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ABSTRACT 
Musical data mining is not a new invention, but as a nation-

wide resource of this type it breaks new ground by providing 

researchers with new ways to analyze musical data. It was 

Toiviainen and Eerola´s idea to combine specific information 

with a geographical coordinate database. Now geographical 

comparisons can be made it is possible to follow the 

geographical variation of musical features. For instance, 

schools can now identify and trace folk tune originating from 

their own regions. Musical Data Mining is used for 

discovering any kind of relevant similarity between music 

titles. Several algorithms like Apriori, PHP, partition, 

sampling and some other parallel algorithm have been 

developed. In this thesis, Apriori and DHP are implemented. 

To extract the similarity between music titles and to 

manipulate their relationships two techniques are used co-

occurrence analysis and correlation analysis. By the use of 

these two techniques it is capable to access the database and 

then find whether any similarity exist between the music 

titles. For the purpose of finding a match within the titles in 

the database Pattern matching is used using the Apriori and 

DHP algorithms 

1. INTRODUCTION 
Pattern matching is the act of checking for the presence of the 

constituents of a given pattern. It is used to check that things 

have the desired structure to find the relevant structure, to 

retrieve the aligning parts and to substitute the matching part 

with something else. Patterns are often described using regular 

expressions (i.e. Backtracking) and matched using respective 

algorithms. 

2. APRIORI ALGORITHM 
In data mining, Apriori is a classic algorithm for learning 

association rules. Apriori is designed to operate on databases 

containing transactions (for example, collections of items 

bought by customers, or details of a website frequentation). 

Other algorithms are designed for finding association rules in 

data having no transactions or having no timestamps (DNA 

sequencing). 

          As is common in association rule mining, given a 

set of itemsets (for instance, sets of retail transactions each 

listing individual items purchased), the algorithm attempts to 

find subsets which are common to at least a minimum number 

C (the cutoff, or confidence threshold) of the itemsets. Apriori 

uses a "bottom up" approach, where frequent subsets are 

extended one item at a time (a step known as candidate 

generation, and groups of candidates are tested against the 

data. The algorithm terminates when no further successful 

extensions are found 

Apriori uses breadth-first search and a hash tree structure to 

count candidate item sets efficiently. It generates candidate 

item sets of length k from item sets of length k − 1. Then it 

prunes the candidates which have an infrequent sub pattern. 

According to the downward closure lemma, the candidate set 

contains all frequent k-length item sets. After that, it scans the 

transaction database to determine frequent item sets among 

the candidates. For determining frequent items quickly, the 

algorithm uses a hash tree to store candidate itemsets. Apriori, 

while historically significant, suffers from a number of 

inefficiencies or trade-offs, which have spawned other 

algorithms. Candidate generation generates large numbers of 

subsets (the algorithm attempts to load up the candidate set 

with as many as possible before each scan). Bottom-up subset 

exploration (essentially a breadth-first traversal of the subset 

lattice) finds any maximal subset S only after all 2 | S | − 1 of 

its proper subsets. 

Apriori is an influential algorithm for mining frequent 

itemsets for Boolean association rules. The name of the 

algorithm is based on the fact that the algorithm uses prior 

knowledge of frequent itemset properties, as it is shown 

below. Apriori employs an iterative approach known as a 

level-wise search, where k-itemsets are used to explore (k + 

1)-itemsets. First, the set of frequent 1-itemsets is found. This 

set is denoted L1. L1 is used to find L2, the set of frequent 2-

itemsets, which is used to find L3, and so on, until no more 

frequent k-itemsets can be found. The finding of each Lk 

requires one full scan of the database. 

  To improve the efficiency of the level-wise 

generation of frequent itemsets, an important property called 

the Apriori property, presented below, is used to reduce the 

search space. At first this property is described and an 

example is shown to illustrate it. 

          In order to use the Apriori property, all nonempty 

subsets of a frequent itemset must also be frequent. This 

property is based on the following observation. By definition, 

if an itemset I does not satisfy the minimum support 

threshold, minsup, then I is not frequent, that is, P (l) < 

minsup. If an item A is added to the itemset I, then the 

resulting itemset  (i.e., I U A) cannot occur more frequently 

than I. Therefore, 1 U A is not frequent either, that is, P (I U 

A) < minsup. 

          This property belongs to a special category of 

properties called anti-monotone in the sense that if a set 

cannot pass a test, all of its supersets will fail the same test as 

well. It is called anti-monotone because the property is 

monotonic in the context of failing a test. “How is the Apriori 

property used in the algorithm?” To understand this, let us 

look at how Lk-1is used to find Lk. A two-step process is 

followed, consisting of join and prune actions.  

