
International Journal of Computer Applications (0975 – 8887)

National Conference on Contemporary Computing (NC3-2016)

4

Generating Multi-million Data Set using GPGPU

Accelerated Models

Ghanshyam Verma
Student, DCEA, NITTTR

NITTTR-Bhopal
India, 462002

 Priyanka Tripathi, PhD
Assoc. Professor, NITTTTR

NITTTR-Bhopal
India, 462002

ABSTRACT

Generating synthetic data set which is realistic as well as

sufficiently large has been a cumbersome task for researchers

in the past. Several models have been proposed previously, all

adopting heterogeneous approaches, in this work the emphasis

is on speeding up the compute time of the data set

distribution. Here, Uniform, Poisson and Zipf distributions

have been studied and approaches with parallel computation

model have been proposed. The models have been verified for

speedup using CUDA based implementation on NVIDIA

Quadro 2000 GPU. A speed up in the range of 2x to 6x was

observed for various range of data sets.

General Terms

High Performance Computing, General Purpose Graphic

Processing Unit, GPU computation, Synthetic dataset.

Keywords

Data set generation, synthetic dataset, Zipf, Poisson, Uniform

distribution, GPU, CUDA.

1. INTRODUCTION
Synthetic data though may not sound fancy but is the

necessity of the hour. The catch being most of these synthetic

data sets need to have certain statistical properties. And there

could be several reasons associated with real time data

prohibiting its free share or exchange like security concerns or

huge size of data. Table 1 demonstrates data sizes of some the

popular data sets. As evident from the table, is highly

impossible to share or exchange data of such volume. Also, as

these data sets are in institute’s private domain it’s very

unlikely to be shared with external research organizations.

This makes it more convenient to generate data locally than to

exchange it from other sources or institutes. Many research

areas namely social studies, public health, epidemiology and

cyber security based experiments requires study of large

population in nature like scenarios as well as under controlled

scenarios. For example, in epidemiology, synthetic datasets

are needed for the analysis of disease spread pattern and

prevention steps required to be taken, which assists in better

implementation of the remedies. In social science also, such

datasets may be used to better evaluate which and what policy

may affect individual preferences and choices. And, in public

health, synthetic populations may be required to capture

procedural properties in patient data records without affecting

individual confidentialities. [1] Additionally, there are many

theoretical researches which may require synthetic data sets to

test applicability of proposed models or algorithms. In this

paper authors have used certain statistical properties,

commonly observed in real world data and proposed a parallel

data generation model using these properties. This model

ensures the data though generated synthetically has similar

properties as real world data and the generation time is

relatively low compared to other similar approaches. Another

point worth mentioning is most of the techniques proposed

earlier, discussed in section 2 of this paper, focused on

populating tables in existing relational databases, which

though a very efficient method, but many a times the

proposed model’s efficiency cannot be measure by this

method, as most of the relational database management

systems are themselves able to handle and transform datasets

being populated into tables, thus brining bias in efficiency

measurement. Here in this work, the authors have extracted

the efficiency to GPU coprocessors to massively parallelize

the dataset generation. The work is solely restricted to dataset

generation and the model could be easily extended to populate

existing databases.

Table 1. Data set size of popular databases

Organization/Project Table Column Head

Ebay.com
7.5 PB, 40 PB

Amazon.com
7.8 TB, 18.5 TB, 24.5 TB

Walmart
2.5 PB

Large Hedron Collider

200 PB from 0.001% sensor

stream

Sloan Digital Sky Survey
140 TB

NASA Center for Climate

Simulation

32 PB

PB in above table refers to Petabytes and TB refers to

Terabytes. The data in table was accumulated through

resources [2], [3], [4], [5] and [6]. Section 2 contains a brief

survey of existing models; later sections contain the

underlying framework of libraries used and proposed models.

2. PREVIOUS MODELS
As it has been discussed in section 1, synthetic data set

generation has been contributing significantly to different

research domains. Here, we have enlisted some of the models

used for synthetic data set generation.

