
International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

38

Software Readability Metric

Anamika Maurya
Department of MCA
PSIT, Kanpur, India

ABSTRACT

Software products are costly as compare to hardware. And

developing software products at nominal cost are always a big

issue for project managers. Therefore they desperately look

for way-outs to cut development cost. While developing

Software, its quality has become essential from the client

point of view. So, Software understandability is vital and one

of the most significant components of the software quality.

The lack of understandability aspect often leads to false

interpretation that may in turn lead to ambiguities,

misunderstanding and hence to faulty development results. It

plays an important role as far as the issue of delivering quality

software is concerned. Therefore, Understandability is

obviously relevant and significant in software maintenance.

Software metrics can be derived using Class Inheritance

Directed Acyclic Graph(CIDAG) approach to measure the

understandability. In our approach as DIT is combined with

predecessor and successor of class, the values of

understandability metrics are higher in comparisons to

existing approach. Our approach proposes a metrics for

understandability measurement based on class inheritance, in

an efficient way.

General Terms

Software Engineering, Algorithms et. al.

Keywords

Understandability, DIT, NOC, CIDAG

1. INTRODUCTION
Software engineering is much more distinct with other

established branches of engineering, because of shortage of

measuring units, lack of well accepted measures or metrics for

software development. With the lack of such measuring units,

software development and it’s maintenance would have been

stagnant in craft type models. To overcome these drawback,

great experience, skill is required for study, adoption and for

further improvement. Software can be quantitatively

described with the help of metrics and the use of tool on the

projects, productivity and quality can be evaluated.

Measurement is fundamental to any engineering discipline, so

in software engineering. Software metric is a measure of some

property of a piece of software or its specifications. Since

quantitative measurements are essential in all sciences, there

is a continuous effort by computer science practitioners and

theoreticians to bring similar approaches to software

development. Typically metrics are essential to software

engineering for measuring software complexity and quality,

estimating cost and project effort. The traditional metrics like

function point, software science and cyclomatic complexity

have been used in procedural paradigm.

Understandability, is an essential activity of software

maintenance and software quality. The increase in size and

complexity of software drastically affects several quality

attributes, especially Understandability and maintainability.

Changes to software systems are called software evolution in

the research field software maintenance. Changes to reuse

software systems can be considered as evolution of reused

software system. Therefore, Software Understandability can

be placed as a factor of software evolution in reuse or

maintenance. For understandability sub characteristics to

comprehend software , the factors that influences are an

internal process of human and an internal software quality

itself. Software developers and maintainers needs to read and

understand source programs and other documents of software.

Understandability of software is thus important as ‘ the better

we know what the things is supposed to do, the better we can

test for it [19].’ It is not easy to measure software

understandability because understandability is an internal

process of human.

Despite the fact that understandability is vital and highly

significant to software development process, it is poorly

managed [1]. The fundamental reality of measurement ‘ we

cannot control what we cannot measure’ highlights the

importance and significance of good measure of software

understandability [2]. This paper has been organized into the

following sections. section 2 describes the related work done

for software metrics measurements. section 3 describes the

proposed approach. Section 4 presents implementation details

and comparison results. Finally, Section 5 includes the

conclusion and future directions of the paper.

2. RELATED WORK
Researchers have been discussing for decade, whether a

separate set of OO software metrics is needed and what this

set should include [3]. Initial proposal focused more towards

extension of existing software metrics for procedure-object-

oriented programming [4,5]. However almost all the recent

proposals have been focused on OO programming [6-10].

Since the proposal of the six OO metrics by Chidamber and

Kemerer (CK) [8] in 1991. Other researchers have made

efforts to validate the metrics both theoretically and

empirically. CK’s revised paper [9] proposed a suit of OO

metrics which have a set of six simple measures:

1. WMC: Weighted methods per class, which counts

number of methods in a class

2. DIT: Depth of inheritance tree, which is the number

of ancestor classes that can affect a class

3. NOC: Number of children, which is the number of

subclasses that inherit the methods of a parent class

4. CBO: Coupling between classes which is a count of

the number of other classes to which it is coupled

5. RFC: Response for a class, which is a set of

methods that can be executed in response to a

message received by an object of that class

6. LCOM: Lack of cohesion in methods, which is a

count of the inter-relatedness between portions of a

program

These metrics were evaluated analytically against

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

39

Weyuker’s measurement theory principles [10] and an

empirical sample of these metrics was provided from two

commercial systems. Several studies have been conducted

to validate CK’s metrics. Basili et al. [9] presented the

result of an empirical validation of CK’s metrics. Their

results suggest that five of six of CK’s metrics are useful

quality indicator for predicting fault-prone classes. Tang

et al. [11] validated CK’s metrics using real-time systems

and the results suggest that WMC can be good indicator

for faulty classes and RFC is a good indicator for faults.

