
International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

12

A Novel Software Change Management Model

Mohd. Zia Ur Rehman
Department of Computer Science Engineering

IET, Mangalayatan University
Aligarh, India

ABSTRACT

It has been well accepted by the software professionals as well

as researchers that software systems have to evolve

themselves to survive successfully. Software evolution is a

crucial activity for software organizations. The objective of

this paper is to identify critical challenges and giving a

proposal against those in the area of software change

management. The paper focuses on the existing issues of

software change management. Software change impact

analysis, software change propagation and regression testing

are the key steps in change management process.

Keywords

Software change management, software change impact

analysis, software change propagation, regression testing, and

software change complexity.

1. INTRODUCTION
Even today, software change management is a very

challenging area for researchers. For about three decades,

researchers have put their continued efforts in this direction

and shared their contemplation. Change seems to be very

simple when someone demands it, but the complexity of the

task appears when it moves towards the implementation

phase. Software maintenance and evolution is an expensive

phase in the software development life cycle. The quality and

demand of software can be judged by its maintainability.

As a change is requested, it is not the only issue as to where to

make the change, but how the change is processed, is also an

important consideration in order to maintain the quality of the

software in terms of reliability, understandability, reusability

and maintainability.

Before moving towards details of the change, just have a look

at the following scenario. There is a complete well-furnished,

multistoried building. After shifting in one of the flats of this

building, the owner of the flat observes the need of some

changes in the flat. A group of owners of different flats may

observe the need of some changes in the common area, the

building owner may himself think about some changes in the

building in near future. Here, different categories of people

generate the demand for change in the existing system within

their limited premises as well as in the common area. These

changes may be restricted by physical or financial constraints,

or by some government rules. Hence, before implementing the

requested change it is necessary to look and analyze the

change request against such boundaries.

The similar scenario occurs with the software change.

Different stakeholders and/ or users may request a change

because of market competition or any other reason. The

viewpoint of analyzing a single change is different for

everyone. A change is always followed by multiple changes in

the existing system. The most challenging activities during

maintenance are: (I) to assess the impact of the primary

requested changes and (II) secondary changes that are due as a

result of primary requested changes. The ignorance of

studying these secondary changes could make the system

inconsistent and could generate new bugs; thus, it is essential

that before actual implementation there should be a thorough

impact analysis of proposed changes and the set of secondary

changes.

The other dimension of change management is to assure the

user that change is working correctly in the system without

any side-effect in the existing system. Technically, we termed

this process as regression testing. There are so many unfolded

questions related with software change management. Answers

to these may give efficient solutions to the software

industrialists, developers and programmers regarding software

change management.

2. STATE OF THE ART
Various authors propose software change process models.

Olsen [6] presents a change management model that views the

whole software development process including both

development and maintenance phase. This model does not

make a distinction between different types of changes and

does not give any idea about, how different types of changes

could be managed. According to Ghoshal [6], change

management covers the change activities during both the

software maintenance and development phases. Since the

process is same for all changes, the change control board is

also same for all changes, regardless whether the change

request deals with a new functionality or with an error

identified. An impact is the effect of one object on another.

Impact analysis (IA) is used to determine the scope of change

requests as a basis for resource planning, effort estimation and

scheduling. Software change-impact analysis estimates the

impacted elements and related documentation of the software,

if the proposed software change is implemented. Arnold and

Bohner [1] define a three-part conceptual framework to

compare different impact analysis approaches and assess the

strengths and weaknesses of individual approaches. Gethers et

al. [2] proposes a framework for impact analysis in the paper

based on the degree of automation and developer

augmentation information, which is obtainable in a system

maintenance scenario. The Pfleeger and Atlee [3] focus on the

risks associated with the change and state, "Impact Analysis

(IA) is the evaluation of many risks associated with the

change, including estimates of the effects on resources, effort,

and schedule". Kung et al. [4] describes an algorithm to

identify the impacted parts of the system by comparing the

original system and the modified version, and find the

difference between these two systems. Sherriff and Williams

[5] compute the impacted files based on textual similarities

that have been retrieved from the previous Change Requests

(CR).

Change propagation analysts analyze the flow of change and

find the path required for change implementation. At every

milestone, change transforms into other form. The

deliverables of change propagation analysis is the detailed

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

13

report, which consists of the inputs and outputs required for

every milestone where change could move from. Dam [9, 10]

develops a framework that provides a more effective and

automated support for change propagation in design model

that uses a Belief- Desire- Intention (BDI) platform to

perform change propagation. The use case diagram

consideration is absent in the proposed approach misses ,

which is the basic diagram for defining the deviation in

system behavior from original to requested change in an

abstract manner.

