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ABSTRACT 

Generating synthetic data set which is realistic as well as 

sufficiently large has been a cumbersome task for researchers 

in the past. Several models have been proposed previously, all 

adopting heterogeneous approaches, in this work the emphasis 

is on speeding up the compute time of the data set 

distribution. Here, Uniform, Poisson and Zipf distributions 

have been studied and approaches with parallel computation 

model have been proposed. The models have been verified for 

speedup using CUDA based implementation on NVIDIA 

Quadro 2000 GPU.  A speed up in the range of 2x to 6x was 

observed for various range of data sets. 
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1. INTRODUCTION 
Synthetic data though may not sound fancy but is the 

necessity of the hour. The catch being most of these synthetic 

data sets need to have certain statistical properties. And there 

could be several reasons associated with real time data 

prohibiting its free share or exchange like security concerns or 

huge size of data. Table 1 demonstrates data sizes of some the 

popular data sets. As evident from the table, is highly 

impossible to share or exchange data of such volume. Also, as 

these data sets are in institute’s private domain it’s very 

unlikely to be shared with external research organizations.  

This makes it more convenient to generate data locally than to 

exchange it from other sources or institutes. Many research 

areas namely social studies, public health, epidemiology and 

cyber security based experiments requires study of large 

population in nature like scenarios as well as under controlled 

scenarios. For example, in epidemiology, synthetic datasets 

are needed for the analysis of disease spread pattern and 

prevention steps required to be taken, which assists in better 

implementation of the remedies. In social science also, such 

datasets may be used to better evaluate which and what policy 

may affect individual preferences and choices. And, in public 

health, synthetic populations may be required to capture 

procedural properties in patient data records without affecting 

individual confidentialities. [1] Additionally, there are many 

theoretical researches which may require synthetic data sets to 

test applicability of proposed models or algorithms. In this 

paper authors have used certain statistical properties, 

commonly observed in real world data and proposed a parallel 

data generation model using these properties. This model 

ensures the data though generated synthetically has similar 

properties as real world data and the generation time is 

relatively low compared to other similar approaches. Another 

point worth mentioning is most of the techniques proposed 

earlier, discussed in section 2 of this paper, focused on 

populating tables in existing relational databases, which 

though a very efficient method, but many a times the 

proposed model’s efficiency cannot be measure by this 

method, as most of the relational database management 

systems are themselves able to handle and transform datasets 

being populated into tables, thus brining bias in efficiency 

measurement. Here in this work, the authors have extracted 

the efficiency to GPU coprocessors to massively parallelize 

the dataset generation. The work is solely restricted to dataset 

generation and the model could be easily extended to populate 

existing databases.  

Table 1. Data set size of popular databases 

Organization/Project Table Column Head 

Ebay.com 
7.5 PB, 40 PB 

Amazon.com 
7.8 TB, 18.5 TB, 24.5 TB 

Walmart 
2.5 PB 

Large Hedron Collider 

200 PB from 0.001% sensor 

stream 

Sloan Digital Sky Survey 
140 TB 

NASA Center for Climate 

Simulation 

32 PB 

 

PB in above table refers to Petabytes and TB refers to 

Terabytes. The data in table was accumulated through 

resources [2], [3], [4], [5] and [6]. Section 2 contains a brief 

survey of existing models; later sections contain the 

underlying framework of libraries used and proposed models.  

2. PREVIOUS MODELS 
As it has been discussed in section 1, synthetic data set 

generation has been contributing significantly to different 

research domains. Here, we have enlisted some of the models 

used for synthetic data set generation. 

Hao Wu et. al. [1] proposed the use of maximum entropy 

principle to form data generation model for statistically 

correct and unbiased data. The model was validated by the 

authors against simulated data as well as against US census 

data. The work’s feasibility was further validated using an 

epidemic simulation application. 

Joseph E. Hoag et. al. [7] designed a parallel synthetic data 

generator to generate industrial sized data sets quickly using 

cluster computing. Their model depends on SDDL, a synthetic 
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data description language, quite similar to XML, thus making 

it very flexible in terms of type of data set being generated. 