Li [12] theoretically validated CK’s metrics using a

metric evaluation framework proposed by Kitchenham et

al. [17]. He discovered some of the deficiencies of CK’s

metrics in the evaluation process and proposed a new suit

of OO metrics that overcome these deficiencies.

CK’s DIT and NOC definition

DIT metrics : The depth of inheritance of a class is the

DIT metric for the class. In case involving multiple

inheritance, the DIT will be the maximum length from the

node to the root of the tree.

Figure. 1. A class Inheritance Tree

Theoretical basis : The DIT metric is a measure of how many

ancestor classes can potentially affect this class.

(1) The deeper a class is in the hierarchy, the higher the

degree of methods inheritance, making it more complex

to predict its behavior.

(2) Deeper trees constitute greater design complexity , since

more methods and classes are involved.

(3) The deeper a particular class is in the hierarchy, the

greater the potential reuse of inherited methods.

Example. Consider the class inheritance tree in Figure 1.

DIT(A) = 0 because A is the root class

DIT(B)=DIT(C)=1 because the length from class B andC to

the root A is one each.

DIT(D)=DIT(E)= 2 because the maximum length from class

D and E to the root A are two each.

NOC Metric: NOC is the number of immediate subclasses ,

 subordinate to a class hierarchy.

Theoretical basis: NOC is a measure of how many subclasses

are going to inherit the methods of parent class.

(1) The greater the number of children, greater the potential

for reuse, since inheritance is a form of reuse.

(2) The greater the number of children, the greater the

likelihood of improper abstraction of the parent class.

(3) The number of children gives an idea of the potential

influence a class has on the design.

DIT indicates the extent to which the class is influenced by

the properties of it’s ancestors and NOC indicates the

potential impact on the descendants. CK argue that depth is

preferred to breadth in the hierarchy.

DAG Approach

The term class inheritance tree is not valid because if it has

multiple inheritance it is not a tree but graph. Frederick T. et

al. [13], used The most suitable mathematical model for

describing an object taxonomy with inheritances is directed

acyclic graph (DAG) with no loops [16]. Therefore, the

notation of class inheritance DAG as in Figure 2.

Figure. 2. A Class Inheritance DAG

For the definition of metrics for maintainability, they used the

terms from graph theory. In the directed graph, where vertices

represent the activities and edges represent the preceding

relationship, vertex i is a predecessor of j under the following

conditions. Function PRED (Predecessor) and SUCC

(Successors) can be defined as follows, if there exists a path

from vertex i to j, and vertex j [16]

 PRED(j) : the total number of predecessor of node i

 SUCC(i) : the total number of successors of node i

DAG approach has been used to propose to measure metrics

of understandability.

3. PROPOSED WORK
In context of class inheritance, DAG approach has been used

to design class inheritance graph. Understandability, DIT has

been calculated with slight modification in existing formula.

Consequently, the Degree of Understandability (U) of a class

is defined as follows :

() 1i iU of class PRED C 
 (1)

Where Ci is ith class. The Total Degree of Understandability

(TU) of a Class Inheritance DAG (CIDAG) is defined as

follows:

1
() 1

t

ii
TU of CIDAG PRED C


 

 (2)

 Where t is the total numbers of classes in the CIDAG

The DIT of a class is calculated as

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

40

Depthof eachclass
DIT

Number of class



 (3)

With slight modification in above formula new formula is

defined as and combining it with DIT

1

*(() ()) 1)
t

i i

i

TU DIT PRED C SUCC C


  

(4) Where Ci is ith class, and Where t is the total numbers of

classes in the CIDAG.

In above approach predecessor and successor both has been

considered along with Depth Inheritance Class (DIT).

Coupling between the classes can be derived using following

formula:

(1 1/ 2* 2* 2*)i i o o d cC d C d c g g w r        

(5) Where di = number of input data parameters

 Ci = number of input control parameters

 do = number of output data parameters

 co = number of output control parameters

 gd = number of global variables used as data

 gc = number of global variables used as control

 w = numbers of modules called (fan-out)

r = numbers of modules calling the module under

consideration (fan-in)

The proposed approach in this paper includes the following

steps.

