
International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

18

A Survey on Massively Parallelism for Indexing

Multidimensional Datasets on the GPU

Pramod B. Deshmukh

Asst. professor
DYPSOEA, Ambi, Pune

SPPU, Pune

Yogesh B. Lokare
BE scholar

DYPSOEA, Ambi, Pune
SPPU, Pune

Ajay V. Katware
BE scholar

DYPSOEA, Ambi, Pune
SPPU, Pune

Pankaj A. Patil

BE scholar
DYPSOEA, Ambi, Pune

SPPU, Pune

ABSTRACT

CUDA is a parallel programming environment that facilitates

significant performance improvement by leveraging the

massively parallel processing capability of the GPU. The

general purpose computing, on graphics processing unit (GP-

GPU) has turn up as a new cost effective parallel computing

framework, in high performance computing research that

enables large amounts of datasets to be processed in parallel.

Large scale scientific data intensive applications have been

playing a major role in modern high performance computing

research. This large amount of data can be accessed by

scientific data analysis applications such as multi-dimensional

range query, but not much research has been conducted on

multidimensional range query on the GP-GPU. Inherently

multi-dimensional indexing trees such as R-Trees are not well

suited for GPU environment because of its irregular tree

traversal. It has been known that traversing hierarchical tree

structures in an irregular manner make it difficult to exploit

parallelism and to maximize the utilization of GPU processing

units. Then to avoid the drawbacks of R-Tree the novel MPTS

(Massively Parallel Three-phase Scanning) R-tree traversal

algorithm for multi-dimensional range query was proposed,

that Recursive access to tree nodes into sequential access.

Furthermore, the recursive tree search algorithms often fail

because of the GPU’s tiny runtime stack size. Then the

proposed work of a novel parallel tree traversal algorithm—

massively parallel restart scanning (MPRS) for multi-

dimensional range queries avoids recursion and irregular

memory access. Then the proposed MPRS algorithm traverses

hierarchical tree structures with mostly contiguous memory

access patterns without recursion, which offers more chances

to optimize the parallel SIMD algorithm.

Keywords
CUDA, GPGPU,Parallel multi-dimensional indexing, multi-

dimensional range query,Parallel R-tree

1. INTRODUCTION
Modern GPUs that have many processing units are being with

success and widely used as high performance accelerators for

several general computations in variedfields.The general

purpose computing on graphics processing unit (GP-GPU) has

turn up as a new cost effective parallel computing paradigm in

high performance computing research that allows large

amount of data to be processed in parallel. GPUs enable large

independent datasets to be processed in a single instruction

multiple data (SIMD) fashion, so a broad range of

computationally expensive but inherently parallel computing

problems, such as medical image processing , scientific

computing , and computational chemistry , have been

successfully accelerated by GPUs.

In many scientific disciplines, sensor devices and simulators

generate truly large amounts of multi-dimensional datasets,

and the datasets are expanding in size every day.

Multidimensional range query is one of the most common

access patterns into such datasets, and is an important class of

problems in data-intensive scientific computing and computer

graphics as well. In order to handle multidimensional range

queries efficiently, a large number of efficient and scalable

indexing structures such as R-trees [6], R*-trees [5], and

Hybrid-trees [7] have been proposed and improved. The R-

tree is a data structure for organizing and querying

multidimensional non-uniform, overlapping data. But because

of irregular tree traversal R-Trees are not well suited for GPU

environment. Regardless of their popularity, hierarchical

multi-dimensional indexing trees are known to be inherently

not well- suited for parallel processing due to their irregular

and recursive back-tracking tree traversal patterns. In

computer graphics, task parallelism is exploited to utilize a

large numberof GPU cores, i.e., each processing unit in GPU

traverses a binary BVH for different rays or objects. With

such task parallelism approach, a very large number of queries

can be processed concurrently, but it does not improve the

response time of each individual query. As another form of

parallelism, data parallelism can be exploited to make each

individual query run faster.

