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ABSTRACT 
Support vector machines (SVMs), though perfect, are not 

chosen in applications requiring great classification speed, due 

to the number of support vectors being large. To conquer this 

problem we devise a primitive method with the following 

properties: (1) it decouples the idea of basis functions from 

the concept of support vectors; (2) it materialistically finds a 

set of kernel basis functions of a specified maximum size 

(dmax) to approximate the SVM primitive cost function well; 

(3) it is efficient and roughly scales as O(ndmax2)where n is 

the number of training examples; and, (4) the number of basis 

functions it requires to accomplish an accuracy close to the 

SVM accuracy is usually far less than the number of SVM 

support vectors. 
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1. INTRODUCTION 
The support Vector Machines (SVMs) are modern learning 

systems that deliver state of the art performance in real world 

pattern recognition and data mining applications such as text 

categorization, hand-written character recognition, image 

classification and bioinformatics. Even though they yield very 

accurate solutions, they are not preferred in online 

applications where classification has to be done in great speed. 

This is due to the fact that a large set of basis functions is 

usually needed to form the SVM classifier, making it complex 

and expensive. In this paper we devise a method to overcome 

this problem. Our method incrementally finds basis functions 

to maximize accuracy. The process of adding new basis 

functions can be stopped when the classifier has reached some 

limiting level of complexity. In many cases, our method 

efficiently forms classifiers which have an order of magnitude 

smaller number of basis functions compared to the full SVM, 

while achieving nearly the same level of accuracy.  

2. POST PROCESSING 

SIMPLIFICATION AND SVM 

SOLUTION 
Given a training set {(xi,yi)}

n
i=1 , yi ∈ {1, −1}, the SVM 

algorithm with an L2penalization of the training errors consists 

of solving the following primitive  problem. 

  

Computations involving φ are handled using the kernel 

function, k(xi,xj) = φ(xi) φ(xj). For convenience the bias 

term has not been included, but the analysis presented in this 

paper can be extended in a straightforward way to include it. 

The quadratic penalization of the errors makes the primitive 

objective function continuously differentiable. This is a great 

advantage and becomes necessary for developing a primitive 

algorithm, as we will see below. 

The standard way to train an SVM is to introduce Lagrange 

multipliers αi and optimize them by solving a dual 

problem. The classifier function for a new input x is then 

given by the sign of ∑iαiyik(x,xi). Because there is a flat part in 

the loss function, the vector α is usually sparse. The xi for 

which αi≠0 are called support vectors (SVs). Let nSV denote 

the number of SVs for a give problem. A recent theoretical 

result by Steinwart (Steinwart, 2004) shows that nSVgrows as 

a linear function of n. Thus, for large problems, this number 

can be large and the training and testing complexities might 

become prohibitive since they are respectively, O(n nSV + 

nSV
3) and O(nSV). 

Several methods have been proposed for reducing the number 

of support vectors. Burges and Sch¨olkopf (1997) apply 

nonlinear optimization methods to seek sparse representations 

after building the SVM classifier. Along similar lines, 

Sch¨olkopf et al. (1999) use L1 regularization on β to 

obtain sparse approximations. These methods are expensive 

since they involve the solution of hard non-convex 

optimization problems. They also become impractical for 

large problems. Downs et al. (2001) give an exact algorithm 

to prune the support vector set after the SVM classifier is 

built. Thies and Weber (2004) give special ideas for the 

quadratic kernel. Since these methods operate as a post-

processing step, an expensive standard SVM training is still 

required. 

2.1 Simplification via Basis Functions and 

Primitive  
Instead of finding the SVM solution by maximizing the dual 

problem, one approach is to directly minimize the primitive 

form after invoking the representer theorem to represent w as 

 
 
If we allow βi≠ 0 for all i, substitute (2) in (1) and solve for 

the βi’s then (assuming uniqueness of solution) we will get 

βi=yiαi and thus we will precisely retrieve the SVM solution 

(Chapelle, 2005). But our aim is to obtain approximate 

solutions that have as few non-zero βi’s as possible. For many 

classification problems there exists a small subset of the basis 

functions1suited to the complexity of the problem being 

solved, irrespective of the training size growth, which will 

yield pretty much the same accuracy as the SVM classifier. 

Kernel Matching Pursuit (Vincent and Bengio, 2002) is a 

discriminative method that is mainly developed for the least 

squares loss function. Work on simplifying SVM solution has 

not caught up well with those works in related kernel fields. 

The method outlined in this paper makes a contribution to fill 

this gap. 

