW, WAW, and WAR data dependencies

automatically. Therefore MP Tomasulo can improve the task-

level parallelism without burden to programmers. However

MP-Tomasulo supports only the architecture in which IP

cores are tightly coupled to the processor without shared

memory access operations. The IP core is more like a

hardware accelerator for specific tasks in such situation. Also

updating the reconfigurable IP core is difficult to implement

on hardware. MP-Tomasulo is also limited by several factors

in eliminating program stalls besides the software

implementation.

 The inter-task parallelism degree shows whether the

independent tasks can be found to execute at large. Then

the dynamic scheduling scheme can reduce no further

stalls if each task relies on its predecessor.

 The size of ROB and RS entries determines how far

ahead MP-Tomasulo can find independent tasks. The

sizes refer to the set of tasks examined as candidates for

potential execution. Larger sizes mean that bringing

overheads when storing tasks and maintaining data

concurrency among different entries.

 The number and types of functional units determine the

impact of structural dependencies in the issue stage. The

tasks will stall and no tasks can be issued if there are no

more available function units, until these dependencies

are cleared.

 Task partitioning plans determine the target function unit

for each task. The performances evaluation of

partitioning method demonstrated that a greedy strategy

can only achieve a local optimum instead of global

optimum for the whole task sequences. However, the

current task partitioning plans can be switched to other

schemes, for example, dynamic programming or

heuristic methods.

3.5 Task-Scoreboarding
Task-Scoreboarding is a data hazards detecting engine for

OoO task execution [1]. Task-Scoreboarding treats processors

and IP cores as function units and tasks as abstract

instructions. At runtime, it can analyze inter-task data

dependencies and issue tasks to heterogeneous function units

automatically with parameter renaming techniques. Task

score boarding allows tasks to execute out of order when the

computing resources are sufficient and no data dependences

present. Chao Wang, et al. have proposed a novel high level

architecture support for automatic OoO task execution on

FPGA based heterogeneous MPSoCs. It is composed of a

hierarchical middleware with an automatic task level OoO

parallel execution engine. The middleware is able to identify

the parallel regions and generate the sources codes

automatically which is incorporated with OoO layer model. In

this framework, both Scoreboarding and Tomasulo algorithms

at task level are applied. From these two approaches,

Scoreboarding can obtain shorter scheduling overheads, but

the WAW tasks can only run in sequences. In the meantime,

Tomasulo algorithm can eliminate WAW data hazards by

register renaming. Each function call of do_T_* is responsible

for the intended behavior of the main program in the

scheduler processor at runtime. At each call to these

functions, the runtime will do the following actions:

 Analyze data dependency including RAW, WAR and

WAW. The data dependency analysis is based on the

parameters used by tasks.

 Eliminate the WAW and WAR dependencies by

parameter renaming techniques.

 Identify the target function unit to run current task by a

task mapping method.

At instruction level, Scoreboarding and Tomasulo are both

effective methods for OoO instruction execution. The reasons

for which Scoreboarding algorithm is chosen instead of

Tomasulo are that the Scoreboarding can provide a light-

weight task hazards engine for OoO execution. The

architecture is simpler, which brings smaller scheduling

overheads. And for TLP, WAW and WAR happens not as

much as at instruction level. Most programmers are intended

to use different parameters in case of WAR and WAW

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

17

hazards. Therefore introducing a complex mechanism like

Tomasulo is not just fair enough. Due to the scheduling

overheads, the performance of both approaches (MP-

Tomasulo and Task- Scoreboarding) gets larger than the ideal

scenario, whereas MP-Tomasulo always achieves higher

scheduling overheads than Task-Scoreboarding approach.

4. COMPARISION
Here the comparison of different OoO execution engines is

done. Task Superscalar [7] proposes abstraction of OoO

superscalar pipelines regarding processor as function units. A

dataflow execution model that achieves parallel execution of

statically-sequential programs is presented in [3]. In a data

flow fashion, it dynamically parallelizes the execution of

appositely written sequential programs, on multiple

processing cores. OoOJava [4] is a compiler-assisted approach

that leverages developer annotations along with static analysis

to provide an easy-to-use deterministic parallel programming

model. The method is based on task annotations that instruct

the compiler to consider a code block for OoO execution.

Although these approaches provide OoO engine by

superscalar or renaming engines, they do not clarify on the

adaptive mapping for general FPGA platform with

reconfigurable IP cores, therefore the flexibility across

different architectures is still have scope. MP-Tomasulo and

Task-Scoreboarding algorithms provide flexibility. MP-

Tomasulo [2] is a dependency-aware automatic parallel

execution engine for sequential programs, but this model

exhibits the overhead of the scheduling which could be

reduced. Task-Scoreboarding [1] is a data hazards detecting

engine for OoO task execution. Finally, the summary of state-

of-the-art parallel execution engines is listed in Table 1.

