
International Journal of Computer Applications (0975 – 8887)

National Conference on Advance Trends in Information Technology, NCATIT- 2013

16

Musical Data Mining Pattern Matching Apriori and DHP

Algorithm

 J.James Alaguraja
 Assistant Professor, Department of Computer Application, J.P. College of Arts and Science,

Manonmaniam Sundarnar University, Tirunelveli , India,

ABSTRACT
Musical data mining is not a new invention, but as a nation-

wide resource of this type it breaks new ground by providing

researchers with new ways to analyze musical data. It was

Toiviainen and Eerola´s idea to combine specific information

with a geographical coordinate database. Now geographical

comparisons can be made it is possible to follow the

geographical variation of musical features. For instance,

schools can now identify and trace folk tune originating from

their own regions. Musical Data Mining is used for

discovering any kind of relevant similarity between music

titles. Several algorithms like Apriori, PHP, partition,

sampling and some other parallel algorithm have been

developed. In this thesis, Apriori and DHP are implemented.

To extract the similarity between music titles and to

manipulate their relationships two techniques are used co-

occurrence analysis and correlation analysis. By the use of

these two techniques it is capable to access the database and

then find whether any similarity exist between the music

titles. For the purpose of finding a match within the titles in

the database Pattern matching is used using the Apriori and

DHP algorithms

1. INTRODUCTION
Pattern matching is the act of checking for the presence of the

constituents of a given pattern. It is used to check that things

have the desired structure to find the relevant structure, to

retrieve the aligning parts and to substitute the matching part

with something else. Patterns are often described using regular

expressions (i.e. Backtracking) and matched using respective

algorithms.

2. APRIORI ALGORITHM
In data mining, Apriori is a classic algorithm for learning

association rules. Apriori is designed to operate on databases

containing transactions (for example, collections of items

bought by customers, or details of a website frequentation).

Other algorithms are designed for finding association rules in

data having no transactions or having no timestamps (DNA

sequencing).

 As is common in association rule mining, given a

set of itemsets (for instance, sets of retail transactions each

listing individual items purchased), the algorithm attempts to

find subsets which are common to at least a minimum number

C (the cutoff, or confidence threshold) of the itemsets. Apriori

uses a "bottom up" approach, where frequent subsets are

extended one item at a time (a step known as candidate

generation, and groups of candidates are tested against the

data. The algorithm terminates when no further successful

extensions are found

Apriori uses breadth-first search and a hash tree structure to

count candidate item sets efficiently. It generates candidate

item sets of length k from item sets of length k − 1. Then it

prunes the candidates which have an infrequent sub pattern.

According to the downward closure lemma, the candidate set

contains all frequent k-length item sets. After that, it scans the

transaction database to determine frequent item sets among

the candidates. For determining frequent items quickly, the

algorithm uses a hash tree to store candidate itemsets. Apriori,

while historically significant, suffers from a number of

inefficiencies or trade-offs, which have spawned other

algorithms. Candidate generation generates large numbers of

subsets (the algorithm attempts to load up the candidate set

with as many as possible before each scan). Bottom-up subset

exploration (essentially a breadth-first traversal of the subset

lattice) finds any maximal subset S only after all 2 | S | − 1 of

its proper subsets.

Apriori is an influential algorithm for mining frequent

itemsets for Boolean association rules. The name of the

algorithm is based on the fact that the algorithm uses prior

knowledge of frequent itemset properties, as it is shown

below. Apriori employs an iterative approach known as a

level-wise search, where k-itemsets are used to explore (k +

1)-itemsets. First, the set of frequent 1-itemsets is found. This

set is denoted L1. L1 is used to find L2, the set of frequent 2-

itemsets, which is used to find L3, and so on, until no more

frequent k-itemsets can be found. The finding of each Lk

requires one full scan of the database.

 To improve the efficiency of the level-wise

generation of frequent itemsets, an important property called

the Apriori property, presented below, is used to reduce the

search space. At first this property is described and an

example is shown to illustrate it.

 In order to use the Apriori property, all nonempty

subsets of a frequent itemset must also be frequent. This

property is based on the following observation. By definition,

if an itemset I does not satisfy the minimum support

threshold, minsup, then I is not frequent, that is, P (l) <

minsup. If an item A is added to the itemset I, then the

resulting itemset (i.e., I U A) cannot occur more frequently

than I. Therefore, 1 U A is not frequent either, that is, P (I U

A) < minsup.

 This property belongs to a special category of

properties called anti-monotone in the sense that if a set

cannot pass a test, all of its supersets will fail the same test as

well. It is called anti-monotone because the property is

monotonic in the context of failing a test. “How is the Apriori

property used in the algorithm?” To understand this, let us

look at how Lk-1is used to find Lk. A two-step process is

followed, consisting of join and prune actions.

