
International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

1

Constructing Support Vector Machines with Reduced

Classifier Complexity

Ankur M. Bobade, N. N. Khalsa, S. M. Deshmukh, Ph.D

ABSTRACT
Support vector machines (SVMs), though perfect, are not

chosen in applications requiring great classification speed, due

to the number of support vectors being large. To conquer this

problem we devise a primitive method with the following

properties: (1) it decouples the idea of basis functions from

the concept of support vectors; (2) it materialistically finds a

set of kernel basis functions of a specified maximum size

(dmax) to approximate the SVM primitive cost function well;

(3) it is efficient and roughly scales as O(ndmax2)where n is

the number of training examples; and, (4) the number of basis

functions it requires to accomplish an accuracy close to the

SVM accuracy is usually far less than the number of SVM

support vectors.

Keywords
Support vectors (SVs), SVMs, classification, sparse design.

1. INTRODUCTION
The support Vector Machines (SVMs) are modern learning

systems that deliver state of the art performance in real world

pattern recognition and data mining applications such as text

categorization, hand-written character recognition, image

classification and bioinformatics. Even though they yield very

accurate solutions, they are not preferred in online

applications where classification has to be done in great speed.

This is due to the fact that a large set of basis functions is

usually needed to form the SVM classifier, making it complex

and expensive. In this paper we devise a method to overcome

this problem. Our method incrementally finds basis functions

to maximize accuracy. The process of adding new basis

functions can be stopped when the classifier has reached some

limiting level of complexity. In many cases, our method

efficiently forms classifiers which have an order of magnitude

smaller number of basis functions compared to the full SVM,

while achieving nearly the same level of accuracy.

2. POST PROCESSING

SIMPLIFICATION AND SVM

SOLUTION
Given a training set {(xi,yi)}

n
i=1 , yi ∈ {1, −1}, the SVM

algorithm with an L2penalization of the training errors consists

of solving the following primitive problem.

Computations involving φ are handled using the kernel

function, k(xi,xj) = φ(xi) φ(xj). For convenience the bias

term has not been included, but the analysis presented in this

paper can be extended in a straightforward way to include it.

The quadratic penalization of the errors makes the primitive

objective function continuously differentiable. This is a great

advantage and becomes necessary for developing a primitive

algorithm, as we will see below.

The standard way to train an SVM is to introduce Lagrange

multipliers αi and optimize them by solving a dual

problem. The classifier function for a new input x is then

given by the sign of ∑iαiyik(x,xi). Because there is a flat part in

the loss function, the vector α is usually sparse. The xi for

which αi≠0 are called support vectors (SVs). Let nSV denote

the number of SVs for a give problem. A recent theoretical

result by Steinwart (Steinwart, 2004) shows that nSVgrows as

a linear function of n. Thus, for large problems, this number

can be large and the training and testing complexities might

become prohibitive since they are respectively, O(n nSV +

nSV
3) and O(nSV).

Several methods have been proposed for reducing the number

of support vectors. Burges and Sch¨olkopf (1997) apply

nonlinear optimization methods to seek sparse representations

after building the SVM classifier. Along similar lines,

Sch¨olkopf et al. (1999) use L1 regularization on β to

obtain sparse approximations. These methods are expensive

since they involve the solution of hard non-convex

optimization problems. They also become impractical for

large problems. Downs et al. (2001) give an exact algorithm

to prune the support vector set after the SVM classifier is

built. Thies and Weber (2004) give special ideas for the

quadratic kernel. Since these methods operate as a post-

processing step, an expensive standard SVM training is still

required.

2.1 Simplification via Basis Functions and

Primitive
Instead of finding the SVM solution by maximizing the dual

problem, one approach is to directly minimize the primitive

form after invoking the representer theorem to represent w as

If we allow βi≠ 0 for all i, substitute (2) in (1) and solve for

the βi’s then (assuming uniqueness of solution) we will get

βi=yiαi and thus we will precisely retrieve the SVM solution

(Chapelle, 2005). But our aim is to obtain approximate

solutions that have as few non-zero βi’s as possible. For many

classification problems there exists a small subset of the basis

functions1suited to the complexity of the problem being

solved, irrespective of the training size growth, which will

yield pretty much the same accuracy as the SVM classifier.