We deliberately use the variable name, βi in (2) so as to 

interpret it as a basis weight as opposed to viewing it as 

yiαiwhere αiis the Lagrange multiplier associated with the i-th 

primitive slack constraint. While the two are one and the same 

at exact optimality, they can be very different when we talk of 

sub-optimal primitive solutions. There is a lot of freedom 

when we simply think of the βi’s as basis weights that yield a 
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good suboptimal w for (1). First, we do not have to put any 

bounds on the βi. Second, we do not have to think of a βi 

corresponding to a particular location relative to the margin 

planes to have a certain value. Going even one more step 

further, we do not even have to restrict the basis functions to 

be a subset of the training set examples.  

Consider such an approach. They achieve sparsity by 

including the L1 regularizer, λ1 1in the primitive objective. 

But they do not develop an algorithm (for solving the 

modified primitive formulation and for choosing the right λ1) 

that scales efficiently to large problems. write w as 

 
where l is a chosen small number and optimize the primitive  

objective with the βi as well as the i as variables. But the 

optimization can become unwieldy if l is not small, especially 

since the optimization of the i is a hard non-convex problem. 

In the RSVM algorithm (Lee and Mangasarian, 2001; Lin and 

Lin, 2003) a random subset of the training set is chosen to be 

the i and then only the βi are optimized. Because basis 

functions are chosen randomly, this method requires many 

more basis functions than needed in order to achieve a level of 

accuracy close to the full SVM solution; see Section 3. 

A principled alternative to RSVM is to use a greedy approach 

for the selection of the subset of the training set for forming 

the representation. Such an approach has been popular in 

Gaussian processes (Smola and Bartlett, 2001; Seeger et al., 

2003; Keerthi and Chu, 2006). Greedy methods of basis 

selection also exist in the boosting literature (Friedman, 2001; 

R¨atsch, 2001).  

Particularly relevant to the work in this paper are the kernel 

matching pursuit (KMP) algorithm of Vincent and Bengio 

(2002) and the growing support vector classifier (GSVC) 

algorithm of Parrado-Hern´andez et al. (2003). KMP is an 

effective greedy discriminative approach that is mainly 

developed for least squares problems 

3. PROPOSED APPROACH 
The main aim of this paper is to give an effective greedy 

method SVMs which uses a basis selection criterion that is 

directly related to the training cost function and is also very 

efficient. The basic theme of the method is forward selection. 

It starts with an empty set of basis functions and greedily 

chooses new basis functions (from the training set) to improve 

the primitive objective function. We develop efficient 

schemes for both, the greedy selection of a new basis 

function, as well as the optimization of the βifor a given 

selection of basis functions. For choosing upto dmax basis 

functions, the overall compuational cost of our method is 

O(ndmax2).  

 

 

 

 

 

 

 

 

Table 1: Comparison of SpSVM-2 and SVM on benchmark 

 

 

data sets from (R tsch). For TestErate, #Basis and nSV, the 

values are means over ten different training/test splits and the 

values in parentheses are the standard deviations. 

The different components of the method that we develop in 

this paper are not new in themselves and are inspired from the 

above mentioned papers. 

Table 1 gives a preview of the performance of our method 

(called SpSVM-2 in the table) in comparison with SVM on 

several UCI data sets. As can be seen there, our method gives 

a competing generalization performance while reducing the 

number of basis functions very significantly. (More specifics 

concerning Table 1 will be discussed in Section 4.) 

3.1 The Basic Optimization 
Let J ⊂ {1, . . . , n} be a given index set of basis functions that 

form a subset of the training set. We consider the problem of 

minimizing the objective function in (1) over the set of 

vectors w of the form3  

 

3.2 Newton Optimization  
Let Kij

=k(xi,x j) =φ(xi)φ(x j)denote the generic element of the 

n×n kernel matrix K. The notation KIJ  refers to the submatrix 

of K made of the rows indexed by I and the columns indexed 

by J. Also, for a n-dimensional vector p, let pJdenote the |J| 

dimensional vector containing {pj: j ∈ J}. 

Let d = |J|. With w restricted to (3), the primitive  problem (1) 

becomes the d dimensional minimization problem of finding 

βJthat solves. 

 
 
 where oi = Ki,J βJ. Except for the regularizer being more 

general, i.e., β⊤JKJJβJ (as opposed to the simple regularizer, 
2), the problem in (4) is very much the same as in a 

linear SVM design. Thus, the Newton method and its 

modification that are developed for linear SVMs 

(Mangasarian, 2002; Keerthi and DeCoste, 2005) can be used 

to solve (4) and obtain the solution βJ. 

3.3 Newton method 
1. Select a suitable starting vector, β0J. Set k = 0. 

2. If βkJis the optimal solution of (4), stop. 

3. Let I = {i : 1 − yioi ≥ 0} where oi = Ki,J βkJis 

the output of the i-th example. Obtain Jas the result of a 
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Newton step or equivalently as the solution of the regularized 

least squares problem, 

 

4. Take βk+1J to be the minimizer of f on 

L, the line joining βkJand J. Set k := k + 1 and go back to 

step 2 for another iteration. 