Hao Wu et. al. [1] proposed the use of maximum entropy

principle to form data generation model for statistically

correct and unbiased data. The model was validated by the

authors against simulated data as well as against US census

data. The work’s feasibility was further validated using an

epidemic simulation application.

Joseph E. Hoag et. al. [7] designed a parallel synthetic data

generator to generate industrial sized data sets quickly using

cluster computing. Their model depends on SDDL, a synthetic

International Journal of Computer Applications (0975 – 8887)

National Conference on Contemporary Computing (NC3-2016)

5

data description language, quite similar to XML, thus making

it very flexible in terms of type of data set being generated.

Jim Gray et. al. [8] presented several database generation

techniques based upon various statistical distributions. In

particular all these techniques discussed parallelism to get

generation speedup and scale up. The discussion was focused

on generating datasets of the order of billions and used C

programs which ran on a shared-nothing computer system

consisting of multiple processors and storage discs.

Nathaniel Boggs et. al. [9] presented a framework for

generating synthetic datasets with normal and attack data for

web applications across multiple layers simultaneously.

As observed in all above cases the focus was to parallelize the

data set generation massively. In our work also, we have used

the parallel technique to scale up and speed up the generation.

However, in place of using several computing nodes or

cluster, we have used general purpose graphic processing unit

(GPGPU) as computing co-processor with the help of

Compute Unified Device Architecture (CUDA). Next section

discusses the basic underlying processing flow of CUDA to

better understand the parallelism being offered by it.

3. CUDA – PARALLEIZATION AND

COMPUTE FLOW
CUDA otherwise known as Compute Unified Device

Architecture is a GPU centric library developed by NVIDIA

which supports parallel computation. [10] It helps

programmers exploit GPUs which support CUDA libraries for

executing general purpose computation tasks. CUDA is

released in version numbers each version number suggesting

certain compute capability supported by that version. For

example, CUDA compute capability 2.x supports double

precision floating point operations and 3.5 supports dynamic

parallelism, which is not supported by 2.x.

Several advantages associated with CUDA are listed below.

a. CUDA supports scattered reads which enables it to

access random memory addresses.

b. Unified virtual memory is supported by CUDA 4.0

and unified memory by CUDA 6.0 and above.

c. Provides option for user managed cache, by

exposing shared memory region to threads. [11]

d. Efficient read back and downloads between CPU

and GPU.

e. Complete support for bitwise and integer functions.

Later versions have included support for double

precision floating point operations too.

Fig 1 demonstrates basic block architecture of the CUDA.

Several components that make CUDA include- CUDA

drivers, device level API, CUDA libraries, CUDA runtime

and most importantly CUDA parallel compute engines. Apart

from these standard CUDA package consist of samples,

documentations, NVIDIA C compilers, debuggers and visual

profilers. Recently, wrappers for other languages like Java

have been developed like JCuda, which makes it easier for the

developers to write code in a favored language. Additionally

libraries like SWIG has been developed which acts as

interface generator for C/C++ with other languages. CUDA

provides support for two programming interfaces- device

level programming interface which is used to configure and

manage GPU and language integration programming

interface. [12]

Fig 1: Block architecture of CUDA

Fig 2 represents work flow of CUDA. The steps could be

summarized as below.

a. CUDA applications submit code to the NVCC

compiler – NVIDIA C compiler.

b. NVCC compilers CPU code onto CPU and loads

PTX – parallel code execution- code onto CUDA

parallel compute engine.

c. PTX codes are run on GPU cores.

The process could be well depicted using the diagram.

Fig 2: CUDA workflow

Next section discusses some of the statistical models generally

observed in the data sets. First we discuss these statistical

properties than we propose parallel implementations of the

same.