Kernel Matching Pursuit (Vincent and Bengio, 2002) is a

discriminative method that is mainly developed for the least

squares loss function. Work on simplifying SVM solution has

not caught up well with those works in related kernel fields.

The method outlined in this paper makes a contribution to fill

this gap.

We deliberately use the variable name, βi in (2) so as to

interpret it as a basis weight as opposed to viewing it as

yiαiwhere αiis the Lagrange multiplier associated with the i-th

primitive slack constraint. While the two are one and the same

at exact optimality, they can be very different when we talk of

sub-optimal primitive solutions. There is a lot of freedom

when we simply think of the βi’s as basis weights that yield a

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

2

good suboptimal w for (1). First, we do not have to put any

bounds on the βi. Second, we do not have to think of a βi

corresponding to a particular location relative to the margin

planes to have a certain value. Going even one more step

further, we do not even have to restrict the basis functions to

be a subset of the training set examples.

Consider such an approach. They achieve sparsity by

including the L1 regularizer, λ1 1in the primitive objective.

But they do not develop an algorithm (for solving the

modified primitive formulation and for choosing the right λ1)

that scales efficiently to large problems. write w as

where l is a chosen small number and optimize the primitive

objective with the βi as well as the i as variables. But the

optimization can become unwieldy if l is not small, especially

since the optimization of the i is a hard non-convex problem.

In the RSVM algorithm (Lee and Mangasarian, 2001; Lin and

Lin, 2003) a random subset of the training set is chosen to be

the i and then only the βi are optimized. Because basis

functions are chosen randomly, this method requires many

more basis functions than needed in order to achieve a level of

accuracy close to the full SVM solution; see Section 3.

A principled alternative to RSVM is to use a greedy approach

for the selection of the subset of the training set for forming

the representation. Such an approach has been popular in

Gaussian processes (Smola and Bartlett, 2001; Seeger et al.,

2003; Keerthi and Chu, 2006). Greedy methods of basis

selection also exist in the boosting literature (Friedman, 2001;

R¨atsch, 2001).

Particularly relevant to the work in this paper are the kernel

matching pursuit (KMP) algorithm of Vincent and Bengio

(2002) and the growing support vector classifier (GSVC)

algorithm of Parrado-Hern´andez et al. (2003). KMP is an

effective greedy discriminative approach that is mainly

developed for least squares problems

3. PROPOSED APPROACH
The main aim of this paper is to give an effective greedy

method SVMs which uses a basis selection criterion that is

directly related to the training cost function and is also very

efficient. The basic theme of the method is forward selection.

It starts with an empty set of basis functions and greedily

chooses new basis functions (from the training set) to improve

the primitive objective function. We develop efficient

schemes for both, the greedy selection of a new basis

function, as well as the optimization of the βifor a given

selection of basis functions. For choosing upto dmax basis

functions, the overall compuational cost of our method is

O(ndmax2).

Table 1: Comparison of SpSVM-2 and SVM on benchmark

data sets from (R tsch). For TestErate, #Basis and nSV, the

values are means over ten different training/test splits and the

values in parentheses are the standard deviations.

The different components of the method that we develop in

this paper are not new in themselves and are inspired from the

above mentioned papers.

Table 1 gives a preview of the performance of our method

(called SpSVM-2 in the table) in comparison with SVM on

several UCI data sets. As can be seen there, our method gives

a competing generalization performance while reducing the

number of basis functions very significantly. (More specifics

concerning Table 1 will be discussed in Section 4.)

3.1 The Basic Optimization
Let J ⊂ {1, . . . , n} be a given index set of basis functions that

form a subset of the training set. We consider the problem of

minimizing the objective function in (1) over the set of

vectors w of the form3

3.2 Newton Optimization
Let Kij

=k(xi,x j) =φ(xi)φ(x j)denote the generic element of the

n×n kernel matrix K. The notation KIJ refers to the submatrix

of K made of the rows indexed by I and the columns indexed

by J. Also, for a n-dimensional vector p, let pJdenote the |J|

dimensional vector containing {pj: j ∈ J}.

