
International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Technology & Applied Sciences (NCATAS- 2014)

32

Evaluating Efficiency and Effectiveness of Code Reading

Technique with an Emphasis on Enhancing Software

Quality

Syed Usman Ahmed
Department of Information Technology

Jodhpur Institute of Engg. & Technology, Jodhpur

Rajendra Purohit
Department of Information Technology

JIET School of Engg. & Technogy for Girls, Jodhpur

ABSTRACT
Code review is done to identify bugs or errors in a pre-

released source code of any software work product. However

it is also clear that some code review techniques that we

follow are not totally effective and efficient in nature. This

paper proposes a way to evaluate code review technique using

Analysis of Variance (ANOVA) technique. This evaluation

finds out the effect of experience of subject, Lines of code

review, order of code review and day of code review on

efficiency and effectiveness of code review technique. This

evaluation will in turn be used to analyze the null hypothesis

that will be created using ANOVA technique. Based on the

significance value (p-value) obtained in the ANOVA test we

will accept or reject the null hypothesis that we created to test

the efficiency and effectiveness of code reading or review

technique.

Keywords
Code review, ANOVA technique, effectiveness, efficiency,

Static testing.

1. INTRODUCTION

Testing is the most important and widely used aspect of

software engineering discipline today. Although finding

defects is the ultimate goal of any type of testing, however it

also serves as a helping hand for validation and verification

activities. Improving the efficiency of defect removal will

surely increase the reliability of software product and in turn

are the goals of software testing. Software developers use

various methods and techniques for finding defects in

software work products. For finding errors or defects they

may execute a program on a computer to reveal and observe

failure or use their experienced vision to identify the defects

and errors in the program source code [1]. Performing sound

testing has now become a matter of reputation this is very

well exemplified by a automobile giant, Toyota Company

when it called of approximately 133,000 Prius and 14,500

Lexus vehicles to update the antilock breaking system [2].

Despite of various other ways of testing and controlling the

software quality, software testing still upholds the torch of

maintaining software quality assurance and control in the

industry.

2. LITERATURE SURVEY

Software development is aimed to provide either software or a

service for its clients. In future of software engineering

(FOSE) a road map for testing was presented [4]. This road

map laid stress on some fundamental research work and one

of the parameter of fundamental research was demonstrating

effectiveness of testing techniques using empirical studies. In

FOSE 2007 [3] it was mentioned that additional research was

needed to provide three types of evidences: analytical,

statistical or empirical of the effectiveness of test selection

criteria in revealing faults in order to understand the classes of

faults for which the criteria are useful. In FOSE 2007

empirical body of evidence was identified as one of the

important challenges. It is mentioned in [3] that in every topic

of software engineering research, empirical studies are

essential to evaluate proposed techniques and practices, to

know how and when they work and to improve on them. This

research work got its motivation for developing an empirical

body of knowledge which is at the basis for building and

evolving the theory for testing.

Moreover in a official report “State of code review 2013” [5]

released by SmartBear software revealed that over 70% of

respondent said that they do collaborative review in some

capacity and those who do review are twice as likely as highly

satisfied with their overall software quality. Over 90% of

respondent said that conducting code review is important.

As per the current industry standard the software testing

techniques can be classified into two basic categories: static

testing and dynamic testing. If in a testing technique we

require to execute the actual code and find out the bug or

defects or errors then it falls under dynamic testing technique,

whereas those testing technique in which execution of final

code is not required for locating defects or bugs or errors are

called as static testing techniques [7]. Code review is a

systematic examination of source code and it is intended to

detect and isolate mistakes overlooked in the development

phases. Code review improves both the quality of software

and the developers’ skills. There are various forms of reviews:

peer review (informal), walkthrough (informal), inspection

(formal).

Dynamic Testing / Execution based techniques focus on the

range of ways that are used to ascertain software quality and

validate the software through actual executions of the

software under test [9].

3. RELATED WORK

The research on the comparison of testing technique traces

back to as early as 35 years ago with Hetzel making a start in

1976 by conducting a controlled experiment in order to

analyze three defect detection methods [8]. The most

commonly studied factors in the experiments evaluating

testing techniques are their effectiveness (i.e., number of

detected defects) and efficiency (i.e., effort required to apply

the technique) in programs [9]. By tracing the major research

results that have contributed to the growth of software testing

techniques we can analyze the maturation of software testing

techniques research. We can also assess the change of

research paradigms over time by tracing the types of research

questions and strategies used at various stages [10]. Three

directions of research have been found related to evaluation of

testing techniques [9]:

International Journal of Computer Applications (0975 – 8887)

National Conference On Advances In Technology & Applied Sciences, 2014

33

1) Actual evaluations and comparisons of testing

techniques based either on analytical or empirical

methods.

2) Evaluation frameworks or methodologies for

comparing and/or selecting testing techniques.