CUDA (Compute Unified Device Architecture) programming

model allows programmers to run parallel algorithms on GPU

that can take the advantage of data-parallelism or task-

parallelism while running serial portion of the algorithms

simultaneously on CPU. Although NVIDIA keeps improving

GPU architecture and CUDA programming model so that

application programmers write general-purpose parallel

programs on GPU, Still GPU has many restrictions because of

the runtime stack size. As the stack size of the GPU is very

small it will make difficulties to convert various sequential

algorithms into parallel algorithms with parallel random

access memory. In order to resolve the tiny runtime stack

problem, several treetraversal methods have been proposed in

the computer graphics community, such as kd-restart [8],

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

19

fixed short stack [9], rope tree[10], and parent link [11] search

algorithms.

It also discuss a Massively Parallel 3 -phase-search algorithm

for a spatial indexing structure - KDB-tree [4], which enables

us to avoid irregular search path. Massively Parallel Three-

phase Scanning algorithm performs pruning of irrelevant tree

nodes and efficiently serves multi-dimensional range queries

on the GPU.

Multi-dimensional range query may overlap multiple

bounding boxes of a single tree node. Hence, legacy multi-

dimensional range query algorithms use recursion or stack,

and visit the overlapping child nodes in depth-first order.

Since the runtime stack on the GPU is tiny, we develop a

variant of multi-dimensional indexing trees-MPHR-tree,

where each tree node embeds the largest leaf index

(monotonically increasing sequence number of a leaf node, or

a Hilbert value) of its sub-tree, which helps avoid the

recursion and irregular memory access. The embedded leaf

index is necessary for a novel multi-pass range query

algorithm—massively parallel restart scanning that traverses

the MPHR-tree structures in a mostly sequential fashion.

MPRS avoids visiting the already visited nodes by keeping

track of the largest index of visited leaf nodes.

2. RELATED WORK
In spatial-temporal database community, there has been

extensive research on multidimensional indexing tree

structures, starting with the seminal work on R-trees [6]. R-

tree is a balanced tree structure whose tree node consists of an

array of minimum bounding boxes (MBBs). The MBB of a

tree node is the smallest multidimensional box that

encompasses all the data in the sub-tree, i.e., the MBB in R-

tree leaf node encloses nearby spatial objects and the MBB of

internal tree nodes encloses all the underlying MBBs of lower

level sub-trees in a hierarchical way.

CUDA threads use the fast shared memory as their runtime

stack, but the latest Tesla GPUs have only 48 bytes of shared

memory. Due to their tiny stack sizes, the recursive search

algorithms of multidimensional indexing structures often fail.

Although a large number of multi-dimensional indexing

structures have been proposed, the search algorithms of those

methods are similar in a sensethat they recursively prune out

the sub trees depending on whether a given query range

overlaps the bounding boxes of sub-trees.In order to resolve

the tiny runtime stack problem, several tree traversal methods

have been proposed in the computer graphics community,

such as Kd-restart [8], fixed short stack [9], rope tree [10], and

parent link [11] search algorithms.

As multi-core architectures have evolved, a couple of recent

efforts were made to exploit SIMD execution of GPU to

improve database query performance. Zhou et al. Proposed to

compare multiple keys of B+-trees at the same time using

SIMD instruction [12]. Kaldewey et al. [13] also proposed a

parallel search algorithm, called P-ary search, for one

dimensional sorted lists and showed that it outperforms binary

search algorithm on the GPU. Kim et al. Presented FAST

(Fast ArchitectureSensitive Tree), which rearranges a binary

search tree into tree-structured blocks to maximize data-level

and thread-level parallelism on GPU architecture [14]. Each

block of FAST is the unit of parallel processing in a single

streaming multi- processor (SMP) of the GPU. For multi-

dimensional range queries, there can be several child nodes to

visit. After one path is taken and the path search is completed,

it is necessary to backtrack to the last place where there were

multiple choices in paths so that another path can be

taken.Although GPUs have a large number of processing

units, each processing unit of high-performance GPUs is

known to run a lot slower than a CPU core. Hence, some

efforts have been made to improve the query processing

throughput instead of reducing response time of each query.