Let d = |J|. With w restricted to (3), the primitive problem (1)

becomes the d dimensional minimization problem of finding

βJthat solves.

 where oi = Ki,J βJ. Except for the regularizer being more

general, i.e., β⊤JKJJβJ (as opposed to the simple regularizer,
2), the problem in (4) is very much the same as in a

linear SVM design. Thus, the Newton method and its

modification that are developed for linear SVMs

(Mangasarian, 2002; Keerthi and DeCoste, 2005) can be used

to solve (4) and obtain the solution βJ.

3.3 Newton method
1. Select a suitable starting vector, β0J. Set k = 0.

2. If βkJis the optimal solution of (4), stop.

3. Let I = {i : 1 − yioi ≥ 0} where oi = Ki,J βkJis

the output of the i-th example. Obtain Jas the result of a

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

3

Newton step or equivalently as the solution of the regularized

least squares problem,

4. Take βk+1J to be the minimizer of f on

L, the line joining βkJand J. Set k := k + 1 and go back to

step 2 for another iteration.

The solution of (5) is given by

P and g are also the (generalized) Hessian and gradient of the

objective function (4).

Because the loss function is piecewise quadratic, Newton

method converges in a finite number of iterations. The number

of iterations required to converge to the exact solution of (4)

is usually very small (less than 5).

Computational Complexity
It is useful to inquire: what is the complexity of the

incremental computations needed to solve (4) when its

solution is available for some J, at which point one more basis

element is included in it and we want to re-solve (4)? In the

best case, when the support vector set I does not change, the

cost is mainly the following: computing the new row and

column of KJJ(d + 1 kernel evaluations); computing the new

row of KJI (n kernel computations);5computing the

new elements of P (O(nd) cost); and the updating of the

factorization of P (O(d2) cost). Thus the cost can be

summarized as: (n + d + 1) kernel evaluations and O(nd) cost.

Even when I does change and so the cost is more, it is

reasonable to take the above mentioned cost summary as a

good estimate of the cost of the incremental work. Adding up

these costs till dmax basis functions are selected, we

get a complexity of O(ndmax2). Note that this is the basic cost

given that we already know the sequence of dmaxbasis

functions that are to be used. Thus, O(ndmax2) is also the

complexity of the method in which basis functions are chosen

randomly. In the next section we discuss the problem of

selecting the basis functions systematically and efficiently.

Selection of New Basis Element
Suppose we have solved (4) and obtained the minimizer βJ.

Obviously, the minimum value of the objective function in (4)

(call it fJ) is greater than or equal to f⋆, the optimal value

of (1). If the difference between them is large we would like

to continue on and include another basis function. Take one j

6∈ J. How do we judge its value of inclusion? The best

scoring mechanism is the following one.

Basis selection method
This method computes a score for a new element j in O(n)

time. The idea has a parallel in Vincent and Bengio’s work on

Kernel Matching Pursuit (Vincent and Bengio, 2002) for least

squares loss functions. They have two methods called

prefitting and backfitting; see equations (7), (3) and (6) of

Vincent and Bengio (2002).6Their prefitting is parallel to

Basis Selection Method 1 that we described earlier. The

cheaper method that we suggest below is parallel to their

backfitting idea.

Suppose βJis the solution of (4). Including a new element j

and its corresponding variable, βj yields the problem of

minimizing

We fix βJand optimize (7) using only the new variable βjand

see how much improvement in the objective function is

possible in order to define the score for the new element j.

This one dimensional function is piecewise quadratic and can

be minimized exactly in O(n logn) time by a dichotomy

search on the different breakpoints. But, a very precise

calculation of the scoring function is usually unnecessary. So,

for practical solution we can simply do a few Newton-

Raphson-type iterations on the derivative of the function and

get a near optimal solution in O(n) time. Note that we also

need to compute the vector KJ j, which requires d kernel

evaluations. Though this cost is subsumed in O(n), it is a

factor to remember if kernel evaluations are expensive.