1. Draw the DAG for class inheritance for project.

2. Calculating TU and DIT using equation 3.2, 3.3 and

3.4.

3. Calculating coupling for each projects using equation

3.5.

The case study of Queue Technique for Rail Road Project is

explained here. The CIDAG is shown in Figure 3.

Figure 3. CIDAG for Queue Technique for Rail Road

Project

There are total 9 classes in CIDAG and understandability of

each class is calculated using equation 1 as follows:

U(A) = 1, U(B) = 2, U(C) = 3, U(D) = 3, U(E) = 4, U(F) = 4,

U(G), = 4 , U(H) = 6, U(I) = 6

Hence, Total Understandability from equation 2 is as follows:

 = (1 + 2 + 3 + 3 + 4 + 4 + 4 + 6 + 6)/9

= 3.66

DIT for each class is calculated using equation 3 as follows:

DIT(A) = 0, DIT (B) = 1, DIT (C) = 2, DIT (D) = 2, DIT (E)

= 3, DIT (F) = 3, DIT (G), = 3, DIT (H) = 4, DIT (I) = 4

Hence Total DIT = (0 + 1 + 2 + 2 + 3 + 3 + 3 + 4 + 4)/9

 = 2.44

Understandability for each class is calculated using equation 4

as follows:

U(A) = 1, U(B) = 4, U(C) = 5, U(D) = 7, U(E) = 7, U(F) = 7,

U(G), = 4 , U(H) = 5, U(I) = 5

Hence, Total Understandability

 = (1 + 4 + 5 + 7 + 7 + 7 + 4 + 5 + 5)/9

 = 5

4. CASE STUDY
Proposed approach is illustrated by ten open source C++

based and self made projects. Understandability is measured

using modified approach as well as through existing

approach.

The proposed approach has implemented in following phases.

In first phase, DAG based design for class inheritance is

designed for 15 C++ language projects shown in Table 1

Table 1. Results of Existing and Propose Approach

Projects Understa

ndability

(Frederic

k T. et al

)

DIT Under

standa

bility

(Prop

osed

appro

ach)

Coupling

P1 3.66 2.44 5 0.9588

P2 3.64 1.86 5.22 0.952

P3 2.63 1.75 4.25 0.9307

P4 2.79 1.78 3.5 0.9569

P5 3.67 2.66 5.66 0.9576

P6 2.83 1.83 3.7 0.9756

P7 5.35 4.41 8.88 0.9772

P8 3.06 2.06 4.06 0.9712

P9 4.2 3.15 6.5 0.975

P10 3.12 2.11 3.22 0.9384

In second phase metrics for Understandability and DIT

measured for all these project using the standard definition

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

41

given by Frederick T. Sheldon, Kshamta Jearth and Hong

Chung [1]. With proposed modification in standard formula

like only considering predecessor of class , both predecessor

and successor were taken into consideration and metrics for

Understandability and DIT were measured.

In third phase, coupling for all projects were calculated.

Correlation Coefficients between coupling for all projects and

Understandability metrics for above approach and new

approach were measured.

Results of all projects are shown in Table 4.1. Graph for all

projects between Understandability for existing and proposed

approach is also shown in Figure 4.3.

Table 4.1 shows the detailed results of implementation. Here

P1 to P15 are the 15 C++ projects on which approach have

been applied. Understandability with Existing approach by

Frederick T. et al , along with DIT, and Understandability

with proposed approach is being shown. The value of

Understandability ranges between lowest 2.67 to highest 5.35

for existing approach whereas Understandability ranges

between lowest 3.5 to highest 8.88 for proposed approach in a

scale of 0 to 10.

5. RESULT AND COMPARISON
Proposed approach was compared with Frederick T. Sheldon,

Kshamta Jearth and Hong Chung [1] approach. As in the

proposed approach DIT is combined, and also Predecessor and

successor of the class has been considered, its value is higher

with comparison to Frederick T. et al approach.

Correlation Coefficients between coupling for all projects and

Understandability were also compared in table 2. From this

comparison we can say that, understandability can be measured

with metrics using proposed approach and our approach is

more efficient in terms of correlation between understandabilty

and coupling.

Table 2. Correlation between understandability and

Coupling for Existing and proposed Approach

Approach Correlation Coefficient

Frederick T.et al. 0.40

Proposed Approach 0.50

Figure 4 shows the graph between Understandability for

existing approach and proposed approach for all 15 projects.

Here U represents understandability for existing approach and

NU represents understandability for proposed approach.