Fix et al. proposed a braided parallel one dimensional query

processing method for B+-trees, wherein a single B+-tree

exists in global memory of GPU and multiple independent

queries are concurrently processed across SMs, and a block of

threads in each SM process individual query in parallel [15].

Luo et al. [16] proposed a parallel R-tree traversal algorithm

on GPU. Their work is similar to ours in a sense that they also

tried to avoid irregular memory access and recursion by

employing a queue in the shared memory of SMP. Their

algorithm transforms the R-tree search into a breadth-first

search (BFS). But storing tree nodes to visit in the shared

memory is not very scalable since GPUs provide very small

shared memory space.

2.1 Parallel Multidimensional Indexing on

GPU

2.1.1 Background of CUDA
In order to process a large amount of data in parallel, a CUDA

performs parallel to access small portions of the large input

dataset in parallel. Each CUDA thread block consists of a set

of CUDA threads that need to share intermediate data results

and cooperate on memory access with each other through

thread synchronization mechanisms that CUDA provides. In

addition to the little small shared memory, CUDA enabled

GPU cards to access global memory which can be shared by

all CUDA threads.
A warp is the minimum thread scheduling unit in CUDA

architecture, but the warp is uncontrollable by programmers.

Instead, programmers will specify the number of blocks and

the number of threads per block when accessing a CUDA

kernel function. The blocks are distributed across the multiple

SMPs, and multiple threads in a single block are executed by

a set of CUDA process units during a single SMP at the same

time.

2.2 Stackless Multidimensional Range

Query Processing
In computer graphics, Stackless ray traversal algorithms have

been proposed mainly because a large number of rays are

traced in parallel and the overhead of using runtime stack can

be very high, i.e., the size of memory space for runtime stack

can be as large as the maximum stack depth times the number

of rays. Hence, several Stackless traversal algorithms have

been proposed for efficient ray tracing on the GPU.

2.2.1 Kd-Restart for Range Query Processing
The Kd-restart traversal algorithm [8], modifies the standard

kd-tree traversal to eliminate all stack operations by restarting

the search at the root of the tree. While the removal of the

stack was motivated by the limitations of current GPUs, it

also reduces the working set size needed to trace rays

through a kd-tree Instead of backtracking, the kd-restart

algorithm traverses a tree structure, multiple times from root

node to a leaf node. In each leaf node, it visits, the algorithm

computes a crossing point of the ray with hyper-plane

boundaries of the leaf node. With the piercing point along the

ray, kd-restart algorithm truncates the ray and searches the kd-

tree with the updated ray from root node. Since the ray is

truncated per each restarted traversal, it avoids visiting

already visited leaf nodes.

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

20

However, if a query is not a line segment, but a multi-

dimensional region, pruning out visited regions will not create

a simple rectangular region, which will complicate the next

restart. Hence, kd-restart algorithm cannot be directly applied

in multi-dimensional range query processing. Another

problem with kd-restart algorithm is that its memory access

pattern is very irregular, and the number of tree node accesses

for each query is very diverse, which significantly hurts SIMD

efficiency.

2.2.2 Rope Trees
In order to avoid backtracking to previously visited tree

nodes, auxiliary links—ropes between neighboring tree nodes

can be added to kd-trees [17], [18]. Havran et al. [17]

proposed rope tree where each node has pointers called ropes

which store the neighboring nodes in each dimension, i.e., a

three-dimensional kd-tree node has six ropes.