THE JOIN STEP: To find Lk, a set of candidate k-

itemsets is generated by joining Lk-1 with itself. This set of

candidates is denoted Ck. Let l1 and l2 be itemsets in Lk-1. The

notation li[j] refers to the jth item in li (e.g., l1 [k — 2] refers

International Journal of Computer Applications (0975 – 8887)

National Conference on Advance Trends in Information Technology, NCATIT- 2013

17

to the second to the last item in l1. By convention, Apriori

assumes that items within a transaction or itemset are sorted in

lexicographic order. The join, Lk-1 ∞ Lk-1, is performed, where

members of Lk-1 are joinable if their first (k — 2) items are in

common. That is, members l1 and 12 of Lk-1 are joined If

(l1[1] = l2[1]) ^ (l1[2]) = l2[2]) ^ . . . ^ (l1[k — 2] = l2[k — 2])

^(l1[k — 1] < l2[k — 1)). The condition l1[k — 1] < 12[k — 1]

simply ensures that no duplicates are generated. The resulting

itemset formed by joining l1 and l2 is l1[1]l1[2] . . . 11[k —

1]l2[k— 1].

THE PRUNE STEP: Ck is a superset of Lk, that is, its

members may or may not be frequent, but all of the frequent

k-itemsets are included in Ck. A scan of the database to

determine the count of each candidate in Ck would result in

the determination of Lk (i.e., all candidates having a count no

less than the minimum support count are frequent by

definition, and therefore belong to Lk). Ck, however, can be

huge, and so this could involve heavy computation. To reduce

the size of Ck, the Apriori property is used as follows. Any (k

—1)-itemset that is not frequent cannot be a subset of a

frequent k-itemset. Hence, if any (k— 1)-subset of a candidate

k-itemset is not in Lk-1, then the candidate cannot be frequent

either and so can be removed from Ck. This subset testing can

be done quickly by maintaining a hash tree of all frequent

item sets.

3. DIRECT HASHING AND

PRUNING ALGORITHM
 In the DHP algorithm, a large hash table can be defined such

that each different itemsets is mapped to different locations in

the hash table, then the entries of the hash table gives the

actual count of each itemset in the database. In that case, it

doesn‟t have any false positives and as a result of this, an

extra processing for counting the occurrences of each itemset

is eliminated. It has also been showed that, the amount of data

that has to be scanned during the large itemset discovery is

another performance-related issue. Reducing the number of

transactions to be scanned and trimming the number of items

in each transaction improves the data mining efficiency in

later stages.The algorithm forms all k-subsets of items in each

transaction and inserts the ones whose all k-1 subsets are large

to the hash table. For that reason the algorithm does not miss

any frequent itemset. Since the algorithm makes a pruning

during the insertion of the candidate kitemsets to the Hk, the

size of the hash table is not large and fits into memory.

EFFICIENT GENERATION OF LARGE

ITEMSET:
 By utilizing a hash tree, DHP is very effective for

generation of large itemsets, in particular for large 2-itemsets,

where the number of candidate itemsets is, in orders of

magnitude, lesser than that by previous methods, greatly

improving the performance bottleneck (Gauhar wadhera

2002).

 As a preliminary, the approach adopted by

earlier works, notably Apriori for discovering large itemsets

from, a transaction database. In Apriori, in each iteration, the

candidate set for large itemsets is constructed, and large

itemsets are determined based on a pre determined support. In

the first iteration, Apriori scans the all transactions to count

the number of occurrences of each item (attribute). This is the

candidate 1-itemset, denoted by C1. The large 1-itemset L1 is

generated from C1 by checking for 1-itemsets with support

greater than minsup. To generate large 2-itemsets, Apriori

uses L1* L1 to obtain candidate 2-itemset C2, where „*‟ is the

concatenation operation and may be performed as detailed in

the Apriori Algorithm (section 3.1). From C2, 2-itemsets

having support greater than minsup are stored as L2. This

process is repeated for all possible k-itemsets (Jong Soo Park

1997).

 DHP uses the technique of hashing to

filter out unnecessary itemsets for next candidate generation.

When the support of candidate k-itemsets is counted by

scanning the database, DHP accumulates information about

(k+1)-itemsets in such a way that all possible (k+1)itemsets

are hashed to a hash table. Each bucket in the hash table

consists of a number to denote how many itemsets have been

hashed to that bucket so far. Based on this hash table a bit

vector is constructed, where the bit vector is one if the number

in the corresponding bucket is greater than or equal lo minsup.

In the candidate generation stage, after computing Ck = Lk-l *

Lk-1, each k-itemset is checked if it is hashed to a

bucket whose bit vector is one. Such use of a hash table

considerably decreases number of the candidate k-itemsets,

thus serving the purpose of reducing costs for computation of

large itemsets at each iteration.

EFFECTIVE DATABASE PRUNING
 DHP prunes the database on each

attribute. All attributes in Ck which do not occur in at least k

of candidate k- itemsets. Since each (k-1) itemset of a large k-

itemset must itself be large, this method discards those

itemsets that cannot be large. The generation of a smaller

number of candidate sets by DHP enables us to effectively

trim the database at much earlier iterations, thereby reducing

the computational costs for later iterations. The above concept

as applied by DHP is used in the function count_support().