Figure 4. Graph between Understandability for existing

and proposed approach

It is clear from the graph that there are similarities between

both the approaches. The value of understandability is higher

for proposed approach for almost all the projects, because DIT

is combined in proposed approach with predecessor and

successor both.

Figure 5. Graph between Understandability and DIT for

proposed approach

Figure 5 shows the graph between Understandability for

proposed approach, represented by NU and DIT for all 15

projects. It is clear from the graph that the values of

understandability are varying in a uniform manner with the

values of DIT. If the value of DIT is low the value of

understandability is also low and if value of DIT is higher the

value of understandability is also higher for all the projects.

Hence we can say that DIT has an important role in measuring

the understandability metrics.

6. CONCLUSION
Software understandability is vital and one of the most

significant components of the software maintenance. The lack

of understandability aspect often leads to false interpretation

that may in turn lead to ambiguities, misunderstanding and

hence to faulty development results. It plays an important role

as far as the issue of delivering quality software is concerned.

Therefore, Understandability is obviously relevant and

significant in software maintenance.

From this discussion, it is clear that, measuring

Understandability is important factor in software

maintenance. Software metrics can be derived using Class

Inheritance Directed Acyclic Graph(CIDAG) approach to

measure the understandability. In our approach as DIT is

combined with Predecessor and successor of class, the values

of understandability metrics are higher in comparisons to

existing approach. Our approach proposes a metrics for

understandability measurement based on class inheritance, in

an efficient way.

7. REFERENCES
[1] K.K Aggarwal, Y. Singh and J.K Chhabra, 2003. A

Fuzzy Model for measurement of software

Understandability “, International Symposium on

Performance Evaluation of Computer &

Telecommunication Systems, Montreal, Canada.

[2] T. DeMarco, 1982. Controlling Software Projects,

Englewood Cliffs, NJ, Yourdon Press.

[3] Tahvildari L, 2000. Singh A. Categorization of Object-

Oriented Software Metrics. IEEE Computer Society.

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Applications

42

[4] Tegraden DP, Sheetz SD Monarchi DE. 1995. A

software complexity model of object-oriented systems.

Decision Support Systems.

[5] McCabe TJ, Dreyer LA, Dunn AJ, Watson AH. 1994.

Testing an Object-Oriented Application. Quality

Insurance Institute.

[6] Abreu F . 1995. The MOOD metrics set. Procedings of

the 9th European Conference on Object-Oriented

Programming. Workshop on Metrics. Springer: Berlin.

[7] Briand LC, Morasoa S. 1999. Defining and validating

measures for object-based high design.IEEE Transation

on Software Engineering.

[8] Chidamber SR, Kemerer CF. 1991. Towards a metric

suite for object-oriented design. Proceeding of the

Conference on Object-Oriented Programming systems,

Languages, and Applications. ACM Press: New York

NY.

[9] Chidamber SR, Kemerer CF. 1994. A metrics suite for

object-oriented design. IEEE Transe. On Software

Engineering.

[10] Weyuker EJ. 1988. Evaluating software complexity

measures. IEEE Trans. On software Engineering

[11] Tang MH, Kao MH, Chen MH. 1999. An empirical

study on object oriented metrics. Proceedings 23rd

Annual International Computer Software and

Application Conference. IEEE Computer Society; 242-

249.

[12] Li W. Another metric suite for object-oriented

programming. The Journal of Systems and Software

1998.

[13] Frederick T. Sheldon, Kshamta Jerath and Hong Chung.

2001. Metrics for maintainability of class inheritance

hierarchies. Journal of software maintenance and

evolution : Research and Practice.

[14] Rajib Mall. 2009. Fundamentals of Software

Engineering. Prentice Hall, 3rd edition.

[15] Wang CC, Shih TK, Pai WC. 1997. An automatic

approach to object-oriented software testing and metrics

for C++ inheritance hierarchies. Proceedings

International Conference on Automated Software

(ASE’97). IEEE Computer Society Press

[16] Kitchenham B, Pfleeger SL, Fenton NE. 1995. Towards

a framework for software measurement validation. IEEE

Trans. On Software Engineering.

[17] I. Sommerville, 1996. Software Engineering, 5th Edition,

Addition Wesely.

[18] B.Jacob, L. Niklas P. Waldermarsson, 2001. Relative

Indicators for Sucess in Software development

Department of Communication Systems, Lund

University.

[19] K K Aggarwal & Yogesh Singh, 2007. Software

Engineering (3rd ed.) New Age International Publishers.

IJCATM : www.ijcaonline.org