THE JOIN STEP: To find Lk, a set of candidate k-

itemsets is generated by joining Lk-1  with itself. This set of 

candidates is denoted Ck. Let l1 and l2 be itemsets in Lk-1. The 

notation li[j] refers to the jth item in li (e.g., l1 [k — 2] refers 
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to the second to the last item in l1. By convention, Apriori 

assumes that items within a transaction or itemset are sorted in 

lexicographic order. The join, Lk-1 ∞ Lk-1, is performed, where 

members of Lk-1 are joinable if their first (k — 2) items are in 

common. That is, members l1 and 12 of Lk-1 are joined If 

(l1[1] = l2[1]) ^ (l1[2]) = l2[2]) ^ . . . ^ (l1[k — 2] = l2[k — 2]) 

^(l1[k — 1] < l2[k — 1)). The condition l1[k — 1] < 12[k — 1] 

simply ensures that no duplicates are generated. The resulting 

itemset formed by joining l1 and l2 is l1[1]l1[2] . . . 11[k — 

1]l2[k— 1]. 

THE PRUNE STEP: Ck is a superset of Lk, that is, its 

members may or may not be frequent, but all of the frequent 

k-itemsets are included in Ck. A scan of the database to 

determine the count of each candidate in Ck would result in 

the determination of Lk (i.e., all candidates having a count no 

less than the minimum support count are frequent by 

definition, and therefore belong to Lk). Ck, however, can be 

huge, and so this could involve heavy computation. To reduce 

the size of Ck, the Apriori property is used as follows. Any (k 

—1)-itemset that is not frequent cannot be a subset of a 

frequent k-itemset. Hence, if any (k— 1)-subset of a candidate 

k-itemset is not in Lk-1, then the candidate cannot be frequent 

either and so can be removed from Ck. This subset testing can 

be done quickly by maintaining a hash tree of all frequent 

item sets. 

3. DIRECT HASHING AND 

PRUNING ALGORITHM 
 In the DHP algorithm, a large hash table can be defined such 

that each different itemsets is mapped to different locations in 

the hash table, then the entries of the hash table gives the 

actual count of each itemset in the database. In that case, it 

doesn‟t have any false positives and as a result of this, an 

extra processing for counting the occurrences of each itemset 

is eliminated. It has also been showed that, the amount of data 

that has to be scanned during the large itemset discovery is 

another performance-related issue. Reducing the number of 

transactions to be scanned and trimming the number of items 

in each transaction improves the data mining efficiency in 

later stages.The algorithm forms all k-subsets of items in each 

transaction and inserts the ones whose all k-1 subsets are large 

to the hash table. For that reason the algorithm does not miss 

any frequent itemset. Since the algorithm makes a pruning 

during the insertion of the candidate kitemsets to the Hk, the 

size of the hash table is not large and fits into memory.  

EFFICIENT GENERATION OF LARGE 

ITEMSET: 
              By utilizing a hash tree, DHP is very effective for 

generation of large itemsets, in particular for large 2-itemsets, 

where the number of candidate itemsets is, in orders of 

magnitude, lesser than that by previous methods, greatly 

improving the performance bottleneck (Gauhar wadhera 

2002). 

  As a preliminary, the approach adopted by 

earlier works, notably Apriori for discovering large itemsets 

from, a transaction database. In Apriori, in each iteration, the 

candidate set for large itemsets is constructed, and large 

itemsets are determined based on a pre determined support. In 

the first iteration, Apriori scans the all transactions to count 

the number of occurrences of each item (attribute). This is the 

candidate 1-itemset, denoted by C1. The large 1-itemset L1 is 

generated from C1 by checking for 1-itemsets with support 

greater than minsup. To generate large 2-itemsets, Apriori 

uses L1* L1 to obtain candidate 2-itemset C2, where „*‟ is the 

concatenation operation and may be performed as detailed in 

the Apriori Algorithm (section 3.1). From C2, 2-itemsets 

having support greater than minsup are stored as L2. This 

process is repeated for all possible k-itemsets (Jong Soo Park 

1997). 

         DHP uses the technique of hashing to 

filter out unnecessary itemsets for next candidate generation. 

When the support of candidate k-itemsets is counted by 

scanning the database, DHP accumulates information about 

(k+1)-itemsets in such a way that all possible (k+1)itemsets 

are hashed to a hash table. Each bucket in the hash table 

consists of a number to denote how many itemsets have been 

hashed to that bucket so far. Based on this hash table a bit 

vector is constructed, where the bit vector is one if the number 

in the corresponding bucket is greater than or equal lo minsup. 