This is only a necessary condition, not a sufficient one. In

function make_hasht(), Then further check if each item in a

transaction is indeed covered by a (k+1)itemset with all of its

(k+1) k-itemsets contained in Ck.

4. EXPERIMENTAL RESULTS
 The algorithm is implemented in Java.

The algorithm is run on the sales record data obtained from

the Musical Store. The dataset consists of the transactions that

are recorded for a month, and it consists of around 10,000

transactions and around 800 different items. Experimentation

is done over the same dataset to compare DHP algorithm with

Apriori.

 Processing for counting the occurrences of each itemset.

Experimental results are shown in the following table.

TABLE 1: Experimental Result of Apriori Apriori and DHP From 10000 Records

 L L1 C1 L2 C2
Total

Time

International Journal of Computer Applications (0975 – 8887)

National Conference on Advance Trends in Information Technology, NCATIT- 2013

18

Apriori 1000 1097 598 298 149 7.50

Dhp 1000 1097 598 74 51 4.22

Apriori 2000 2236 1115 582 226 18.28

Dhp 2000 2236 1115 155 104 10.32

Apriori 3000 3196 1547 673 225 42.19

Dhp 3000 3196 1547 174 147 17.50

Apriori 4000 4123 2205 1088 393 52.97

Dhp 4000 4123 2205 185 159 24.37

Apriori 5000 5245 2982 1699 1023 53.59

Dhp 5000 5245 2982 219 102 30.31

TABLE 2: EXPERIMENTAL RESULT OF AND DHP

FROM 5000 RECORDS

 L L1 C1 L2 C2
Total

Time

Apriori 6000 6126 3542 1937 1167 69.37

Dhp 6000 6126 3542 246 149 41.09

Apriori 7000 7246 4105 1995 953 83.28

Dhp 7000 7246 4105 240 185 49.69

Apriori 8000 8041 1286 2143 886 86.56

Dhp 8000 8041 1286 266 200 56.25

Apriori 9000 9131 5031 2243 985 110.78

Dhp 9000 9131 5031 269 214 74.68

Apriori 10000 10331 5577 2967 1020 140.78

Dhp 10000 10331 5577 317 277 102.34

International Journal of Computer Applications (0975 – 8887)

National Conference on Advance Trends in Information Technology, NCATIT- 2013

19

Comparision of 5000 Records

7.5

18.28

42.19

52.97

70.315

4.2
10.32

17.5

24.37

31.02

0

10

20

30

40

50

60

70

80

1000 2000 3000 4000 5000

Records

E
x

e
c

u
ti

o
n

 T
im

e

Apriori

Dhp

Figure 1: Graph for Comparison of 5000 Records.

Comparision of 10000 Records

63.37

83.28 86.56

110.78

140.78

41.09
49.69

56.25

74.68

102.34

0

20

40

60

80

100

120

140

160

6000 7000 8000 9000 10000

Records

E
x

e
c

u
ti

o
n

 T
im

e

Apriori

Dhp

Figure 2: Graph for Comparison of 10000 Records

5. APRIORI ALGORITHM
Any subset of a frequent itemset must be frequent

if {Westlife, Dangerous, Eminem} is frequent, so is

{Westlife, Dangerous}

Every transaction having { Westlife, Dangerous, Eminem }

also contains { Westlife, Dangerous}}

Apriori pruning principle: If there is any itemset which is

infrequent, its superset should not be generated/tested!

Method:

generate length (k+1) candidate itemsets from length k

frequent itemsets, and test the candidates against DB

6. CONCLUSION

In this paper, the implementation of Apriori and DHP

algorithms are carried out for musical database. In order to

test the performance of the algorithm, a comparison of both

the algorithms were made over the real dataset that was

obtained from Musical store. As the experimentation has

showed, DHP algorithm performs better than the Apriori

algorithm since at each step it reduces the database size to be

scanned, and it generates much smaller sized C2 at the initial

step. A larger dataset would yield more meaningful results.

As future work, the DHP algorithm may be run over larger

sets of data, and experimentation on memory requirement of

the algorithm may be performed. A co-occurrence technique

automatically extracts musical similarity between titles and

between artists. The technique yields a distance matrix for

arbitrary sets of items. The preliminary results on small

databases show that the technique is able to extract similarities

between items. Besides scaling up these experiments to larger

databases, different sources of similarity can be integrated and

can be used in EMD systems.

7. REFERENCES
[1] D. Pyle, Data Preparation for Data Mining. San Francisco,

CA Morgan Kaufmann, 1999.

[2] Munz, Matt. Data Mining in Musicology. Yale

University. 2005.

[3] R. Agrawal, T. Imielinski, and A. Swami, ”Database

Mining: A Performance Perspective,” IEEE Trans.

Knowledge and Data Eng.,vol. 5, no. 6, Dec. 1993.

[4] Pachet, Francois, Gert Westermann, and Damien Laigre.

“Musical Data Mining for Electronic Music

Distribution”. 1st International Conference on Web

Delivering of Music. 2001.

[5] Pavankumar Bondugula, Implementation and Analysis of

Apriori Algorithm for Data Mining