 Chechik [11] proposes an approach that provides an

automated technique for propagating changes between

requirement and design model but the consistency between

different models at different levels of abstraction is a major

undertaking. Rajlich [12] gives a model for change

propagation, which is based on graph rewriting. Weidlich [13]

presents a novel approach of change propagation among

business process models. His technique is based on the notion

of a behavioral profile, which captures a set of dedicated

behavioral aspects of a process model.

After implementing the requested changes in software system,

the next step is to check the accuracy of the system, since

during implementation of requested changes, a number of

secondary changes are also made which may be a reason of

performance degradation of the system. Test Case

Prioritization is the process of scheduling test cases in an

order to meet some performance goal. Agawral et al. [14]

proposes a prioritization technique that achieves modified

code coverage at the fastest rate possible. This work only

concentrates on version-specific test case prioritization.

Huang et al. [15] proposes a method of cost-cognizant test

case prioritization based on the use of historical records. In

this approach, historical records are gathered from the latest

regression testing and then a genetic algorithm is proposed to

determine the most effective order of test cases. Seth [16]

proposes an approach for prioritizing test cases using

sequence diagram. However, the work is limited to a single

diagram consideration of UML diagrams. There is also a need

to consider the requirement of prioritization on the basis of

requirement criticality.

There is various software change process models present in

the literature, but every model handles all the changes by the

single process. However, it is far from the real practices

because a developer treats different types of change requests

in different ways like urgent change demand bounded with

very tight time span while changes arise due to market

competition are tightly bounded with quality of the product

time period of releasing is not the prime constraint.

Following are some problems that are still uncovered.

 What is the impact on software complexity in the

software change process?

 How much impact analysis is required?

 How much regression testing is necessary for

assuring the system efficiency?

 What is the procedure to implement the change?

 What are the measurements to measure the impact

of change on the existing system with the

parameters like reliability, reusability,

understandability and maintainability?

On the basis of literature survey, the research gaps mentioned

above can be formulated as the following problem statement:

2.1 Problem Definition
Software change is an indispensable activity. A little change

can affect the large part of the software, thus the managed

way for analysis, implementation and testing of change is

essential to maintain the software quality and functionality.

The main objective of the research is to propose and

implement a novel approach for managing the change. Focus

of our work is to address the change related issues in UML

based systems.

2.2 Research Objectives
The goal of this research work is to address the problems

discussed above in an efficient manner. In order to achieve

this goal, there is a need to resolve the following key issues

that constitute research challenges for this work:

a. First, we need to develop a software change process

model that includes change complexity

computation.

b. Second, we need to design a formula for computing

the software change complexity.

c. Third, we need to develop a technique, to determine

how the proposed change would affect the existing

system. This would involve impact analysis of

proposed change to identify the components that

would be influenced by the implementation of the

proposed change.

d. Fourth, we need to design a methodology that will

more precisely give the knowledge about secondary

changes, with reference to the proposed change that

covers the multiple design views [8] of the software

design document, so that the updated and correct

software artifacts will also be maintained.

Fifth, we need to develop a methodology for safely and

precisely test the system after implementing

3. RESEARCH PRAPOSAL
In this research, it is assumed to find the solution of problems

discussed in the previous section. The following points shortly

give an idea, how these problems will be tackle:

 The complexity is one of the acute parameter for

measuring the quality of the software. The

complexity of the system increases as the system

grows, but it should have some pattern. Here the

complexity of change includes the parameters like

the nature of change, scope of change, level of

coupling, resource requirement for change urgency

and level of change. Random complexity deviation

is not good for the software health. It might be

possible that a small change may affect more than

one big change to the system. Thus, there exists a

relation among software change impact, complexity

deviation and system maintainability.

 There are different categories of a change: minor

change, major change, urgent change, functional

change, non-functional change, essential change.

Putting same effort for all type of change in

analyzing impact is not worthy. There is need to

formulate some relation between severity of change

and effort required in impact analysis.

 The complete system retesting after the

implementation of proposed change is almost

impossible. However, one cannot randomly decide

the amount of testing that assures about software

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

14

efficiency and accuracy. Thus, there is a need of

some method by which one can estimate the

regression testing effort necessary for the software.

Based on the criticality of the change, a portion of

system gets impacted. The motive of the regression

testing is to assure that the expected unimpacted

part of the system remains unimpacted after

implementing the proposed change.

