
International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

1

Vertex Array Object (VAO) based Visualization - A Better

Method for ROV Stance Visualization for Real-Time

Application

Annapurna Agrawal
Scientist ‘D’, R&DE (E)

DRDO, Pune, India

BaniHazra
Scientist ‘D’, R&DE (E)DRDO,

 Pune, India

Alok Mukherjee
Scientist ‘G’, R&DE (E)

DRDO, Pune, India

ABSTRACT

Remotely Operated Vehicle (ROV) is an unmanned mobile

platform which is operated remotely through the Control

Station. ROVs generally have Manipulator Arm with multiple

degrees of freedom for handling objects and application

specific payloads such as sensors for navigation, surveillance,

target tracking and destruction. The ROV Operator needs to

be confident about the ROV’s stability and safe remote and

Non-Line of Sight (Non-LOS) Operations.

This paper presents the ROV stance visualization system

which is developed to show the vehicle pose and manipulator

pose to the operator remotely. Stereo Lithography (STL)

model file of the ROV is used for this visualization. In this

paper two approaches conventional method and Vertex

Array Object (VAO) based method for STL Model

visualization are presented, compared and concluded that, the

Vertex Array Object (VAO) based method gives high

rendering speed and is therefore suitable for real-time

application. This work is generic for any ROV/ static

platform mounted with Manipulator Arm with multiple

Degrees of freedom (DOF).

General Terms

Remotely Operated Vehicle (ROV), Stance Visualization,

Degrees of Freedom (DOF)

Keywords

Manipulator Arm, STL model, 3D Visualization, Vertex

Array Object (VAO).

1. INTRODUCTION
Unmanned platforms for defense applications are key asset in

the hands of any Army or Paramilitary forces. Unmanned

Ground Vehicles (UGV) provide a new dimension to the

fighting forces. In the near future, battle fields shall be

populated with systems which are unmanned and have

sufficient intelligence on-board to carry out the intended

mission. UGV system consists of Remotely Operated

Vehicle to perform some specific task and a Master Control

Station (MCS) to control the ROV remotely.

Remotely Operated Vehicle (ROV) may have Manipulator

arm with multiple Degrees of freedom (DOF). Manipulator

arm has multiple rigid links, which are interconnected by

joints. Joints provide motion to the links to reach the desire

pose of the end effector for handling the object. Direct

Kinematics [1] is used to find the pose and orientation of

Manipulator Arm given the arm parameter e.g. Link lengths

and joint angles. Figure 1 shows a ROV platform which has a

Manipulator Arm with multiple Links and joints.

Fig 1. ROV with Manipulator Arm

ROV is operated remotely through a Control Station. Control

station consists of Human Machine Interface (HMI) through

which various control commands can be sent to the ROV and

the Video/Sensor/Manipulator feedback can be visualized by

the operator for safe navigation and object handling. Stance

visualization software is a part of Human Machine Interface.

It gets the Manipulator/Vehicle Pose feedback from the

onboard controller of ROV.

To visualize the Stance of ROV and the Manipulator, Binary

Stereo Lithography (STL) [2, 3] model files are used. STL

file is a triangular representation of a 3D object. The surface

of an object is broken into a logical series of triangles. Each

triangle is uniquely defined by three points representing its

vertices in clockwise direction and a normal of triangle

pointing outward to the surface. The binary STL file format

uses the IEEE integer and floating point numerical

representation [4].

SharpGL [5] library which allows to use Open Graphics

Library (OpenGL)[6, 7] in .net Framework, is used for the

STL Visualization

2. STANCE VISUALIZATION

ALGORITHM APPROACH I
In this approach conventional method is used for drawing

STL Model of Manipulator Arm. As STL file contains a large

number of triangles to form a 3D object. The sample code of

drawing elementary graphics primitive is shown below.

glBegin(GL_TRIANGLE)

glNormal3f (n1, n2, n3);

International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

2

glVertex3f(x1, y1,z1);

glVertex3f(x2, y2,z2);

 glVertex3f(x3, y3,z3);

glEnd();

 Main drawback of this method is that driver cannot tell the

GPU to start rendering before glEnd, because it does not

know when will the data submission be finished, and it needs

to transfer that data too. This came out as a very slow

method for drawing as graphics card was directly linked to

the program flow. Every time single triangle parameters were

passing to GPU for rendering. This approach is very simple to

implement, but not suitable to render realistic model in real

time application.