If all j 6∈ J are tried, then the complexity of selecting

a new basis function is O(n2), which is disproportionately

large compared to the cost of including the chosen basis

function, which is O(nd). Like in Basis Selection Method 1,

we can simply choose κ random basis functions to try.

If dmax is specified, one can choose κ = O(dmax) without

increasing the overall complexity beyond O(nd2max). More

complex schemes incorporating a kernel cache can also be

tried.

Kernel Caching

For upto medium size problems, say n < 15,000, it is a good

idea to have cache for the entire kernel matrix. If additional

memory space is available and, say a Gaussian kernel is

employed, then the values of 2can also be cached.

For larger problems, depending on memory space available, it

is a good idea to cache as many as possible, full kernel rows

corresponding to j that get tried, but do not get chosen for

inclusion. It is possible that they get called in a later stage of

the algorithm, at which time, this cache can be useful. It is

also possible to think of variations of the method in which full

kernel rows corresponding to a large set (as much that can fit

into memory) of randomly chosen training basis is pre-

computed and only these basis functions are considered for

selection.

Shrinking

As basis functions get added, the SVM solution w and the

margin planes start stabilizing. If the number of support

vectors form a small fraction of the training set, then, for a

large fraction of (well-classified) training examples, we can

easily conclude that they will probably never come into the

active set I. Such training examples can be left out of the

calculations without causing any undue harm. This idea of

shrinking has been effectively used to speed-up SVM training

(Joachims, 1999; Platt, 1998).

For comparison we also include the GSVC method of

Parrado-Hern´andez et al. (2003). This method, originally

given for SVM hinge loss, uses the following heuristic

criterion to select the next basis function j∗ 6∈ J:

We also tried another criterion, suggested to us by Alex

Smola, that is more complex than (8):

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

4

where d j is the distance (in feature space) of the j-th training

point from the subspace spanned by the elements of J.

4. COMPARISON OF KMP AND SPSVM
Kernel matching pursuit (KMP) (Vincent and Bengio, 2002)

was mainly given as a method of greedily selecting basis

functions for the non-regularized kernel least squares

problem. As we already explained in Section 3, our basis

selection methods can be viewed as extensions of the basic

ideas of KMP to the SVM case. In this section we empirically

compare the performances of these two methods. For both

methods we only consider Basis Selection Method 2 and refer

to the two methods simply as KMP and SpSVM. It is also

interesting to study the effect of the regularizer term (λ 2/2

in (1)) on generalization. The regularizer can be removed by

setting λ=0. The original KMP formulation of Vincent and

Bengio (2002) considered such a non-regularized formulation

only. In the case of SVM, when perfect separability of the

training data is possible, it is improper to set λ=0 without

actually rewriting the primitive formulation in a different

form; so, in our implementation we brought in the effect of

no-regularization by setting λ to the small value, 10−5. Thus,

we compare 4 methods: KMP-R, KMP-NR, SpSVM-R

and SpSVM-NR. Here “R” and “NR” refer to regularization

and no-regularization, respectively.

Figures 1 compare the four methods on six data sets. Except

on M3V8, SpSVM gives a better performance than KMP. The

better performance of KMP on M3V8 is probably due to the

fact that the examples corresponding to each of the digits, 3

and 8, are distributed as a Gaussian, which is suited to the

least squares loss function. Note that in the case of

M3VOthers where the “Others” class (corresponding to all

digits other than 3) is far from a Gaussian distribution, SVM

does better than KMP.

The no-regularization methods, KMP-NR and SpSVM-NR give

an interesting performance. In the initial stages of basis

addition we are in the underfitting zone and so they perform

as well (in fact, a shade better) than their respective

regularized counterparts. But, as expected, they start

overfitting when many basis functions are added. See, for

example the performance on Adult data set given in Figure 3.