3) Surveys of empirical studies on testing techniques

which have summarized available work and have

highlighted future trends.

However, the most significant study was conducted by [11].

This experiment studied the effectiveness and efficiency of

different code evaluation techniques. The work of Basili and

Selby was first replicated by [1]. This replication assumed the

same working hypotheses as in initial experiment, but the

experiment changed the programming used of the source

code. A fault isolation phase was also added in the experiment

[9]. Their work was replicated again by [12]. Their

experiment followed exactly the same guidelines as the

experiment run by Kamsties and Lott (who had built a

laboratory package to ease external replication of the

experiment), although new analyses were added [9]. Further

the experiment was replicated by [13]. Their experiment

stressed on the fault types and did not considered efficiency of

testing techniques.

4. GOAL AND HYPOTHESIS

We replicated the experiment which was actually carried out

by [1] and further replicated by [12] which include fault

isolation phase in addition to fault detection phase with the

sole intention of studying the impact of code reading

technique on programs of varying length from the package

created by Kamsties and Lott. Detection refers to the

observation that the programs observed behavior differs from

the expected behavior. Isolation means to reveal the root

cause of the difference in behavior. In our case, it is faults in

the code. The experiment package built by Kamsties and Lott

[1] was used, although some experimental conditions like

hypothesis, choice of testing technique, programs selection

are changed.

GQM (Goal-Question-Metrics) approach was used to state the

goals of this experiment. Accordingly we define our main

goal of the experiment as:

Analyze code review technique for detecting software

defects in varying lines of code for the purpose of comparison

with respect to effectiveness and efficiency from the point of

view of a researcher in the context of a controlled experiment.

In addition we want to analyze the effect of various

parameters on varying lines of code. Accordingly the two

main hypotheses are:

MH01: Code review with varying lines of code does not differ

in their effectiveness.

MH11: Code review with varying lines of code differs in their

effectiveness.

MH02: Code review with varying lines of code does not differ

in their efficiency.

MH12: Code review with varying lines of code differs in their

efficiency.

The goal of the experiment can be stated as follows:

 Find out the effectiveness in revealing failures

 Find out the efficiency in revealing failures

 Find out the effectiveness in isolating faults

 Find out the effectiveness in isolating faults

The questions that were used to test these hypotheses were:

1. What influence does each independent variable have on

effectiveness of failure observation and fault isolation?

2. What influence does each independent variable have on

the time to observe failure, time to isolate failure and

the total time?

3. What influence does each independent variable have on

the efficiency of failure observation and fault isolation?

Table 1. Average percentage of defect detected

Effectiveness

 Code

Reading
Functional Structural

Hetzel 37.3 47.7 46.7

Myers 38 30 36

Basili and Selby 54 54.6 41.2

Kamsties and Lott

Replication 1
43.5 47.5 47.4

Kamsties and Lott

Replication 2
52.8 60.7 52.8

Roper et al 32.1 55.2 57.5

Juristo and Vegas

Replication 1
19.98 37.7 35.5

 - 75.8 71.4

The experiment is explained in detail in section V below.

However our main aim was to evaluate the code review

techniques with respect to independent parameters like

subject, day, group (order) and program using ANOVA

technique. The average percentage of defects detected in

existing experiments is shown in table 1 above.

Also average defect detection rate in existing experiment is

shown in table 2 below:

As we are using the same guidelines laid down by [1], our

results is expected to be in between the range of replica 1 and

replica 2 of Kamsties and Lott experiment as shown in bold in

table 1 and table 2.

International Journal of Computer Applications (0975 – 8887)

National Conference On Advances In Technology & Applied Sciences, 2014

34

Table 2.

 Average defect detection rate

Effectiveness

 Code

Reading
Functional Structural

Hetzel - - -

Myers 0.8 1.62 2.07

Basili and Selby

Depends

on

program

Depends on

program

Depends

on

program

Kamsties and Lott

Replication 1
2.11 4.69 2.92

Kamsties and Lott

Replication 2
1.52 3.07 1.92

Roper et al 1.06 2.47 2.20

Juristo and Vegas

Replication 1
- - -

 - - -

5. EXPERIMENTAL DESIGN
A procedure that is used to execute a experiment serves as a

baseline to guarantee the accuracy of the experiment in the

given environment. The procedure may involve training

activities, execution of experiment, collecting data, providing

feedback etc. A total of twenty one subjects joined this

experiment, all these subjects were aware of the fact that their

association with the experiment is solely for gaining domain

knowledge of software testing field. The subjects for the

experiment are selected based on the experience in software

testing and knowledge of software engineering and C

language. The table 3 summarizes the overall statistic for the

subjects of the experiment.

Table 3.