3. STANCE VISUALIZATION

ALGORITHM VAO BASED

APPROCH
During the development of stance visualization system, main

challenge was to achieve high rendering speed so that it can

be integrated with Human Machine Interface (HMI) of

Remotely Operated Vehicle (ROV) for real-time Stance

Visualization. This goal is achieved using Vertex Array

Object (VAO) based method to draw the Manipulator STL

Model. In this method array of vertices and array of normals

are created and those arrays (all vertices and normal) are

passed to the Video RAM at Graphics Processing Unit

(GPU) and the render program has no longer to process this

data. The render thread and GPU run asynchronously and

parallel, which yields better performance and high rendering

rate. Vertex arrays also reduce the number of function calls

and redundant usage of shared vertices. Therefore it increases

the performance of rendering.

Following steps are used to draw the STL model in this

approach.

1. glEnableClientState(GL_VERTEX_ARRAY);//

Enable the Arrays (vertex, normal, texture etc)

2. glVertexPointer(3, GL_FLOAT, sizeof(vertex),

vertices); // the array pointer to pass the vertices/ normal/

textures array to openGL object.

3. glDrawArrays(GL_TRIANGLES, 0,

num_indices);//Draw the object from Array data.

The flow diagram for complete Stance visualization software

using approach 1 or Approach 2 is shown in figure 2.

Comparison of both the approaches have been done and the

comparison is presented in table 1.

Table 1: Comparison Table Approach I and VAO method

Criteria
Conventional

Method
VAO based method

Processing

method
Vertices based Array based

Redundant

Vertices

Processing

No, process all the

vertices
Yes

Implementation
Easy to implement,

Well documented

Advance method, With

less documentation

Performance

Slow rendering

speed, not suitable

for RT application

High rendering speed

for Real-

timeapplication

Fig 2 :Stance Visualization Algorithm - Approach I /

Approach II:

Take the joint motion

(transformation data Yaw

,Roll, Pitch etc) as user input

/ feedback data

Exit

Input: STL files of manipulator Arm

Read the STL files

data (create vertices

/normal array)

1. Set View Plane

2. Render the STL data (plot each triangles)

(using convention method or VAO based

method)

3. Display the model

Validate the

STL files

Yes

NO

Validate the

input
NO

Yes

Perform the transformation and

redisplay the Stance

International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

3

4. EXPERIMENTS AND RESULTS
This work has been initiated for our ongoing project CBRNe

ROV which is a six wheeled robot with a six axis Manipulator

Arm which provides joint angle feedback of each joints to

visualize the stance of Manipulator Arm.

Both the approach Conventional method and Vertex Array

Object (VAO) based method are implemented in C# using

SharpGL classes for 3D visualization. Stance visualization

software is developed to visualize the pose of CBRNe

Manipulator Arm. STL model files of CBRNe Manipulator

are taken as input. This Manipulator is multi-axis, with five

rotary joints and one prismatic joint thus six degrees of

freedom. 7 STL files are used to display the complete

Manipulator Arm. Table 1 shows details of STL files.

Table 2: STL files Description for Manipulator Arm

S.

No.

File name Size Remark

1. Cbrne1.STL 2.72 MB Turret of manipulator

2. Cbrne2.STL 7.47 MB Back Arm

 Bracket

3. Cbrne3.STL 2.16 MB Back Arm of

Manipulator

4. Cbrne4.STL 1.12 MB Fore Arm Bracket

5. Cbrne5.STL 304 KB Fore Arm of

Manipulator

6. Cbrne6.STL 2.45 MB Tilt mechanism for

Gripper

7. Cbrne7.STL 3.7 MB Gripper

Total Data for

manipulator

Visualization

~20 MB

About 20 MB of data has to be rendered to visualize the

complete model. The Manipulator Arm and its different poses

visualize by Stance visualization Software is shown in figure

4, 5, 6.