Jim Gray et. al. [8] presented several database generation 

techniques based upon various statistical distributions. In 

particular all these techniques discussed parallelism to get 

generation speedup and scale up. The discussion was focused 

on generating datasets of the order of billions and used C 

programs which ran on a shared-nothing computer system 

consisting of multiple processors and storage discs.  

Nathaniel Boggs et. al. [9] presented a framework for 

generating synthetic datasets with normal and attack data for 

web applications across multiple layers simultaneously.  

As observed in all above cases the focus was to parallelize the 

data set generation massively. In our work also, we have used 

the parallel technique to scale up and speed up the generation. 

However, in place of using several computing nodes or 

cluster, we have used general purpose graphic processing unit 

(GPGPU) as computing co-processor with the help of 

Compute Unified Device Architecture (CUDA). Next section 

discusses the basic underlying processing flow of CUDA to 

better understand the parallelism being offered by it. 

3. CUDA – PARALLEIZATION AND 

COMPUTE FLOW 
CUDA otherwise known as Compute Unified Device 

Architecture is a GPU centric library developed by NVIDIA 

which supports parallel computation. [10] It helps 

programmers exploit GPUs which support CUDA libraries for 

executing general purpose computation tasks. CUDA is 

released in version numbers each version number suggesting 

certain compute capability supported by that version. For 

example, CUDA compute capability 2.x supports double 

precision floating point operations and 3.5 supports dynamic 

parallelism, which is not supported by 2.x.   

Several advantages associated with CUDA are listed below.  

a. CUDA supports scattered reads which enables it to 

access random memory addresses. 

b.  Unified virtual memory is supported by CUDA 4.0 

and unified memory by CUDA 6.0 and above.   

c. Provides option for user managed cache, by 

exposing shared memory region to threads. [11] 

d. Efficient read back and downloads between CPU 

and GPU.  

e. Complete support for bitwise and integer functions. 

Later versions have included support for double 

precision floating point operations too.  

Fig 1 demonstrates basic block architecture of the CUDA. 

Several components that make CUDA include- CUDA 

drivers, device level API, CUDA libraries, CUDA runtime 

and most importantly CUDA parallel compute engines. Apart 

from these standard CUDA package consist of samples, 

documentations, NVIDIA C compilers, debuggers and visual 

profilers. Recently, wrappers for other languages like Java 

have been developed like JCuda, which makes it easier for the 

developers to write code in a favored language. Additionally 

libraries like SWIG has been developed which acts as 

interface generator for C/C++ with other languages. CUDA 

provides support for two programming interfaces- device 

level programming interface which is used to configure and 

manage GPU and language integration programming 

interface. [12] 

 

 

 

Fig 1: Block architecture of CUDA 

Fig 2 represents work flow of CUDA. The steps could be 

summarized as below.  

a. CUDA applications submit code to the NVCC 

compiler – NVIDIA C compiler.  

b. NVCC compilers CPU code onto CPU and loads 

PTX – parallel code execution- code onto CUDA 

parallel compute engine.  

c. PTX codes are run on GPU cores.  

The process could be well depicted using the diagram.  

 

Fig 2: CUDA workflow 

Next section discusses some of the statistical models generally 

observed in the data sets. First we discuss these statistical 

properties than we propose parallel implementations of the 

same. 
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 (a)                                                           (b)                                                                     (c) 

Fig 3: Sample (a) uniform, (b) Poisson, (c) Zipf distributions  

4. STATISTICAL PROPERTIES AND 

PARALLEL MODELS 
The size of cities, word lengths, and word frequency in 

literally works is known to follow a Zipfian distribution. The 

inter-arrival intervals of events often follow Poisson 

distribution. Similarly, several other data points could be 

represented using one or another statistical property. In this 

section we have discussed some of these distribution to 

present their overview and later presented parallel 

implementations of these distribution properties to be 

implemented using CUDA. 

4.1 The uniform distribution 
This is the most basic distribution observed in any data set, 

and most often other complex distributions could be obtained 

by skewing uniform distribution. Fig 3 (a) represents sample 

table of uniform distribution. The graph could be obtained by 

data set specific linear function which may have intervals 

based upon mean, median or other similar property derived 

from available dataset. The algorithm for a parallel CUDA 

implementation is given below.  

