
International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

5

An Automated Change Process for Embedded Controller

Software of a Full Authority Digital Engine Control

System

Lakshmi Vinod Mahesh M. Rao Hem Kapil Shobha S. Prabhu A.N.V. Rao

Scientist, Gas Turbine and Research Establishment,
C V Raman Nagar, Bangalore, India

ABSTRACT

A Full Authority Digital Engine Control (FADEC) system is

used in the development and testing of aero-engines and its

derivatives at the Gas Turbine Research Establishment. This

system incorporates a dual-redundant Digital Electronic

Control Unit with embedded software performing control

functions. In the development phase of the engine, the control

schedules and algorithms are continuously evolving resulting

in frequent changes in the control software. Consequently,

numerous software versions called builds are generated for

different engines. The embedded software, being an extremely

critical component of the control system, demands a high

degree of reliability in the change management practices.

Manual software changes carried out on a large scale are not

only error prone but also time consuming thereby leading to

slippages in stringent deadlines and entail high cost of

correction. Hence, to enhance the reliability and quality of the

software, a robust fully automated software change

management process has been developed. This process

ensures shorter turnaround time and minimizes human errors

thereby improving the quality of the safety critical embedded

software. This automated change process has been very useful

in reducing the development and testing time of the aero-

engines and its derivatives.

General Terms

Embedded software, automatic code generation, coding

standard, control algorithms

Keywords

FADEC, MATLAB Simulink, MDL, MISRA C, LabVIEW

1. INTRODUCTION
The design and development of Full Authority Digital Engine

Control (FADEC) System is one of the critical areas in the

development cycle of a gas turbine engine [1]. In the course of

development, different control system configurations are

being tested on different engines. These changes in
configuration require changes in the control system hardware

and software. During engine testing, the schedules for fuel

flow, compressor variable geometry and exhaust nozzle area

along with validation limits for sensors/actuators are

established. Control algorithms, gains and time constants of

various control loops also need to be fine tuned to meet the

overall engine testing requirements. Such a change scenario

can precipitate into total chaos if changes are not implemented

within stipulated time, reported clearly or controlled in a

systematic manner [2]. Change issues become more

pronounced and complex in the context of safety and time

critical software especially when it is embedded. This calls for

a process where changes take place in a systematic and

controlled manner [3].

There are three types of frequent changes identified for

automation which are discussed in this paper. These changes

are automated through an in-house software developed using

NI LabVIEW 2011 [4] on a Windows platform. LabVIEW

was chosen as the development platform as the learning curve

and the implementation time is very short for programmers.

There are numerous readymade VIs (Virtual Instruments)

provided which can be called directly by the user without any

additional coding. Moreover, functions written in C/C++

compiled into Dynamic Link Libraries (DLL) can be ported

into LabVIEW framework very easily using facilities of Code

In Node (CINs) and Call Library Function nodes [4].

In our case, control law algorithms are represented as

MATLAB Simulink blocks which need to be converted to C

source code. This code constitutes only a portion of the

complete embedded control software. There is an in-house
coding standard along with MISRA C 2004 standard to be

followed for coding and the auto code generation process has

to produce code that adheres to it. This code has to seamlessly

integrate with the main application software which does the

basic task of scheduling and sequencing. Once integrated, the

software is compiled and linked to produce the final

executable for the target hardware.

Although automatic code generation is more common these

days, the usability of automatically generated C code in safety

critical FADEC applications is not completely proven in the

industry. Reference [5] and [6] proposes the usage of auto

code generated through the Model Based Design (MBD)
developing process in safety critical applications. However

modeling standards and rules are essential for generation of

suitable code. In some applications, it may not be practically

possible to impose these restrictions on the MBD in order to

obtain safe code. Hence MBD approach will be more useful in

rapid prototyping applications rather than in safety critical

embedded software. Reference [7] discusses a case study of

automatic code generation for safety related applications by
comparing various auto-code generation tools in the market.
Reference [8] describes a case study of automatic code

generation for embedded systems from high-level models

using the in-house developed code generator. It emphasizes

the need for a code generator that is able to generate code

from Matlab Simulink models as no certified code generator

for this task is available at the moment. Hence it can be

concluded that the code generated through MATLAB

Simulink [9] has not only more Lines of Code (LOC) but also

not optimum for usage in safety critical applications. Owing

to these reasons, the code automatically generated by

International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

6

Simulink cannot be directly used in our safety critical engine

control software in an as-is-where-is condition.