2.2.3 Parent Link Algorithm
Hapala et al. [11] proposed a parent link search algorithm for

bounding volume hierarchies. In their proposed bounding

volume hierarchies, each tree node stores a pointer to its

parent node. When a tree traversal needs to backtrack to its

parent node, the parent node can be fetched from global

memory using the parent pointer. Although parent link

algorithm eliminates the stack operations, the backtracking

using parent pointer requires additional global memory

accesses. A parent link algorithm can be used not only for ray

tracing, but also for n-ary data parallel range query

processing, thus we develop parent link algorithm for n-ary R-

tree and multi-way BVH to compare against our MPRS

algorithm.

2.2.4 Skip Pointer
Skip pointer [10] is similar to rope tree in a sense that each

tree node has an auxiliary link to its right sibling node or a

right sibling of its parent node. If the current tree node is not

hit by a ray, skip pointer is followed instead of backtracking

to its previously visited parent node. Unlike rope tree, skip

pointer does not take into account the ray direction, which is

known to incur performance penalty.

The Skip pointer algorithm does not consider any direction

preference, we can adopt it for multi-dimensional range query

in order to avoid stack operations and make the search path

always visit non-visited node. If a tree node has no

overlapping child node, skip pointer algorithm follows the

skip pointer to visit a right sibling node or a sibling of its

parent node.

2.2.5 Short Stack for R-tree
Horn et al. [9] extended Foley’s kd-restart algorithm by

employing a stack of bounded size. Pushing a new node onto

stack will delete the node at the bottom of stack. When a tree

traversal backtracks, it first searches the short stack. If the

short stack is not empty, the parent node can be visited by

accessing the topmost node on the stack. If the stack is empty,

it restarts the search operation at the root of the tree again as

in kd-restart. Since the short stack algorithm can be used for

n-ary tree structures and range query processing, we

implemented the short stack algorithm for parallel R-trees and

multi-way bounding volume hierarchies. For multi-

dimensional range queries, the short stack helps reduce the

number of global memory accesses compared to a parent link

and skip pointer.

2.3 Braided Parallel Indexing vs Data

Parallel Partitioned Indexing
In GPU computing, braided parallelism implies that multiple

independent jobs run in parallel on different SMPs, and each

independent job is processed in a data parallel fashion across

multiple processing units in a single SMP. Braided parallelism

is commonly used in GPU applications since it fits nicely with

multi-SIMD architecture of GPU. However braided

parallelism does not scale when the number of submitted tasks

is small.

Since maximizing the utilization of GPU processing units

plays key role in improving the performance of CUDA

applications, we compared two approaches that parallelize

index search operations. One method is braided parallelism

that assigns a different query to each SMP, i.e. a GPU that has

16 SMPs can execute 16 queries concurrently. Since there’s

only a single index in GPU memory, the index will be shared

by all the SMPs, but different parts of the index will be

accessed to serve different queries.

As task parallelism scales with a large number of concurrent

jobs, this braided parallel query processing improves query

processing throughput when a large number of queries are

continuously submitted. However it would not help reduce the

execution time of running each query.

 In order to improve the response time of individual query, we

devised another method that makes maximum use of data

parallelism, where we partition the index into sub-indexes and

distribute them to each SMP. Partitioning spreads and

decreases the amount of work to be done for a single query

across multiple SMPs because each SMP has a smaller

partitioned index to work on.

Fig 1: Braided Parallel Indexing vs Data Parallel

Partitioned Indexing

Figure 1 illustrates the differences between braided parallel

indexing scheme and data parallel partitioned indexing

scheme. In braided parallel indexing shown in Figure 1(a),

each SMP processes different user query, hence if fewer

number of queries are submitted than the number of available

SMPs, the utilization of processing units would be poor.

However in data parallel partitioned indexing shown in Figure

1(b), the same single query is processed by all SMPs

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

21

concurrently with different partitioned indexes, thus

utilization would be higher than that of braided parallel

indexing even when the number of submitted queries is small.