Fig 3. Manipulator Arm visualization (Home position)

Fig 4.BackArm 30 Degree Up.

Fig 5Turret 45 Degree left.

A repetition test was performed to measure the performance

of both the approaches based on their draw time and rendering

rate.

Average draw time and Rendering Rate for Visualization is

calculated for comparison. Results are provided in the table 2.

Table 3: Repetition test result

S.

No.

Repetitio

n test

Conventional

Method

VAO based

Method

 Draw

Time

(ms)

Renderin

g Rate

(FPS)

Draw

Time

(ms)

Render

ing

Rate

(FPS)

1. Exp 1 204.1 4.9 28.98 34.5

2. Exp 2 208.3 4.8 28.5 35.1

3. Exp 3 204.1 4.9 27.93 35.8

4. Exp4 212.7 4.7 28.9 34.6

5. Exp 5 222.2 4.5 27.6 36.2

Average draw time and rendering rate for both the method

are shown in table 4

International Journal of Computer Applications (0975 – 8887)

National Conference on Electronics and Computer Engineering (NCECE-2016)

4

Table 4: Comparison of approach I and approach II

Method Average Draw

time (ms)

Average

Rendering Rate

(FPS)

Conventional

Method

210.28

4.75

VAO based method

28.38

35.2

It is concluded that VAO based method for Stance

visualization is approximately 7 times faster than the

conventional method of visualization. This method can be

used for real-time stance visualization.

In addition to that this software has zoom in/out and view

change capability for better visualization.

This software has been integrated with the Human Machine

Interface (HMI) of CBRNe MCS. Presently it is under testing

and trial.

Figure 6: Stance visualization Software with HMI

4. CONCLUSION AND FUTURE WORK
The rendering rate achieved by VAO based method for Stance

visualization is 35 FPS, which is suitable for Real-time

Application. This work has been carried out for CBRNe ROV

which provides the feedback of joint angles at 50 ms rate.

This is a very important module of Human Machine Interface

(HMI) for the operator to operate the ROV and payloads

safely and efficiently. It may prevent the accidents by

generating early warning.

Presently this module is tested in Software In Loop (SIL)

mode using ROV feedback simulator, which generates the

feedback massages for various pose of Manipulator Arm. This

module has been integrated with the Human Machine

Interface (HMI) of Master Control Station (MCS) and willbe

tested in real-time with feedback. The module has been

developed generically and can be easily adapted in any HMI

code for further projects to be under taken.

5. ACKNOWLEDGMENT
The authors would like to thank Dr. S Guruprasad, Director,

R&DE(E) and Mr. A K Patel, Group Director ASG-Robotics,

R&DE(E) for all the encouragement and support in carrying

out this work.

Also the help of Robotics Group is deeply acknowledged. The

authors are thankful to R&DE(E) where this work is carried

out. The authors are grateful to the anonymous referees for

their valuable comments and suggestions by which paper

becomes much clearer.

6. REFRENCES
[1] Direct Kinematics, Fundamental of Robotics, "Chapter

2",Robert J. Schilling.

[2] STL, URL. http://www.wikipidiea.com/STL/

[3] Annapurna Agrawal, “STL model Visualization and

motion simulation for Manipulator Arm using OpenGL”,

ICCSIT – 2012, Pune, India, April 2012

[4] IEEE745-1985, URL, Http://en.wikipedia.org/wiki/IEEE

745-1985..

[5] SharpGL, URL, Http://sharpgl.codeplex.com

[6] R.S. Wright, L. Benjamin and H. Nicholas

(2007)OpenGL(R) SuperBible: Comprehensive Tutorial

and Reference, 4th Edition, Addison-Wesley.

[7] OpenGL Reference Manual.pdf

[8] Tom Mcreynolds and David Blythe (2010), “Advanced

Graphics Programming using OpenGL”

IJCATM : www.ijcaonline.org