The rest of the paper is organized as follows. Section 2

explains the embedded software change control process and

the motivation for automation of the change process. Section

3 explains the implementation of automated code generation.

Section 4 presents the case study illustrating the auto

conversion of Simulink model to C code. Section 5 evaluates

and discusses the benefits of automation. Section 6 concludes

the paper with some directions for future work.

2. MOTIVATION

2.1 Frequently Occurring Changes
The embedded software is written in C language and is

compiled using a cross compiler for generating the executable

object code. This software is functionally divided into two

parts, the first part that manages the hardware and its

interfaces and the second part that performs the engine control

functions. The first part comprises of hardware associated

data like scaling coefficients, sensor data validation limits as

well as the modules that operate on this data. The second part

is comprised of the control laws or algorithms, 2-Dimensional

and 3-Dimensional tables representing the various schedules

for engine control loops and control gains & time constants.

To obtain the optimum performance of the developmental

engine under different operating regimes, the control

algorithms and these tables need to be changed frequently.

The changes discussed in this paper can be broadly classified

as follows:

2.1.1 Type I - Constants
This type of change consists of control constants like gains

and time constants to fine tune a particular control loop and

other constants like hardware coefficients and sensor

validation limits. These constants are organized in a C source

file as shown in Figure 1.

2.1.2 Type II - Control Schedules
This type of change consists of function tables describing the

control schedules for different control loops covering the

flight spectrum of the aircraft [1]. These tables are organized

in a header file as shown in Figure 2.

2.1.3 Type III – Control Laws
This type of change consists of control algorithms that

automatically schedule the start-up, acceleration, deceleration,

steady state and transient fuel flow by positioning the fuel-

metering valve within safe operating limits. A sample

Simulink block diagram representing a control algorithm is

shown in Figure 3.

Fig 3: Representation of control law block diagram

Fig 2: Illustration of control schedules declaration in

software

Fig 1: Illustration of constants declaration in software

International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

7

2.2 In-house Software Change Process

Fig 4: In-house Software Change Control Process

Figure 4 shows the sequence of steps involved in the software

change control process. During the control unit testing in test

beds/rigs, the software undergoes frequent modifications.

Once the software change request is initiated, it is evaluated

for its feasibility. The base software mentioned in the

Software Problem Report (SPR) is then checked out from the

version control database. The software is modified, compiled

and the resultant object code is validated to ensure that the

intentional changes are correctly carried out. The software is

then checked into the database, necessary reports are

generated and the final executable is released for engine

testing. All these activities are logged into a file to ensure the

correctness of the procedures followed and to detect

deviations, if any at a later stage. The Total Time to Change

(TTTC) follows the equation

MISCRGSCVC T + T + T + T = TTTC (1)

where TVC is the time taken for version control activities, TSC

is the time taken to implement the changes in source code,

TRG is the time taken to generate reports for software change

management process and TMISC is the time taken to release

new software builds and backup actions. For any software

change, TVC and TMISC are generally constant. Hence reducing

TSC and TRG factors will lead to proportional reduction in the

TTTC.

Earlier the software change implementation activity was

carried out manually. There was high possibility of human

errors especially during data entry of large tables with high

precision. Moreover, the control algorithms that are

represented as Simulink block diagrams were manually

implemented as C source files and compiled for the target

platform. Figure 5 reveals the trends in implementation error

when the manual software change process was followed for

an average of 500 SPRs. Table I presents the implementation

time of manual change process per SPR. It is evident from

Figure 5 and Table I that the Type III changes in spite of

being less frequent contribute to longer implementation time

and more errors.

Table 1. Implementation Time (in minutes)

Change Type
Source Change

Time TSC

Report Generation

Time TRG

Type-I 22 5

Type-II 64 5

Type-III 78 10

This situation served as motivation for the design and

development of the automated change process, which avoids

manual intervention and its resultant human errors, thereby

improving software quality.

3. AUTOMATION OF SOFTWARE

CHANGE PROCESS
To realize the process automation, LabVIEW 2011 was

chosen as the platform for development with separate sub-

modules catering to the following types of changes with the

aim of reducing TSC and TRG factors.