 Change is a cyclic process that consists of many

activities. For efficient implementation of a change,

it is compulsory to follow some sequence of these

activities. Somerville [7] proposes a change model,

but this model does not consider the complexity of

the change. Now, the question occur that how and

when to analyze the complexity of the change. In

this research, we will propose a novel change

model.

 Most of the time the requested change comes in the

category of functional change and we only put our

focus on finding functional impact. To preserve the

level of software quality, after imposing change in

the existing system, is very challenging. Those

changes can never be appreciated that result in

degradation of quality of the system. The impact

analysis of the quality parameters of the software

system is the only way to analyze the effects of

proposed change on the quality of the system. After

filtering the research problems, the next section lists

out the major objectives in order to handle software

change management.

The following section discusses proposed software change

process model.

4. PRAPOSED MODEL
Change is inevitable in the software development after the

release of first version. Various authors propose software

change process models. Ghoshal [6] presents a change

management model that views the whole software

development process including both development and

maintenance phase. This model does not make a distinction

between different types of change and does not give any idea

about, how different types of changes have been managed.

According to Ghoshal [6], change management covers the

change activities during both the software maintenance and

development phases. Since the process is same for all

changes, the change control board is also same for all

changes, regardless whether the change request deals with a

new functionality or with an error identified. There is a need

of a software change process model that handles the present

issues.

Fig 1: Software Change Process Model

Table 1: Software Change Process Model Summery

Software Change

Process Model Phase
Description Deliverable

Change Request Requests are accepted from different sources like

customer, user, developer, market

Filled Change Request Form

Change Identification Change categorization is done Category wise requested change list

Change complexity

computation

The complexity of change is computed Requested change list with their complexity

Change Impact Analysis Where the effect of change can arise Impact set that contain impacted elements

Change Propagation Identification of secondary changes required to

implement requested change

Set of secondary changes for proposed

change

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

15

Change Implementation Actual change in existing system Modified system

Unit Testing It assures the functionality of change Test result

Regression Testing It assures that the existing functionality and quality

of system does not get affected

Test result

Document Update Change is made in the related documents like

manual, data dictionary, training manual,

installation guideline etc.

Modified documents

Version Release New version is released New version of system

The proposed software change process model consists of ten

phases namely Change Request, Change Identification,

Change Complexity Computation, Change Impact Analysis,

Change Propagation, Change Implementation, Unit Testing,

Regression Testing, Document Update, and Version Release.

Again, it moves towards the initial stage as a change is

requested. The functionality and deliverables of each phase

can be summarized in the table 1.

In this model, Change Requests are taken by different sources

like customer, user, developer and market demand. The next

phase identifies the change; change could be functional

change, non- functional change, architectural change,

structural change, behavioral change, sequential change,

parallel change etc. The handling of every type of change is

not same. Here, work is limited to analyze only functional

changes. After identifying the changes, the complexity of the

identified changes is computed. In the next section, there is a

detailed discussion about change complexity computation

methodology. Aprna et at. [17] Proposes a fundamentally new

approach that seeks a systematic solution to accept or reject

the requested change. The next phase after complexity

computation is the change impact analysis. This phase is the

decision making phase. Stakeholders take the decision about

acceptance or rejection of the proposed change based on

various parameters like change complexity, effort required in

implementing and testing of the proposed change, risk

associated with proposed change, percentage of existing

system influenced by the proposed change. The outcome of

this phase is a set of accepted change. Now, the next activity

is to fetch the set of secondary changes that occurred because

of primary change at the different places of the existing

system. This activity is carried by the change propagation

phase. After finding secondary changes corresponding to the

primary accepted change, change is actually implemented; the

implementation means not only to make changes in the code

but also making changes in system design. The unit-testing

phase is carried out after completion of implementation phase.

The implementation phase and unit testing phase makes a

loop until the desired result are not assured by the unit-testing

phase. The next phase after successful unit-testing, regression

testing phase comes, it assures that the existing systems

functionalities remain unchanged after implementation of

requested changes. If some error, bug or failure is reported,

process moves towards implementation by taking back step.

Only after the successful regression testing, process comes at

document update phase and the finally new version is released

in the version release phase. In the proposed work, we will

focus on change complexity computation, impact analysis,

change propagation analysis and regression testing phase of

the software change process model.

The next section is a conclusion of the paper.

5. CONCLUSIONS
In conclusion, the proposed research offers a fundamentally

new approach that seeks a systematic solution to organize the

software change management. Since, UML is an industry

standard modeling language with a rich graphical notation,

with comprehensive set of diagrams and elements. It is

considered for the research work. In this work, a software

change process model is proposed that includes the software

change complexity computation before processing the change.