In the candidate generation stage, after computing Ck = Lk-l * 

Lk-1, each k-itemset is checked if it is hashed to a  

bucket whose bit vector is one. Such use of a hash table 

considerably decreases number of the candidate k-itemsets, 

thus serving the purpose of reducing costs for computation of 

large itemsets at each iteration. 

EFFECTIVE DATABASE PRUNING 
  DHP prunes the database on each 

attribute. All attributes in Ck which do not occur in at least k 

of candidate k- itemsets. Since each (k-1) itemset of a large k-

itemset must itself be large, this method discards those 

itemsets that cannot be large. The generation of a smaller 

number of candidate sets by DHP enables us to effectively 

trim the database at much earlier iterations, thereby reducing 

the computational costs for later iterations. The above concept 

as applied by DHP is used in the function count_support(). 

This is only a necessary condition, not a sufficient one. In 

function make_hasht(), Then further check if each item in a 

transaction is indeed covered by a (k+1)itemset with all of its 

(k+1) k-itemsets contained in Ck.  

4. EXPERIMENTAL RESULTS 
  The algorithm is implemented in Java.  

The algorithm is run on the sales record data obtained from 

the Musical Store. The dataset consists of the transactions that 

are recorded for a month, and it consists of around 10,000 

transactions and around 800 different items. Experimentation 

is done over the same dataset to compare DHP algorithm with 

Apriori. 

  Processing for counting the occurrences of each itemset.  

Experimental results are shown in the following table.   

 

 

 

 

 

TABLE 1:  Experimental Result of Apriori Apriori and DHP From 10000 Records

 L L1 C1 L2 C2 
Total 

Time 
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Apriori 1000 1097 598 298 149 7.50 

Dhp 1000 1097 598 74 51 4.22 

Apriori 2000 2236 1115 582 226 18.28 

Dhp 2000 2236 1115 155 104 10.32 

Apriori 3000 3196 1547 673 225 42.19 

Dhp 3000 3196 1547 174 147 17.50 

Apriori 4000 4123 2205 1088 393 52.97 

Dhp 4000 4123 2205 185 159 24.37 

Apriori 5000 5245 2982 1699 1023 53.59 

Dhp 5000 5245 2982 219 102 30.31 

 

TABLE 2:  EXPERIMENTAL RESULT OF  AND DHP 

FROM 5000  RECORDS 

 

 

 L L1 C1 L2 C2 
Total 

Time 

Apriori 6000 6126 3542 1937 1167 69.37 

Dhp 6000 6126 3542 246 149 41.09 

Apriori 7000 7246 4105 1995 953 83.28 

Dhp 7000 7246 4105 240 185 49.69 

Apriori 8000 8041 1286 2143 886 86.56 

Dhp 8000 8041 1286 266 200 56.25 

Apriori 9000 9131 5031 2243 985 110.78 

Dhp 9000 9131 5031 269 214 74.68 

Apriori 10000 10331 5577 2967 1020 140.78 

Dhp 10000 10331 5577 317 277 102.34 
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Figure 1: Graph for Comparison of 5000 Records. 

Comparision of 10000 Records
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Figure 2: Graph for Comparison of 10000 Records 

 

5. APRIORI ALGORITHM 
Any subset of a frequent itemset must be frequent 

if {Westlife, Dangerous, Eminem} is frequent, so is 

{Westlife, Dangerous} 

Every transaction having { Westlife, Dangerous, Eminem } 

also contains { Westlife, Dangerous}}  

Apriori pruning principle: If there is any itemset which is 

infrequent, its superset should not be generated/tested! 

Method:  

generate length (k+1) candidate itemsets from length k 

frequent itemsets, and test the candidates against DB 

6. CONCLUSION 
 

In this paper, the implementation of Apriori and DHP 

algorithms are carried out for musical database.   In order to 

test the performance of the algorithm, a comparison of both 

the algorithms were made over the real dataset that was 

obtained from  Musical store.  As the experimentation has 

showed, DHP algorithm performs better than the Apriori 

algorithm since at each step it reduces the database size to be 

scanned, and it generates much smaller sized C2 at the initial 

step.  A larger dataset would yield more meaningful results.   

As future work, the DHP algorithm may be run over larger 

sets of data, and experimentation on memory requirement of 

the algorithm may be performed. A co-occurrence technique 

automatically extracts musical similarity between titles and 

between artists.  The technique yields a distance matrix for 

arbitrary sets of items. The preliminary results on small 

databases show that the technique is able to extract similarities 

between items. Besides scaling up these experiments to larger 

databases, different sources of similarity can be integrated and 

can be used in EMD systems. 
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