Thus, when using these non-regularized methods, a lot of care

is needed in choosing the right number of basis functions. The

number of basis functions at which overfitting sets-in is

smaller for SpSVM-NR than that of KMP-NR. This is because

of the fact that, while KMP has to concentrate on reducing the

residual on all examples in its optimization, SVM only needs

to concentrate on the examples violating the margin condition.

It is also useful to mention the method, MARK11of Bennett et

al. (2002) which is closely related to KMP. In this method, a

new basis function (say, the one corresponding to the j-

th training example) is evaluated by looking at the magnitude

(larger the better) of the gradient of the primitive objective

function with respect to βjevaluated at the current βJ. This

gradient is the dot product of the kernel column containing Ki

jand the residual vector having the elements, oi− yi. The

computational cost as well as the performance of MARK are

close to those of KMP. MARK can also be easily extended to

the SVM problem in (1): all that we need to do is to replace

the residual vector mentioned above by the vector having the

elements, yimax{0,1 − yioi}. This modified method (which

uses our Newton optimization method as the base solver) is

close to our SpSVM-2 in terms of computational cost as well

as performance. Note that, if we optimize (7) for βjusing only

Figure 1: KMP vs SpSVM (with/without regularization)

5. CONCLUSION
In this paper we have given a fast primitive algorithm that

greedily chooses a subset of the training basis functions to

approximate the SVM solution. As the subset grows the

solution converges to the SVM solution since choosing the

subset to be the entire training set is guaranteed to yield the

exact SVM solution. The real power of the method lies in its

ability to form very good approximations of the SVM

classifier with a clear control on the complexity of the

classifier (number of basis functions) as well as the training

time. In most data sets, performance very close to that of the

SVM is achieved using a set of basis functions whose size is a

small fraction of the number of SVM support vectors. The

graded control over the training time offered by our method

can be valuable in large scale data mining. Many a times,

simpler algorithms such as decision trees are preferred over

SVMs when there is a severe constraint on computational

time. While there is no satisfactory way of doing early

stopping with SVMs, our method enables the user to control

the training time by choosing the number of basis functions to

use.

Our method can be improved and modified in various ways.

Tuning time can be substantially reduced by using gradient-

based methods on a differentiable estimate of the

generalization performance formed using k-fold cross

validation and posterior probabilities. Improved methods of

choosing the κ-subset of basis functions in each step can also

make the method more effective.

6. REFERENCES
[1] J. Adler, B. D. Rao, and K. Kreutz-Delgado. Comparison

of basis selection methods,1996.

[2] F. Bach and M. Jordan. Predictive low-rank

decomposition for kernel methods, 2005.

International Journal of Computer Applications (0975 – 8887)

National Conference on Emerging Trends in Advanced Communication Technologies (NCETACT-2015)

5

[3] K. P. Bennett, M. Momma, and M. J. Embrechts.

MARK: A boosting algorithm for heterogeneous kernel

models,2002.

[4] J. Bi, T. Zhang, and K. P. Bennet. Column generation

boosting methods for mixture of kernels. 2004.

[5] C. J. C. Burges and B. Sch¨olkopf. Improving the

accuracy and speed of support vector learning

machines,1997.

[6] O. Chapelle. Training a support vector machine in the

primitive. Journal of Machine Learning Re-search, 2005.

[7] D. DeCoste and B. Sch¨olkopf. Training invariant

support vector machines. Machine Learning, 2002.

[8] T. Downs, K. E. Gates, and A. Masters. Exact

simplification of support vector solutions, 2001.

[9] J. H. Friedman. Greedy function approximation: a

gradient boosting machine. Annals of Statistics, 2001.

[10] T. Joachims. Making large-scale SVM learning practical.

In Advances in Kernel Methods – Support Vector

Learning. MIT Press, Cambridge, Massachussetts, 1999.

[11] S. S. Keerthi and W. Chu. A matching pursuit approach

to sparse Gaussian process regression.

[12] S. S. Keerthi and D. DeCoste. A modified finite Newton

method for fast solution of large scale linear svms, 2005.

IJCATM : www.ijcaonline.org