5. CONCLUSION
This study presents the survey on dynamic task scheduling to

support OoO execution in an MPSoC environment. In this

paper different models which solves the data dependency

issues in out-of-order execution is studied. Task Superscalar,

dataflow execution model and OoOJava do not focus on the

adaptive mapping for general FPGA platform with

reconfigurable IP cores. Thus they have less flexibility.

Whereas MP-Tomasulo and Task-Scoreboarding are flexible

enough as it is applicable to FPGA with reconfiguration. But

the overhead of the scheduling is more in case of MP

Tomasulo as compared to Task-Scoreboarding. In future we

can elaborate this study for different applications of

heterogeneous MPSoC architectures.

Table 1. Comparison of models

Models Strength Weakness

Task

Superscalar

(7)

Support OoO

automatic parallel

execution

Not applicable to

FPGA with

reconfiguration

OoOJava (4)
An OoO compiler for

Java runtime

Not applicable to

FPGA with

reconfiguration

Dataflow (3)

Race free and

determinate parallel

execution

Not applicable to

FPGA with

reconfiguration

MP-Tomesulo

(2)

Support OoO

automatic parallel

execution and

applicable to FPGA

with reconfiguration

More scheduling

overheads

Task-

Scoreboarding

Applicable to FPGA

with reconfiguration

Not adaptive for

runtime

(1) with less scheduling

overheads

6. REFERENCES
[1] C. Wang, X. Li, J. Zhang, P. Chen, Y. Chen, X. Zhou,

and R. Cheung. Architecture support for task out-of-

order execution in MPSoCs. IEEE Transactions on

Computers, 1-14, 2014.

[2] Chao Wang, Xi Li, Junneng Zhang, Xuehai Zhou, and

Xiaoning Nie. MP-Tomasulo: A dependency-aware

automatic parallel execution engine for sequential

programs. ACM Transactions on Architecture and Code

Optimization (TACO), 10(2):9, 2013.

[3] Gupta and Gurindar S Sohi. Dataow execution of

sequential imperative programs on multicore

architectures. Proceedings of the 44th Annual

IEEE/ACM International Symposium on

Microarchitecture, 59-70, 2011.

[4] James Christopher Jenista and Brian Charles Demsky.

OoOJava: Software out-of-order execution. ACM

SIGPLAN Notices, 46(8):57-68, 2011.

[5] S. Borkar and A. Chien, The future of microprocessors.

Communications of ACM, 54(5): p. 67-77, 2011.

[6] Dallou, Tamer, and Ben Juurlink. Nexus++: A Hardware

Task Manager for the StarSs Programming Model, 2011.

[7] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex

Ramirez, Rosa M Badia, Eduard Ayguade, et. al. Task

superscalar: An out-of-order task pipeline. 43rd Annual

IEEE/ACM International Symposium on

Microarchitecture (MICRO), 89- 100, 2010.

[8] Bellens, Pieter, Josep M. Perez, Rosa M. Badia, and

Jesus Labarta. "CellSs: a programming model for the

Cell BE architecture." In SC 2006 Conference,

Proceedings of the ACM/IEEE, pp. 5-15. IEEE, 2006.

[9] Scott Hauck, Thomas W Fry, Matthew M Hosler, and

Je_rey P Kao. The Chimaera reconfigurable functional

unit. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 12(2):206-217, 2004.

[10] Georgi Kuzmanov, Georgi Gaydadjiev, and Stamatis

Vassiliadis. The Molen processor prototype. 12th Annual

IEEE Symposium on Field-Programmable Custom

Computing Machines, 296-299, 2004.

[11] Steven Swanson, Ken Michelson, Andrew Schwerin, and

Mark Oskin. Wavescalar. Proceedings of the 36th annual

IEEE/ACM International Symposium on

Microarchitecture, 291-302, 2003.

[12] Tony Givargis and Frank Vahid. Platune: a tuning

framework for system-on-a-chip platforms. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 21(11):1317-1327, 2002.

[13] Robert D Blumofe, Christopher F Joerg, Bradley C

Kuszmaul, Charles E Leiserson, Keith H Randall, and

Yuli Zhou. Cilk: An efficient multithreaded runtime

system. Journal of parallel and distributed computing,

37(1):55-69, 1996.

IJCATM : www.ijcaonline.org