2.4 Massively Parallel Three-Phase

Scanning (MPTS) R-Trees on GPU
In MPTS search algorithm[3], a set of threads in a CUDA

block cooperate to check in parallel if the minimum bounding

boxes (MBBs) of child nodes overlap a given query, i.e., the

number of threads in each block is set equal to the number of

node fan-outs (the maximum number of child nodes). This

parallel search scheme is desirable for SIMD architecture

since all the threads in a single block read the same tree node

and each thread independently determines whether a child

node overlaps a given range query. After all the threads are

done by comparing a query with MBBs of child nodes, they

should agree with, which child node to visit next if there are

more than one overlapping child node. The recursive search

algorithm navigates down one of the overlapping nodes, and it

backtracks to the current node so that it visits another

overlapping node. This recursion needs a large run-time stack

space, especially when the size of tree structure is large.

Current run-time stack frame stores child nodes of the current

node overlap so that when it backtracks to the current stack

frame it restores the overlap information without comparing

the MBBs and chooses the next child node to visit. However

the recursive range query function is not scalable since it often

fails when the size of the index is large and query range is

also large.

Fig 2: MPTS R-Tree Search with Sibling Check

In order to avoid backtracking, MPTS search algorithm

selects at most one child Node to visit no matter how many

child nodes overlap a query. As shown in Figure 2, MPTS

search algorithm keeps choosing the leftmost node in each

level in the first phase, (from step 1 to step 3), and in the

second phase, the rightmost node in each level is visited (from

step 4 to 6). Any node that is not in between the leftmost and

rightmost nodes has no chance of overlapping the query. If

there’s an overlapping node outside of the leftmost and

rightmost nodes, it contradicts that they are the leftmost or

rightmost nodes. This pruning process determines which

nodes are irrelevant and reduces the number of tree nodes to

visit. If a level-1 node has an MBB of child leaf nodes that

overlaps the query, the child leaf node is fetched and the data

stored in the leaf node are compared against the query.

In the example shown in Figure 2, let’s assume a single warp

consists of three threads and the maximum child nodes of

each tree node are also three. In step one (circled one in the

figure), two threads will find the red-colored left and middle

MBBs (A and B) of the root node overlap a given query

range. The third thread will find out that the root node doesn’t

have a third child node and wait for the other two threads to

finish. In the leftmost search phase, the middle overlapping

MBB B will be ignored, but the left child node A will be

chosen and visited. In step 2, again the first and second

threads find out the left and middle MBBs (C and D) overlap,

and C will be chosen just because it is located in the leftmost

position among them. In step 3, threads will find out none of

the MBBs (G and H) overlap. In traditional recursive tree

traversal algorithms, we should go back to the parent Node,

but backtracking should be avoided in GPU environment.

instead, we can blindly navigate down further following the

rightmost child node (i.e. H → Q and R) although we know

they do not overlap. This approach will increase the distance

between leftmost and rightmost nodes and the probability of

false hits. A better way of avoiding false hits and reducing the

distance between leftmost and rightmost nodes is the sibling

jump shown in steps 3, 4, and 5 in Figure 2, which fetches its

right sibling node when there’s no overlapping MBB in

current node.

As itnavigates down the trees we access the one and only

child node in each level. Hence MPTS search algorithm does

not require backtracking or global memory access. The

penalty of eliminating the backtracking is that we may have to

visit more number of leaf nodes. The leftmost leaf and the

rightmost leaf node can be located very far from each other in

the tree structure. In traditional R-trees, the MBBs of a tree

node are stored in random order. Thus, MPTS search

algorithm might have to scan all the leaf nodes even for a very

small query range.

Scientific datasets are usually static, i.e., they do not change

once they are acquired from sensor devices. Taking advantage

of this, we sort the multi-dimensional data objects using a

space filling curve—Hilbert curve that preserves good spatial

locality [19]. As Hilbert curve clusters spatially nearby

objects, we can create tight bounding boxes for the sorted

datasets. With the bounding boxes, R-trees can be constructed

in a bottom-up fashion as in Packed R Trees [20]. The

bottom-up construction makes the node utilization of low

level tree nodes almost 100 percent, however it may result in

large overlapping regions for the bounding boxes in the root

node.