3.1.1 Type I - Changes
For Type I changes, CONST_AUTO sub-module parses the

change request document (SPR.doc) for the constants as

tokens, performs a multi file search on the project to locate the

symbol in the source files and updates the value as mentioned

in the change request. The steps for automation process for

Type-I changes are shown in Figure 6.

Fig 5: Manual Software Change Process - Number of

changes and implementation errors for each Type

SPR.doc

Base

Software

Check

Out

Reports

&

Executable

Base Software

&

New Software

Check

In

Validated

Code

Modified

Code

Base

Software

FADEC

Testing

Software

Change

Version control

Database

Report

Generation
Compile &

Validate

New

Software

International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

8

3.1.2 Type II - Changes
For Type II changes, FUNTAB_AUTO sub-module parses the

change request document (SPR.doc) for the function tables as

token and creates an intermediate file having table entries.

Validation of these table entries are carried out with respect to

the following:

 Ascending order of x-axis values for linear

interpolation

 Inadvertent reversal of x and y axis values

 Valid float entries

 Table Dimension Change

Once validated, the sub-module automatically changes the

required source files and other related files (including header

files) of the embedded software. The steps of automation

process for Type-II changes are shown in Figure 7.

3.1.3 Type III - Changes
Figure 8 presents the steps for automation process for Type-

III changes. Control law algorithms are represented as

Simulink model diagrams. In our scenario, these models shall

have the following aspects for auto generation of intended and

optimized C code:

 The model should only contain pre defined control

law blocks (in-house standard)

 All signals required for monitoring should have a

name which is represented as a variable in the

generated code

 For unnamed signals, local variables will be

generated by the automator software as per the in-

house variable naming convention

The control law block diagram is represented graphically as

shown in Figure 3 and stored in .MDL which is default

Simulink model file format as shown in Figure 9. The .MDL

file is in plain text format and contains the code for each of

the function blocks in the model diagram. For Type III

changes, CLAW_AUTO sub-module parses all the required

tokens in the text file and generates a symbol table containing

all the keywords and tokens. The symbol table references are

then resolved to generate the C code for the corresponding

model diagram. The code generated is according to the in

house coding standards for variable name conventions and

MISRA C 2004 [10] standard for safe subset of C language.

All the associated header files are changed by this sub-module

assuring that all interdependencies within the main application

framework are resolved.

3.1.4 Report Generation:
Earlier when the process was manually carried out, the base

and new software builds used to be compared and the

differences observed highlighted in the final report. This

activity was not only time consuming, but also failed to reflect

Fig. 6 Automation Process for Type-I Changes (CONST_AUTO)

Fig. 7 Automation Process for Type -II Changes (FUNTAB_AUTO)

Fig. 8 Automation Process for Type -III Changes (CLAW_AUTO)

Modified C files .c files Tokens SPR.doc Parse SPR for
constants

Perform Multi file

search
Update constant

values

 .h files .txt

Temp file Tokens SPR.doc Parse SPR for

function tables
Create

intermediate file
Validate the table

entries
Update header

files

.c files

MISRA C

Standard

.txt Table

Tokens CLAW.MDL Parse .MDL for

keywords
Create Symbol

table
Resolve

references

Symbol table

Create source

files

In house

Standard

Fig 9: MATLAB Simulink model file format

International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

9

Fig 10: Illustration of intermediate symbol table

Fig 11: Illustration of final symbol table

Fig. 12 Illustration of generated C source code

all changes indicated in the change request. The automatic

report generation sub-module REPORT_AUTO generates the

report based on the parsed information from the change

request document, thus reducing the TRG factor. All the

changes that are carried out are recorded by this module and

the report is generated automatically without missing any

details.

4. CASE STUDY
The case study demonstrates a typical Type III change

represented by the block diagram shown in Figure 3. Each

block diagram is represented as a single C function in the

code. The text representation of the .MDL file is shown in

Figure 9. This file is parsed for tokens such as Goto, Product

and Product1 and the parameters are linked to each other

through keywords such as SrcBlock, DstBlock and DstPort.

Using this information, an intermediate symbol table is

formed as shown in the Figure 10.

The symbol table references are resolved and the final symbol

table is obtained as shown in the Figure 11. The sub-module

CLAW_AUTO generates the C code equivalent of the block

diagram from the final symbol table as shown in Figure 12.