GPU GPU

PTX to target compiler

GPU

PTX code

CUDA Application

NVCC CPU Code

CPU

GPU (CUDA parallel compute engine)

CUDA

Library

CUDA Runtime

CUDA Driver

Applications

International Journal of Computer Applications (0975 – 8887)

National Conference on Contemporary Computing (NC3-2016)

6

 (a) (b) (c)

Fig 3: Sample (a) uniform, (b) Poisson, (c) Zipf distributions

4. STATISTICAL PROPERTIES AND

PARALLEL MODELS
The size of cities, word lengths, and word frequency in

literally works is known to follow a Zipfian distribution. The

inter-arrival intervals of events often follow Poisson

distribution. Similarly, several other data points could be

represented using one or another statistical property. In this

section we have discussed some of these distribution to

present their overview and later presented parallel

implementations of these distribution properties to be

implemented using CUDA.

4.1 The uniform distribution
This is the most basic distribution observed in any data set,

and most often other complex distributions could be obtained

by skewing uniform distribution. Fig 3 (a) represents sample

table of uniform distribution. The graph could be obtained by

data set specific linear function which may have intervals

based upon mean, median or other similar property derived

from available dataset. The algorithm for a parallel CUDA

implementation is given below.

4.1.1 Algorithm (Parallel Uniform Distribution

using CUDA)
1. Generate distribution step value on CPU

2. Upload the value generated in step 1 onto GPU

3. Initialize row matrix on GPU

4. Populate matrix using step value generated in step 1

5. Read back matrix to CPU

The same algorithm steps were tested using CPU-GPU

combined model as well as CPU only model to access

performance gain. The results have been discussed in the next

section.

4.2 Poisson distribution
Poisson distribution could be defined as a quantized

probability distribution function which is used to find

possibilities of occurrence of events within a fixed range of

space and time. Condition being, these events have to occur

independently and with a fixed known rate of occurrence. Fig

3(b) represents a sample Poisson distribution graph.

Poisson function could be represented as follows using

equation (1).

𝑃 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝛿
𝑘𝑒−𝛿

𝑘!
 (1)

Here, δ is the average number of events in each interval, e is

the constant 2.718 and k is a natural number interval.

Parallelization of Poisson distribution is achieved indirectly

by parallelizing factorial part of the Poisson function and thus

saving time on computation time on factorial.

4.2.1 Algorithm (Parallel Poisson distribution

using CUDA)

1. Call Poisson function (CPU execution)

2. Call fact() function (CPU execution) to calculate

factorial of interval k.

3. Initialize row matrix as  [1, 2, 3….k]

4. Upload row matrix onto GPU

5. Perform row array multiplication, wait for

synchronization.

6. Read back value to fact() on CPU.

7. Return value to Poisson function.

The results for this algorithm along with other algorithms

have been discussed in section 6.

4.3 Zipf distribution
Zipf distribution could be defined for Integers in the range 1

to N such that the Integer k in the range is given a weight

inversely proportional to the index of the integer k , let’s call

this weight as theta; also, here a parameter called skew is

defined in the range 0 < theta < 1. This skew parameter

defines the curve of Zipf distribution. Formally, Zipf function

could be represented as below by equation (2) mathematically

𝑓 𝑘; 𝑠; 𝑁 =
1 𝑘 𝑠

 1 𝑁 𝑠
 (2)

Here, N is the total number of elements in the distribution; k

is rank of these elements; s is exponent which specifies the

curve of the distribution. Fig 3(c) represents a sample Zipf

distribution graph. Parallelization of Zipf distribution function

was achieved by parallelizing power functions in equation (2).

4.3.1 Algorithm (Parallel Zipf distribution using

CUDA)
1. Call function power(base, power) (CPU execution)

2. Initialize all cells of the array with base, where

size(array)=power.

3. Upload the array onto GPU.

4. Perform parallel synchronized multiplications, read

back value on CPU.