2.5 Massively Parallel Hilbert R-Tree
MPTS reduces the number of leaf nodes to be accessed, but

still it accesses a large number of leaf nodes that do not have

requested data. Hence we designed a variant of R-trees that

work on the GPU without stack problem and does not access

leaf nodes that have not requested data called MPHR-Trees

(Massively Parallel Hilbert R Trees.

MPHR-tree tags each leaf node with a sequential number—

leaf index from left to right, and internal tree nodes of MPHR-

tree store the maximum leaf index of its sub-trees as shown in

Figs. 3.While traversing the tree structure, the query

processing threads keeps track of the largest leaf index that

they have visited. The maximum leaf index stored in each tree

node is used to avoid recursive backtracking and re-visiting

previously visited nodes. Instead of the sequential leaf index,

the Hilbert value of data objects can be used to allow dynamic

insertion of data object into previously constructed

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

22

MPHRtree, but the Hilbert value, usually requires a larger

amount of storage, and multiple data objects can be mapped to

the same Hilbert value if the level of Hilbert curve is not fine

grained enough to distinguish all the data objects.

In order to sort the Hilbert values of the multi-dimensional

data, we employed Thrust [21], which is an open source C++

STL-like GPU library that implements many core parallel

algorithms including radix sort. After sorting the entire data

objects using the radix sort on the GPU, B number of

consecutive data objects are stored in the same leaf node

where B is the maximum number of data that the leaf node

can hold. After assigning all the data objects to leaf nodes, the

bottom-up constructed MPHR-tree builds MBRs of leaf nodes

via parallel reduction and stores the MBRs in their parent

nodes. After creating parent nodes, the bottom-up

construction goes up one level, and repeats until only one root

node is left. This construction can be easily parallelized on the

GPU.

2.6 MPRS: Massively Parallel Restart

Scanning
Massively parallel restart scanning algorithm[2] is a multi-

dimensional range query processing algorithm we propose

which traverses the hierarchical tree structures from root node

to leaf nodes multiple times as in kd-restart algorithm [8]. For

a given range query, no matter how many MBRs of child

nodes overlap a given query range, our MPRS algorithm

always selects the leftmost overlapping child node unless all

its leaf nodes have been already visited. Once it determines

which child node to access in the next level, it does not store

the overlapping child node information in the current tree

node as an activation record but immediately discards it

because MPRS algorithm does not backtrack to already visit

tree nodes.

The MPRS range query algorithm resembles the B+-tree

search algorithm in that both search algorithms scan leaf

nodes. In one-dimensional B+-tree, range query traverses

hierarchical trees to find out the leftmost (smallest) data value

within the query range, and performs leaf level scanning until

it finds out a data value greater than query range and

terminates the search. However, in multi-dimensional space,

data objects that overlap a given query range may not be

located in a single span of leaf nodes. Even after sorting the

multi-dimensional data objects using the Hilbert space filling

curve, a query range may overlap leaf nodes in multiple

segments on the Hilbert curve. The MPRS search algorithm

finds the smallest (in terms of the Hilbert curve index) multi-

dimensional data object that overlaps a query range (D3 in

Fig. 3). After it finds out an overlapping data object that has

the smallest Hilbert value, it starts scanning its next sibling

data objects to find out if they also overlap.