4.1.1 Algorithm (Parallel Uniform Distribution 

using CUDA) 
1. Generate distribution step value on CPU 

2. Upload the value generated in step 1 onto GPU 

3. Initialize row matrix on GPU 

4. Populate matrix using step value generated in step 1 

5. Read back  matrix to CPU 

The same algorithm steps were tested using CPU-GPU 

combined model as well as CPU only model to access 

performance gain. The results have been discussed in the next 

section.   

4.2 Poisson distribution  
Poisson distribution could be defined as a quantized 

probability distribution function which is used to find 

possibilities of occurrence of events within a fixed range of 

space and time. Condition being, these events have to occur 

independently and with a fixed known rate of occurrence. Fig 

3(b) represents a sample Poisson distribution graph.    

Poisson function could be represented as follows using 

equation (1).  

𝑃  𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  𝛿
𝑘𝑒−𝛿

𝑘!
                       (1) 

Here, δ is the average number of events in each interval, e is 

the constant 2.718 and k is a natural number interval.  

Parallelization of Poisson distribution is achieved indirectly 

by parallelizing factorial part of the Poisson function and thus 

saving time on computation time on factorial.  

4.2.1 Algorithm (Parallel Poisson distribution 

using CUDA)  

1. Call Poisson function (CPU execution) 

2. Call fact() function (CPU execution) to calculate 

factorial of interval k.  

3. Initialize row matrix as  [1, 2, 3….k] 

4. Upload row matrix onto GPU 

5. Perform row array multiplication, wait for 

synchronization. 

6. Read back value to fact() on CPU.  

7. Return   value to Poisson function. 

The results for this algorithm along with other algorithms 

have been discussed in section 6.  

4.3 Zipf distribution  
Zipf distribution could be defined for Integers in the range 1 

to N such that the Integer k in the range is given a weight 

inversely  proportional to the index of the integer k , let’s call 

this weight as theta; also, here a parameter called skew is 

defined in the range 0 < theta < 1. This skew parameter 

defines the curve of Zipf distribution. Formally, Zipf function 

could be represented as below by equation (2) mathematically 

𝑓 𝑘; 𝑠; 𝑁 =  
1 𝑘 𝑠 

 1 𝑁 𝑠 
                              (2) 

Here, N is the total number of elements in the distribution; k 

is rank of these elements; s is exponent which specifies the 

curve of the distribution. Fig 3(c) represents a sample Zipf 

distribution graph. Parallelization of Zipf distribution function 

was achieved by parallelizing power functions in equation (2).   

4.3.1 Algorithm (Parallel Zipf distribution using 

CUDA) 
1. Call function power(base, power) (CPU execution) 

2. Initialize all cells of the array with base, where 

size(array)=power.  

3. Upload the array onto GPU. 

4. Perform parallel synchronized multiplications, read 

back value on CPU.  

5. Perform remaining operations on CPU. 
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Similarly, the summation part of Zipf function too was 

parallelized using similar technique in our model. The model 

was tested for both CPU/GPU combined execution and CPU 

only execution like other distribution functions.   

5.  EXPERIMENTAL SETUP 
Following setup was used for performing the stated 

experiment and to validate the proposed approach for dataset 

distribution generation.  

a. Intel Xeon W3565 CPU with 4 cores, each at 3.20 Ghz 

b. NVIDIA Quadro 2000 graphics card with 4 shared 

memory each with 48 CUDA cores (total 192) and wrap 

size: 32.  

The setup and requites libraries were installed on CentOS 7- 

an enterprise Linux variant. The codes were compiled using 

gcc 4.4 and NVCC compliers. The distribution models were 

tested using both CPU only and CPU-GPU combined 

processing setups. The detailed results have been discussed in 

section 6.    

6.  RESULT AND ANALYSIS 
As expected, the compute time on GPU-CPU combined was 

faster compared to CPU alone for larger data sets. Here, we 

generated the distribution for three common statistical 

properties normally observed in large datasets. Out of these, 

Zipf is of prime importance, as it has been studied and used 

extensively in big data research earlier. Section 4 apart from 

introducing these distributions presents the models we 

evolved for highly parallel GPU architecture. Also, as entire 

model being ported to GPU was not possible due to GPU 

memory constraints and loop dependencies and other factors 

affecting parallel execution results. Only a part of model most 

suitable for GPU computation was ported to GPU. Table 2 

through 4, summarizes test results. Compute time is in 

milliseconds (ms), which have been calculated with respect to 

number of elements for uniform and Zipf distribution and 

number of events for Poisson distribution.  