The complexity computation gives a new dimension to the

analysts for analyzing the requested change. In addition, the

criteria of acceptance or rejection became strengthen than the

earlier with the inclusion of change complexity. This research

is expected to offer a more realistic solution for analyzing the

software change impact of a proposed change on the existing

system, closer values for software change propagation for

making implementation process smooth and painless and

regression testing that is more accurate.

6. REFERENCES
[1] R. S. Arnold and S. A. Bohner, “Impact Analysis -

Towards A Framework for Comparison,” Proceedings of

the Conference on Software Maintenance, Los Alamitos,

CA, September 1993, pp. 292-301.

[2] Malcom Gethers, Huzefa Kagdi, Bogdan Dit, and Denys

Poshyvanyk., "An adaptive approach to impact analysis

from change requests to source code", In Proceedings of

the 26th IEEE/ACM International Conference on

Automated Software Engineering (ASE '11), IEEE

Computer Society, Washington, DC, USA, pp. 540-543,

2011.

[3] Pfleeger, S.L. and J.M. Atlee (2006)." Software

Engineering Theory and Practice Upper Saddle River",

New Jersey, USA, Prentice Hall.

[4] D. Kung, J. Gar, P. Hsia, F. Wen, Y. Togoshima, and C.

Chen, “Change Impact Identification in Object-Oriented

Software Maintenance,” Proceedings of the Conference

on Software Maintenance, IEEE, Piscatawary, NJ, USA

pp.202-21, 1994.

[5] Mark Sherriff and Laurie Williams, "Empirical Software

Change Impact Analysis using Singular Value

Decomposition", In Proceedings of the 2008

International Conference on Software Testing,

Verification, and Validation (ICST '08), IEEE Computer

Society, PP. 268-277, 2008

[6] S. M. Ghosh1, H. R. Sharma1, V. Mohabay, "Software

change management – Technological dimension",

International Journal of Smart Home, Vol. 5, No. 2,

April, 2011

[7] Ian Sommerville, "Software Engineering, 9/E",ISBN-

13:9780137035151 Publisher: Addison-Wesley

[8] IEEE Standard for Information Technology- System

Design- Software Design Descriptions, IEEE Std 1016
TM 2009

[9] Hoa Khanh Dam and Michael Winikoff. 2011. An agent-

oriented approach to change propagation in software

maintenance. Autonomous Agents and Multi-Agent

Systems 23, 3 (November 2011), 384-452.

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

16

[10] Hoa Khanh Dam and Michael Winikoff. 2010.

Supporting change propagation in UML models. In

Proceedings of the 2010 IEEE International Conference

on Software Maintenance (ICSM '10). IEEE Computer

Society, Washington, DC, USA, 1-10.

[11] Chechik, M.; Lai, W.; Nejati, S.; Cabot, J.; Diskin, Z.;

Easterbrook, S.; Sabetzadeh, M.; Salay, R.; ,

"Relationship-based change propagation: A case study,"

Modeling in Software Engineering, 2009. MISE '09.

ICSE Workshop on , vol., no., pp.7-12, 17-18 May 2009

[12] Vaclav Rajlich. "A Model for Change Propagation Based

on Graph Rewriting", In Proceedings of the International

Conference on Software Maintenance (ICSM '97). IEEE

Computer Society, Washington, DC, USA, 84-91.

[13] Matthias Weidlich, Mathias Weske, and Jan Mendling.

,"Change Propagation in Process Models Using

Behavioural Profiles", In Proceedings of the 2009 IEEE

International Conference on Services Computing (SCC

'09). IEEE Computer Society, Washington, DC, USA,

33-40.

[14] K. K. Aggrawal, Yogesh Singh, and A. Kaur., "Code

coverage based technique for prioritizing test cases for

regression testing", SIGSOFT Softw. Eng. Notes 29, 5

(September 2004), 1-4.

[15] Yu-Chi Huang, Kuan-Li Peng, and Chin-Yu Huang.,"A

history-based cost-cognizant test case prioritization

technique in regression testing", J. Syst. Softw. 85, 3

(March 2012), 626-637.

[16] R. Seth, S. Anand, " prioritization of test cases scenario

derived from uml diagrams", International Journal of

Computer Application(0975-8887), Vol 46- No 12, May

2012.

[17] Aprna Tripathi, Dharmender Singh Kushwaha and Arun

Kumar Misra. Article: Software Change Complexity: A

New Dimension for Analyzing Requested Change. IJCA

Proceedings on International Conference on Recent

Trends in Information Technology and Computer

Science 2012 ICRTITCS(7):5-10, February 2013

IJCATM : www.ijcaonline.org