Moreover, all the necessary local variables are automatically

declared as per the coding standard for each function.

Likewise all the block diagrams are converted into C modules

and the global variables required to be modified are analyzed

and updated accordingly. The C modules are updated into

appropriate source files as per coding standards and the

software is ready for compilation without any manual

intervention.

5. EVALUATION AND DISCUSSION
The automation software was developed in NI LabVIEW2011

and the modules were integrated into a single framework

catering to any type of changes as explained in the previous

sections. Different models of control algorithms for FADEC

were designed and verified by this software. Development

process consisted of much iteration as the keywords parsed

from the model file were not consistent. Once the modeling

guidelines were finalized, the software was able to generate

consistent code. The generated code was verified and

deployed to the embedded target hardware. The time taken for

different type of changes, both manually and through

automation is compared and presented in Figure 13 for an

average of 100 SPRs.

International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

10

From Figure 13, it is evident that there is a drastic reduction in

the turnaround time because of automation. There is 44%

reduction for Type I changes, 57% for Type II and 60% for

Type III changes. On an average there is ≈50% of time

reduction attained through automation. In addition, it reduces

the implementation errors for all type of changes as shown in

Figure 14.

6. CONCLUSION AND FUTURE SCOPE
The automation process explained in this paper enables

systematic implementation of software change management

procedure which is of paramount importance in organizations

involved in developmental projects. It is highly useful for

software products that warrant high degrees of reliability and

demand frequent accommodation of changes at the same time.

Evolving practices analogous to the ones discussed above to

ensure correctness of change implementation could benefit

these organizations.

Currently this automation software caters to .MDL model

format of MATLAB Simulink. In future, the same paradigm

can be extended to model formats other than .MDL and also

to other model based development tools.

7. ACKNOWLEDGMENTS
The authors are grateful to Director, Gas Turbine Research

Establishment, DRDO who gave permission to publish this

paper. The authors also thank those associated with the

preparation of manuscript for this paper.

8. REFERENCES
[1] B. Githanjali, P. Shobha, K. Ramprasad, and K.

Venkataraju, “Full Authority digital engine controller for

marine gas turbine engine,” in ASME Turbo Expo 2006:

Power for Land, Sea, and Air, May 2006, pp. 611–618.

[2] P. Jalote, An Integrated Approach to Software

Engineering, 2nd ed. Secaucus, NJ, USA: Springer-

Verlag New York, Inc., 1997.

[3] R. S. Pressman, Software Engineering: A Practitioner’s

Approach, 5th ed. McGraw-Hill Higher Education, 2001.

[4] G. W. Johnson, LabVIEW Graphical Programming:

Practical Applications in Instrumentation and Control,

2nd ed. McGraw-Hill School Education Group, 1997.

[5] J. Krizan, L. Ertl, M. Bradac, M. Jasansky, and A.

Andreev, “Automatic code generation from

matlab/simulink for critical applications” in Electrical

and Computer Engineering (CCECE), 2014 IEEE 27th

Canadian Conference, on May 2014, pp. 1–6.

[6] Prosvirin, D.A.; Kharchenko, V.P., "Model-based

solution and software engineering environment for UAV

critical onboard applications," in Actual Problems of

Unmanned Aerial Vehicles Developments (APUAVD),

2015 IEEE International Conference , vol., no., pp.312-

315,13-15 Oct. 2015 doi:

10.1109/APUAVD.2015.7346629

[7] D. P. Gluch and A. J. Kornecki, “Automated code

generation for safety related applications: a case study,”

in Proceedings of the International Multiconference on

Computer Science and Information Technology, 2006,

pp. 383–391.

[8] A. Riid, J. Preden, R. Pahtma, R. Serg, T. Lints.

Automatic Code Generation for Embedded Systems from

High-Level Models Electronics and Electrical

Engineering. – Kaunas: Technologija, 2009. – No. 7(95),

– P. 33–36.

[9] www.mathworks.in/help/pdf_doc/simulink/slref.pdf

[10] D. Ward, “MISRA standards for automotive software” in

The 2nd IEE Conference on Automotive Electronics,

March 2006, pp. 5–18.

Fig. 14 Automated Software Change Process - Number of

changes and implementation errors for each Type

Fig 13: Comparison of turnaround time - Manual and

Automation

IJCATM : www.ijcaonline.org