The solution of (5) is given by 

 

P and g are also the (generalized) Hessian and gradient of the 

objective function (4). 

Because the loss function is piecewise quadratic, Newton 

method converges in a finite number of iterations. The number 

of iterations required to converge to the exact solution of (4) 

is usually very small (less than 5). 

Computational Complexity 
It is useful to inquire: what is the complexity of the 

incremental computations needed to solve (4) when its 

solution is available for some J, at which point one more basis 

element is included in it and we want to re-solve (4)? In the 

best case, when the support vector set I does not change, the 

cost is mainly the following: computing the new row and 

column of KJJ(d + 1 kernel evaluations); computing the new 

row of KJI (n kernel computations);5computing the 

new elements of P (O(nd ) cost); and the updating of the 

factorization of P (O(d2) cost). Thus the cost can be 

summarized as: (n + d + 1) kernel evaluations and O(nd) cost. 

Even when I does change and so the cost is more, it is 

reasonable to take the above mentioned cost summary as a 

good estimate of the cost of the incremental work. Adding up 

these costs till dmax basis functions are selected, we 

get a complexity of O(ndmax2). Note that this is the basic cost 

given that we already know the sequence of dmaxbasis 

functions that are to be used. Thus, O(ndmax2 ) is also the 

complexity of the method in which basis functions are chosen 

randomly. In the next section we discuss the problem of 

selecting the basis functions systematically and efficiently. 

Selection of New Basis Element 
Suppose we have solved (4) and obtained the minimizer βJ. 

Obviously, the minimum value of the objective function in (4) 

(call it fJ ) is greater than or equal to f⋆, the optimal value 

of (1). If the difference between them is large we would like 

to continue on and include another basis function. Take one j 

6∈ J. How do we judge its value of inclusion? The best 

scoring mechanism is the following one. 

Basis selection method  
This method computes a score for a new element j in O(n) 

time. The idea has a parallel in Vincent and Bengio’s work on 

Kernel Matching Pursuit (Vincent and Bengio, 2002) for least 

squares loss functions. They have two methods called 

prefitting and backfitting; see equations (7), (3) and (6) of 

Vincent and Bengio (2002).6Their prefitting is parallel to 

Basis Selection Method 1 that we described earlier. The 

cheaper method that we suggest below is parallel to their 

backfitting idea. 

Suppose βJis the solution of (4). Including a new element j 

and its corresponding variable, βj yields the problem of 

minimizing 

 

We fix βJand optimize (7) using only the new variable βjand 

see how much improvement in the objective function is 

possible in order to define the score for the new element j. 

This one dimensional function is piecewise quadratic and can 

be minimized exactly in O(n logn) time by a dichotomy 

search on the different breakpoints. But, a very precise 

calculation of the scoring function is usually unnecessary. So, 

for practical solution we can simply do a few Newton- 

Raphson-type iterations on the derivative of the function and 

get a near optimal solution in O(n) time. Note that we also 

need to compute the vector KJ j, which requires d kernel 

evaluations. Though this cost is subsumed in O(n), it is a 

factor to remember if kernel evaluations are expensive. 

If all j 6∈ J are tried, then the complexity of selecting 

a new basis function is O(n2), which is disproportionately 

large compared to the cost of including the chosen basis 

function, which is O(nd). Like in Basis Selection Method 1, 

we can simply choose κ random basis functions to try. 

If dmax is specified, one can choose κ = O(dmax) without 

increasing the overall complexity beyond O(nd2max). More 

complex schemes incorporating a kernel cache can also be 

tried. 

Kernel Caching 

For upto medium size problems, say n < 15,000, it is a good 

idea to have cache for the entire kernel matrix. If additional 

memory space is available and, say a Gaussian kernel is 

employed, then the values of 2can also be cached. 

For larger problems, depending on memory space available, it 

is a good idea to cache as many as possible, full kernel rows 

corresponding to j that get tried, but do not get chosen for 

inclusion. It is possible that they get called in a later stage of 

the algorithm, at which time, this cache can be useful. It is 

also possible to think of variations of the method in which full 

kernel rows corresponding to a large set (as much that can fit 

into memory) of randomly chosen training basis is pre-

computed and only these basis functions are considered for 

selection. 

Shrinking 

As basis functions get added, the SVM solution w and the 

margin planes start stabilizing. If the number of support 

vectors form a small fraction of the training set, then, for a 

large fraction of (well-classified) training examples, we can 

easily conclude that they will probably never come into the 

active set I. Such training examples can be left out of the 

calculations without causing any undue harm. This idea of 

shrinking has been effectively used to speed-up SVM training 

(Joachims, 1999; Platt, 1998). 