5. Perform remaining operations on CPU.

International Journal of Computer Applications (0975 – 8887)

National Conference on Contemporary Computing (NC3-2016)

7

Similarly, the summation part of Zipf function too was

parallelized using similar technique in our model. The model

was tested for both CPU/GPU combined execution and CPU

only execution like other distribution functions.

5. EXPERIMENTAL SETUP
Following setup was used for performing the stated

experiment and to validate the proposed approach for dataset

distribution generation.

a. Intel Xeon W3565 CPU with 4 cores, each at 3.20 Ghz

b. NVIDIA Quadro 2000 graphics card with 4 shared

memory each with 48 CUDA cores (total 192) and wrap

size: 32.

The setup and requites libraries were installed on CentOS 7-

an enterprise Linux variant. The codes were compiled using

gcc 4.4 and NVCC compliers. The distribution models were

tested using both CPU only and CPU-GPU combined

processing setups. The detailed results have been discussed in

section 6.

6. RESULT AND ANALYSIS
As expected, the compute time on GPU-CPU combined was

faster compared to CPU alone for larger data sets. Here, we

generated the distribution for three common statistical

properties normally observed in large datasets. Out of these,

Zipf is of prime importance, as it has been studied and used

extensively in big data research earlier. Section 4 apart from

introducing these distributions presents the models we

evolved for highly parallel GPU architecture. Also, as entire

model being ported to GPU was not possible due to GPU

memory constraints and loop dependencies and other factors

affecting parallel execution results. Only a part of model most

suitable for GPU computation was ported to GPU. Table 2

through 4, summarizes test results. Compute time is in

milliseconds (ms), which have been calculated with respect to

number of elements for uniform and Zipf distribution and

number of events for Poisson distribution.

Table 2. CPU/GPU computation speedup comparison for

Uniform distribution

Number of

Elements

CPU

compute

time

GPU

compute

time Speed up

100 0.003392 0.029568 0.114719

400 0.002016 0.031232 0.064549

2500 0.010144 0.032512 0.312008

10000 0.030752 0.044768 0.686919

40000 0.127456 0.074272 1.716071

250000 2.527296 0.388096 6.512038

1000000 3.346848 2.4102808 1.388614

25000000 84.294243 36.564320 2.305369

100000000 330.299377 141.446945 2.335147

144000000 476.054718 205.950531 2.311500

Table 3. CPU/GPU computation speedup comparison for

Poisson distribution

Number of

Events

CPU

compute

time

GPU

compute

time Speed up

100 0.002368 0.031008 0.076367

400 0.005728 0.030720 0.186458

2500 0.006208 0.036544 0.169877

10000 0.034688 0.042208 0.821835

40000 0.132960 0.074816 1.777160

250000 0.001984 0.389088 0.005099

1000000 3.222560 1.485152 2.169852

25000000 82.625664 36.749279 2.248362

100000000 328.314667 142.489182 2.304137

144000000 474.054718 207.540253 2.283894

Table 4. CPU/GPU computation speedup comparison for

Zipf distribution

Number of

Elements

CPU

compute

time

GPU

compute

time Speed up

100 0.005760 0.060576 0.095087

400 0.007744 0.061952 0.125000

2500 0.016352 0.069056 0.236793

10000 0.065440 0.086976 0.752391

40000 0.260416 0.149087 1.746738

250000 2.529280 0.388096 6.517150

1000000 5.569408 3.895152 1.429830

25000000 136.919907 55.313599 2.475338

100000000 658.614044 273.446945 2.408562

144000000 850.109435 413.490784 2.055933

As evident from the above data, the CPU only compute time

is better for lower range of data, where as the GPU assisted

computation out paces in case of calculations involving larger

data sets. However as in this experiment, it was observed

there was sharp rise in CPU/GPU compute time ratio,

followed by uniformity in this ratio for larger dataset range.

Such observations result out of the fact that for smaller values

the CPU- GPU data upload and read back time overhead is

significant and results in faster compute time on CPU alone

computation. However, as the data size increases, the upload

and read back time becomes negligible compared to actual

compute time, and hence CPU-GPU combined model

outperforms CPU only model.