Our MPRS search algorithm scans and compares the overlap

of a given query with data objects on the continuous Hilbert

segment in a massively parallel way using a large number of

threads on the GPU. If any single thread finds an overlapping

data object, the scanning keeps fetching the next group of data

objects and compares the overlap. However while scanning

data objects on the Hilbert curve, all threads may find out

none of the data objects are in the query range. If so, it stops

scanning leaf nodes and restarts traversing MPHR-tree to find

out the starting point of the next Hilbert curve segment that

overlaps the query range. When restarting the tree traversal,

MPRS search algorithm uses the leaf index stored in tree

nodes in order to avoid visiting already visited leaf nodes. In

the restarted tree traversal, any tree node whose maximum

leaf index is smaller than the maximum leaf index of

previously visited leaf nodes is ignored. This is simply

because if we have visited a leaf node v there’s no reason to

visit internal tree nodes which are parent nodes of v’s left

siblings. In each restart traversal, only if a tree node overlaps

a query and it is the leftmost child node that has at least one

unvisited leaf node, the tree node is accessed in the next level.

If all the overlapping data objects are stored in a single span

of consecutive leaf nodes, the root node is accessed only once,

which is the best case. Due to the clustering property of

Hilbert curve, it is unlikely that the overlapping leaf nodes are

widely spread throughout a large number of leaf nodes

interleaved by non-overlapping leaf nodes. However, there

might still be a chance that some nearby data objects can be

spread across many non-contiguous sections of a Hilbert

curve. In such a case, multiple restart tree traversal is

necessary to skip a large number of non-overlapping sections

of the Hilbert curve.

 In order to reduce the number of restart tree traversal, we

employ minimal backtracking, i.e., instead of starting a new

tree traversal from root node immediately after visiting a non-

overlapping leaf node, our MPRS algorithm fetches a parent

of the last visited leaf node from global memory. In the parent

node, it checks if it has any other leaf node that overlaps the

query range and has a leaf index higher than the maximum

leaf index of previously visited leaf nodes. If the parent node

does not have such an overlapping leaf node, MPRS algorithm

starts another tree traversal from root node. If the parent node

has an overlapping but unvisited leaf node, leaf node scanning

continues from the leaf node.

Fig 3:Massively parallel restart scanning with MPHR-tree

structure

Fig. 3 shows an example of MPHR-tree and the MPRS search

path for the data objects and the query ill. In the beginning,

visited LeafIdx is set to 0 and each thread compares the MBR

of each child node with a query range. Suppose the query

range overlaps MBRs—R1, R3, and R4 in the root node. The

MPRS algorithm ignores R3 and R4, and visits the leftmost

child node L1 (1). Again, the query is compared with the

MBRs in the node I1, and the leftmost overlapping leaf node

L1 (2) is selected. Once we reach a leaf node, the multi-

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

23

dimensional coordinates of the data objects in the leaf node

L1 are compared with the given query range. If some of the

data objects overlap in a leaf node, its right sibling leaf node

L2 will be visited and checked for overlapping data(3). In the

example, MPRS algorithm keeps visiting right sibling leaf

nodes L3 and L4. However because L4 has no overlapping

data objects, its right sibling leaf node L5 is not accessed but

we check its parent node I1 (4). Note that I1 was a previously

visited node in this example, but note that parent check may

visit an unvisited internal tree node if an overlapping section

of Hilbert curve is long. Since I1 does not have any other

overlapping child node which was never visited, MPRS

algorithm restarts the search from root node.

When leaf node scanning stops, the visitedLeafIdx is set to 16

that is the largest leaf index stored in node I1. In the next

restart traversal, although R1 overlaps the query range, R1’s

leaf index 16 is not greater than the current visitedLeafIdx,

thus thread 1 ignores R1. Thread 2 also ignores R2 since its

MBR does not overlap the query range. Thread 3 detects the

overlap between R3 and the query, and since its leaf index 48

is greater than the current visitedLeafIdx, I3 will be selected

as the next child node to visit(5). Thread 4 will also find its

MBR R4 overlaps, but I4 will not be accessed since it is not

the leftmost overlapping child node in current tree traversal.