Subject selection criteria

Selection criteria
Post Graduate

Level (M. C. A)

Graduate Level

(B. Tech)

No. of Students 14 7

Experience in

software testing

6 Months of

industrial training

1 Month of

industrial training

Knowledge of SE

and C
Yes, Good Yes, Good

We have taken the same time limit as described by [6], i.e.

240 minutes to each group, so that the results can be

compared with each other. Moreover this experiment is a bit

different for the one used by [6] as we have used different

programs and that too of varied length so examine the effect

of increasing lines of code with respect to subject, group and

program. Each subject have to see different program on each

day, however all subject reviewed all three programs by end

of the experiments.

No programs from the Kamsties and Lott package were used

in the training session. Instead some trivial simple source code

was used in the learning phase. These codes were seeded with

almost all types of faults. The programs we used in our

experiment are have one different program from the one used

by Kamsties and Lott and Roper et al in their live experiment,

as in this experiment we were concerned with varying lines of

code. The following programs were used in actual

experiments and they were part of Kamsties and Lott package

[1]:

1. Cmdline: evaluates a number of options that are

supplied on the command line. The functions in that

program fill a data structure with the results of the

evaluation, which the driver function prints out upon

completion.

2. N-tree: implements an abstract data type, namely a

tree with unbounded branching. The functions support

creating a tree, inserting a node as a child of a named

parent, searching the tree for a node, querying whether

two children are siblings, and printing out the contents

of the tree. The driver function reads commands from a

file to exercise the functions .

3. Count: it counts the number of lines, words, and

characters in the named files. Words are sequences of

characters that are separated by one or more spaces,

tabs, or line breaks (carriage return). If a file supplied as

argument does not exist, a corresponding error message

is printed and processing of any other files continues. If

no file is supplied as an argument, count reads from the

standard input.

All the programs were written in a C language with which the

subjects were familiar. Table 4 gives size data for the

programs.

The defects used in our experiment were supplied with

Kamsties and Lott package. Most of the defects present in the

program as a part of Kamsties and Lott package. We also

classify the faults using the two-faceted fault-classification

scheme from the [11] experiment. Facet one (type) captures

the absence of needed code or the presence of incorrect code

(omission, commission). Facet two (class) partitions software

faults into the six classes:

1. Initialization

2. Control

3. Computation

4. Interface

5. Data

6. Cosmetic

International Journal of Computer Applications (0975 – 8887)

National Conference On Advances In Technology & Applied Sciences, 2014

35

Table 4.

Size and other relevant information for programs

 cmdlines.c nree.c count

Total Lines 272 212 44

Blank lines 26 38 2

Lines with

comments
0 4 0

Non-blank non

commented lines
246 170 42

Preprocessor

directives
4 5 1

Figure 1, Figure 2 and Figure 3 shows the fault distribution

for program cmdline, ntree and count respectively. Figure 4

shows the collective fault distribution for all the programs.

Figure 1. Fault distribution percentage for n-tree program

Figure 2. Fault distribution percentage for cmdline

program

Figure 3. Fault distribution percentage for count program

Figure 4. Oevrall Fault distribution percentage

We have applied the same process as mentioned in [1, 6] for

code reading i.e. using stepwise abstraction in a 3 step

process.

Step 1: subjects were given line numbered printed source

code. They read the source code and write their own

specification using stepwise abstraction by identifying prime

subroutines (consecutive LOC), after writing their own

specifications, the subjects receive the official specification.

Step 2: Now the subjects matches the official specification

with their own specification to observe inconsistencies

(failure observation) between specified and expected program

behavior (analog to failures in the other techniques).

Step 3: the subjects begin to isolate the faults that led to the

inconsistencies which were observed in step 2. No special

technique is specified for the fault-isolation activity.

Finally, subjects hand in a list of identified inconsistencies

and isolated faults.

The subjects apply code review technique to three different

programs (first independent variable) in different

orders/groups (second independent variable). The subject

required three days to complete the experiment and all subject

work on same defect detection technique on same day. So the

variable technique is confounded with day and not

considered as separate variable. So we have a separate

variable as Day (Technique) (Third independent variable).

Finally the subject is the forth independent variable, which is

however an uncontrolled independent variable.

6. RESULTS
The ultimate goal of this evaluation approach is to generate

metrics for assessing code review technique using ANOVA

technique. There are seven metrics that can be generated from

the raw data collected in the experiment. The metrics are:

1. Percentage of faults detected

2. Percentage of faults isolated

3. Time to detect faults

4. Time to isolate faults

5. Total time to detect and isolate faults

6. No. faults found / time

7. No. of faults isolated / time

The results showed in table 5 below summaries the effect of

independent variables on code review metrics.

International Journal of Computer Applications (0975 – 8887)

National Conference On Advances In Technology & Applied Sciences, 2014

36

Table 5.