International Journal of Computer Applications (0975 – 8887)

National Conference on Contemporary Computing (NC3-2016)

8

Fig 4: Graphical representation of CPU/GPU speedup ratio (figures are presented as N x 10
4
), ratio above 1 represents faster

CPU-GPU combined model compared to similar CPU only model.

7. SUMMARY
This paper presents the mechanism to parallel execute parts of

synthetic data set generation models on GPGPU, and thus

speed up the overall algorithm. Initial sections’ deals with the

architecture and process flow of the CUDA, followed by a

brief introduction of various statistical properties generally

observed in the data sets.

Later parallel algorithms have been introduced, followed by

experimental results to validate these algorithms. Also, a

school of thought prevail that GPU based models are highly

optimized compared to CPU only model, hence any result

with better GPU result are most often biased. In experiments

performed here, the models used in both cases- CPU only and

CPU-GPU combined- were kept almost identical. Also, initial

results for lower range of data sets was skewed in favor of

CPU only model, this was due to high communication

overhead between CPU and GPU. Once data sets were large

enough, the communication overhead became negligible, and

an overall speed up was observed in the GPU compute time

over CPU.

We believe a more optimized approach could be built and

more statistical models could be parallelized to represent other

distribution types. Future work should expand the work in this

direction. And a unified framework could be proposed for

generating synthetic datasets using these models.

8. REFERENCES
[1] Hao, W., Ning, Y., Chakraborty, P., Vreeken, J., Tatti, N.

and Ramakrishnan, N. 2016. Generating Realistic

Synthetic Population Datasets. arXiv preprint

arXiv:1602.06844.

[2] Cukier, K. 2010. Data, Data Everywhere. Technical

Report. The Economist.

[3] Tay, L. 2013. Inside eBay's 90PB data warehouse.

Technical Report. ITNews.

[4] Layton, J. 2006. How Amazon Works. Technical Report.

HowStuffWorks.com.

[5] Ster, V. D. and Rousseau, H. 2015. Ceph- 30PB Test

Report. Test Report. CERN.

[6] DeWitt, S. and Cohen, J. 2010. NASA Goddard

Introduces the NASA Center for Climate Simulation.

Press Release. Goddard, NASA.

[7] Hoag, J. E. and Thompson, C. W. 2007. A parallel

general-purpose synthetic data generator. ACM

SIGMOD Record 36, no. 1.

[8] Gray, J., Sundaresan, P., Englert, S., Baclawski, K. and

Weinberger, P. J. 1994. Quickly generating billion-

record synthetic databases. In ACM SIGMOD Record,

vol. 23, no. 2, pp. 243-252.

[9] Nathaniel, B., Zhao, H., Du, S. and Stolfo, S. J. 2014.

Synthetic Data Generation and Defense in Depth

Measurement of Web Applications. In International

Workshop on Recent Advances in Intrusion Detection,

pp. 234-254. Springer International Publishing.

0

1

2

3

4

5

6

7

uniform distribution

poisson distribution

Zipf distribution

number of elements/events

sp
e

e
d

u
p

 (C
P

U
/G

P
U

)

International Journal of Computer Applications (0975 – 8887)

National Conference on Contemporary Computing (NC3-2016)

9

[10] Shimpi, A. L. and Wilson, D. 2006. Nvidia's GeForce

8800 (G80): GPUs Re-architected for DirectX 10.

Technical Report. AnandTech.

[11] Silberstein, M., Schuster, A., Geiger, D., Patney, A. and

Owens, J. D. 2008. Efficient computation of

sum/products on GPUs through software-managed cache.

In Proceedings of the 22nd annual international

conference on Supercomputing - ICS '08.

[12] NVIDIA, CUDA. 2009. Architecture: Introduction &

Overview. NVIDIA Corporation.

IJCATM : www.ijcaonline.org