Table 2. CPU/GPU computation speedup comparison for 

Uniform distribution 

Number of 

Elements 

CPU 

compute 

time 

GPU 

compute 

time Speed up 

100 0.003392 0.029568 0.114719 

400 0.002016 0.031232 0.064549 

2500 0.010144 0.032512 0.312008 

10000 0.030752 0.044768 0.686919 

40000 0.127456 0.074272 1.716071 

250000 2.527296 0.388096 6.512038 

1000000 3.346848 2.4102808 1.388614 

25000000 84.294243 36.564320 2.305369 

100000000 330.299377 141.446945 2.335147 

144000000 476.054718 205.950531 2.311500 

 

 

 

 

Table 3. CPU/GPU computation speedup comparison for 

Poisson distribution  

Number of 

Events 

CPU 

compute 

time 

GPU 

compute 

time Speed up 

100 0.002368 0.031008 0.076367 

400 0.005728 0.030720 0.186458 

2500 0.006208 0.036544 0.169877 

10000 0.034688 0.042208 0.821835 

40000 0.132960 0.074816 1.777160 

250000 0.001984 0.389088 0.005099 

1000000 3.222560 1.485152 2.169852 

25000000 82.625664 36.749279 2.248362 

100000000 328.314667 142.489182 2.304137 

144000000 474.054718 207.540253 2.283894 

 

Table 4. CPU/GPU computation speedup comparison for 

Zipf distribution 

Number of 

Elements 

CPU 

compute 

time 

GPU 

compute 

time Speed up 

100 0.005760 0.060576 0.095087 

400 0.007744 0.061952 0.125000 

2500 0.016352 0.069056 0.236793 

10000 0.065440 0.086976 0.752391 

40000 0.260416 0.149087 1.746738 

250000 2.529280 0.388096 6.517150 

1000000 5.569408 3.895152 1.429830 

25000000 136.919907 55.313599 2.475338 

100000000 658.614044 273.446945 2.408562 

144000000 850.109435 413.490784 2.055933 

 

As evident from the above data, the CPU only compute time 

is better for lower range of data, where as the GPU assisted 

computation out paces in case of calculations involving larger 

data sets. However as in this experiment, it was observed 

there was sharp rise in CPU/GPU compute time ratio, 

followed by uniformity in this ratio for larger dataset range. 

Such observations result out of the fact that for smaller values 

the CPU- GPU data upload and read back time overhead is 

significant and results in faster compute time on CPU alone 

computation. However, as the data size increases, the upload 

and read back time becomes negligible compared to actual 

compute time, and hence CPU-GPU combined model 

outperforms CPU only model.  
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Fig 4: Graphical representation of CPU/GPU speedup ratio (figures are presented as N x 10
4
), ratio above 1 represents faster 

CPU-GPU combined model compared to similar CPU only model.  

7. SUMMARY 
This paper presents the mechanism to parallel execute parts of 

synthetic data set generation models on GPGPU, and thus 

speed up the overall algorithm. Initial sections’ deals with the 

architecture and process flow of the CUDA, followed by a 

brief introduction of various statistical properties generally 

observed in the data sets.  

Later parallel algorithms have been introduced, followed by 

experimental results to validate these algorithms. Also, a 

school of thought prevail that GPU based models are highly 

optimized compared to CPU only model, hence any result 

with better GPU result are most often biased. In experiments 

performed here, the models used in both cases- CPU only and 

CPU-GPU combined- were kept almost identical. Also, initial 

results for lower range of data sets was skewed in favor of 

CPU only model, this was due to high communication 

overhead between CPU and GPU. Once data sets were large 

enough, the communication overhead became negligible, and 

an overall speed up was observed in the GPU compute time 

over CPU.  

We believe a more optimized approach could be built and 

more statistical models could be parallelized to represent other 

distribution types. Future work should expand the work in this 

direction. And a unified framework could be proposed for 

generating synthetic datasets using these models.  
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