Effect of independent variable(s) of test metrics

Metrics Independent Variable(s)

Percentage of faults

detected
Program, Subject

Percentage of faults

isolated
Program

Time to detect faults Program, Group

Time to isolate faults Program

Total time to detect and

isolate faults
Program, Group

No. faults found / time Program

No. of faults isolated /

time
Program

The results of the experiment shown in table 5 points on the

fact that complexity and length of the source code affects the

most in case of code review efficiency and effectiveness. As

we have mentioned in section IV that the results of our

experiment should be around the two replica of Kamsties and

Lott experiment as we have taken the same guidelines of the

authors. The results of our experiments in terms of average

percentage of defects detected are shown in table 6 and

average rate of defect detection is shown in table 7.

Table 6.

Comparison of Average number of defects detected

Effectiveness

Code

Reading
Functional Structural

Kamsties and Lott

Replication 1
43.5 47.5 47.4

Kamsties and Lott

Replication 2
52.8 60.7 52.8

Our experiment 50.48 - -

Table 7.

Comparison of Average number of defects detection rate

 Efficiency

Kamsties and Lott

Replication 1
2.11 4.69 2.92

Kamsties and Lott

Replication 2
1.52 3.07 1.92

Our experiment 2.02 - -

7. CONCLUSION
This experiment was carried out to test the effectiveness and

efficiency of code review technique with respect to varying

lines of code. We found the not only lines of code has a huge

impact on code review technique but complexity of program

also affect the effectiveness and efficiency of code review.

The effect of program was significant in all the cases. The

group (order) and subject also affect the efficiency and

effectiveness of code review however their affect was not

uniform, rather subject affect the effectiveness of failure

observation while group affect the mean failure observation

time and total time to detect failure and isolate faults.

We do agree with the previous research done in this field that

effectiveness and efficiency depends on program and faults,

however in our experiment two more factors also got

highlighted that group and subject may also affect the code

review technique with respect to efficiency and effectiveness.

Roper et al [12] has very rightly quoted that “as the programs

and faults vary, so do the results”.

We suggest other researchers to use standard code review

checklist to monitor the effect on the efficiency and

effectiveness. However these experiments should be carried

out in accordance with the given schema [1] so that the

outcome of the experiment can be compared to the standard

work done by other researchers.

8. REFERENCES
[1] Erik Kamsties and Christopher M. Lott, "An Empirical

Evaluation of Three Defect-Detection Techniques",

Experimental study, 1995.

[2] Malik, Qaisar Ahmad, "Combining Model-Based Testing

and Stepwise Formal Development", Turku Centre for

Computer Science. 2010.

[3] Bertolino, "Software testing research: Achievements,

challenges, dreams", In future of software engineering

2007, FOSE'07, page 85-103 IEEE 2007.

[4] Mary Jean Harrold, "Testing: A Roadmap", In Future of

Software Engineering, 22nd International Conference on

Software Engineering, June 2000

[5] “State of code review 2013”, SmartBear Software Inc.,

SB-C-041713-WEB.

[6] Sheikh Umar Farooq, S.M.K. Quadri, "Evaluating

Effectiveness of Software Testing Techniques With

Emphasis on Enhancing Software Reliability", Journal of

Emerging Trends in Computing and Information

Sciences, ISSN 209-8407, Vol 2, No.12, 2011.

[7] M. Roper, Software testing, McGraw-Hill, Inc. , 1995.

[8] Hetzel, W. An experimental analysis of program

verification methods. 1976.

[9] Juristo, N., Moreno, A., and Vegas, S. Reviewing 25

years of testing technique experiments. Empirical

Software Engineering, 9(1):7-44, 2004.

[10] Luo, L. Software testing techniques. Institute for software

research international Carnegie mellon university,

Pittsburgh, PA, 2001.

[11] Basili, V. and Selby, R. Comparing the effectiveness of

software testing strategies. Software Engineering, IEEE

Transactions on, (12):1278-1296, 1987.

[12] Roper, M., Wood, M., and Miller, J. An empirical

evaluation of defect detection techniques. Information

and Software Technology, 39(11):763 - 775, 1997.

[13] Juristo, N., Moreno, A., and Vegas, S. Limitations of

empirical testing technique knowledge. SERIES ON

SOFTWARE ENGINEERING AND KNOWLEDGE

ENGINEERING, 12:1-38, 2003.

[14] R. Panneerselvam, Research Methodology, ISBN 81-203-

2458-8, pp:71-81.

[15] Ahmed, Syed Usman and Azmi, Muhammad Asim, “A

Novel Model Based Testing (MBT) approach for

Automatic Test Case Generation”, International Journal

of Advanced Research in Computer Science, 4(11), pp

81-83, 2013.

[16] Ahmed, Syed Usman, Sahare, Sneha Anil and Ahmed,

Alfia, “Automatic test case generation using

collaboration UML diagrams”, World Journal of Science

and Technology, Vol-2, pp4-6, 2012.