For comparison we also include the GSVC method of 

Parrado-Hern´andez et al. (2003). This method, originally 

given for SVM hinge loss, uses the following heuristic 

criterion to select the next basis function j∗ 6∈ J: 

 

We also tried another criterion, suggested to us by Alex 

Smola, that is more complex than (8): 
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where d j is the distance (in feature space) of the j-th training 

point from the subspace spanned by the elements of J. 

4. COMPARISON OF KMP AND SPSVM 
Kernel matching pursuit (KMP) (Vincent and Bengio, 2002) 

was mainly given as a method of greedily selecting basis 

functions for the non-regularized kernel least squares 

problem. As we already explained in Section 3, our basis 

selection methods can be viewed as extensions of the basic 

ideas of KMP to the SVM case. In this section we empirically 

compare the performances of these two methods. For both 

methods we only consider Basis Selection Method 2 and refer 

to the two methods simply as KMP and SpSVM. It is also 

interesting to study the effect of the regularizer term (λ 2/2 

in (1)) on generalization. The regularizer can be removed by 

setting λ=0. The original KMP formulation of Vincent and 

Bengio (2002) considered such a non-regularized formulation 

only. In the case of SVM, when perfect separability of the 

training data is possible, it is improper to set λ=0 without 

actually rewriting the primitive  formulation in a different 

form; so, in our implementation we brought in the effect of 

no-regularization by setting λ to the small value, 10−5. Thus, 

we compare 4 methods: KMP-R, KMP-NR, SpSVM-R 

and SpSVM-NR. Here “R” and “NR” refer to regularization 

and no-regularization, respectively. 

Figures 1 compare the four methods on six data sets. Except 

on M3V8, SpSVM gives a better performance than KMP. The 

better performance of KMP on M3V8 is probably due to the 

fact that the examples corresponding to each of the digits, 3 

and 8, are distributed as a Gaussian, which is suited to the 

least squares loss function. Note that in the case of 

M3VOthers where the “Others” class (corresponding to all 

digits other than 3) is far from a Gaussian distribution, SVM 

does better than KMP. 

The no-regularization methods, KMP-NR and SpSVM-NR give 

an interesting performance. In the initial stages of basis 

addition we are in the underfitting zone and so they perform 

as well (in fact, a shade better) than their respective 

regularized counterparts. But, as expected, they start 

overfitting when many basis functions are added. See, for 

example the performance on Adult data set given in Figure 3. 

Thus, when using these non-regularized methods, a lot of care 

is needed in choosing the right number of basis functions. The 

number of basis functions at which overfitting sets-in is 

smaller for SpSVM-NR than that of KMP-NR. This is because 

of the fact that, while KMP has to concentrate on reducing the 

residual on all examples in its optimization, SVM only needs 

to concentrate on the examples violating the margin condition. 

It is also useful to mention the method, MARK11of Bennett et 

al. (2002) which is closely related to KMP. In this method, a 

new basis function (say, the one corresponding to the j-

th training example) is evaluated by looking at the magnitude 

(larger the better) of the gradient of the primitive  objective 

function with respect to βjevaluated at the current βJ. This 

gradient is the dot product of the kernel column containing Ki 

jand the residual vector having the elements, oi− yi. The 

computational cost as well as the performance of MARK are 

close to those of KMP. MARK can also be easily extended to 

the SVM problem in (1): all that we need to do is to replace 

the residual vector mentioned above by the vector having the 

elements, yimax{0,1 − yioi}. This modified method (which 

uses our Newton optimization method as the base solver) is 

close to our SpSVM-2 in terms of computational cost as well 

as performance. Note that, if we optimize (7) for βjusing only 

 
Figure 1: KMP vs SpSVM (with/without regularization) 

5. CONCLUSION 
In this paper we have given a fast primitive algorithm that 

greedily chooses a subset of the training basis functions to 

approximate the SVM solution. As the subset grows the 

solution converges to the SVM solution since choosing the 

subset to be the entire training set is guaranteed to yield the 

exact SVM solution. The real power of the method lies in its 

ability to form very good approximations of the SVM 

classifier with a clear control on the complexity of the 

classifier (number of basis functions) as well as the training 

time. In most data sets, performance very close to that of the 

SVM is achieved using a set of basis functions whose size is a 

small fraction of the number of SVM support vectors. The 

graded control over the training time offered by our method 

can be valuable in large scale data mining. Many a times, 

simpler algorithms such as decision trees are preferred over 

SVMs when there is a severe constraint on computational 

time. While there is no satisfactory way of doing early 

stopping with SVMs, our method enables the user to control 

the training time by choosing the number of basis functions to 

use. 

Our method can be improved and modified in various ways. 

Tuning time can be substantially reduced by using gradient-

based methods on a differentiable estimate of the 

generalization performance formed using k-fold cross 

validation and posterior probabilities. Improved methods of 

choosing the κ-subset of basis functions in each step can also 

make the method more effective.  
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