In I3, L9 will be selected as the child node to visit (6). In L9,

data objects that overlap the query—D33, D34, D35, and D36

are found. Thus, its right sibling nodes L10, L11, L12, L13,

and L14 are scanned and the visitedLeafIdx will be updated to

56 (7). Since L14 does not have any overlapping data object,

parent check optimization fetches its parent node I4 from

global memory. In node I4, R17 is the only MBR that

overlaps but its leaf index 52 is smaller than the current

visitedLeafIdx 56, hence it returns after setting visitedLeafIdx

to 64 (8). In the next round of restart, a block of threads do not

find any overlapping child node in the root node that has a

leaf index value greater than 64. Finally, the search kernel

function returns and the search finishes.

3. CONCLUSION AND DISCUSSION
In this paper, we discuss parallel multi-dimensional range

query algorithm for GPU. The MPHR and MPRS algorithms

improve the utilization of GPU architecture for range query

processing, and avoids the irregular search path of

transforming the tree traversal problem into a sequence data

processing problem.

We have also compared the performance of braided parallel

indexing against the data-parallel partitioned indexing and

that shows braided parallel indexing improves system

throughput when a large number of concurrent queries are

submitted and data parallel partitioned indexing helps

improve individual query response time. We also extended

several Stackless rays tracing algorithms—short stack, parent

link, and skip pointer for multidimensional range query with

n-ary indexing trees, and conducted comparative performance

study and showed our MPRS range query processing

algorithm outperforms the other Stackless tree traversal

algorithms mainly because our MPRS algorithm accesses

mostly sequential memory blocks and does not backtrack to

previously visited tree nodes.

In this work, it will discuss a novel parallel multi-dimensional

indexing structure, MPHR-trees and MPRS tree traversal

algorithm for multi-dimensional range query processing on

the GPU. It has been known that multidimensional indexing

structures are not well suited to parallel systems due to

recursion and irregular tree access patterns. MPRS tree

traversal algorithm (i) uses a large number of GPU threads to

process a single query in a SIMD fashion in order to improve

the query execution time, (ii) avoids warp-divergence by

fetching only a single tree node in each step for a block of

threads in a streaming multiprocessor, (iii) avoids recursion or

stack operations by restarting tree traversal and avoiding

visiting previously visited tree nodes by tracking the largest

leaf index of visited tree nodes, (iv) and accesses mostly

contiguous memory block by leaf node scanning.

4. REFERENCES
[1] NVIDIA CUDA Compute Unified Device Architecture.

(2014). [Online]. Available: http://www.nvidia.com/

[2] Jinwoong Kim,Won-Ki Jeong and Beomseok Nam,

―Exploiting Massive Parallelism for Indexing Multi-

Dimensional Datasets on the GPU,‖ IEEE Trans.

Parallel Distrib. Sys.,VOL. 26, NO. 8, AUGUST 2015.

[3] Jinwoong Kim, Beomseok Nam, ―Parallel Multi-

dimensional Range Query Processing

with R-Trees on GPU,‖ School of Electrical and

Computer Engineering ,UNISTUlsan, 689-798, Korea.

[4] R. E. Bellman, Adaptive Control Processes: A

GuidedTour. Princeton, NJ, USA: Princeton Univ. Press,

1961.

[5] Norbery Beckmann, Hans-Peter Kriegel, Ralf Schneider,

and Bernhard Seeger. The R∗-tree: An efficient and

robust access method for points and Rectangles. In

Proceedings of 1990 ACM SIGMOD International

Conferenceon Management of Data (SIGMOD), pages

322–331, May 1990.

[6] Antonin Guttman. R-trees: A dynamic index structure for

spatial searching. In Proceedings of 1984 ACM SIGMOD

International Conference on Management of Data

(SIGMOD), 1984.

[7] Kaushik Chakrabarti and Sharad Mehrotra. The Hybrid

tree: An index structure for high dimensional feature

spaces. In Proceedings of the 15th International

Conference on Data Engineering (ICDE), pages 440–

447, 1999.

[8] T. Foley and J. Sugerman, ―KD-tree acceleration

structures for a GPU raytracer,‖ in Proc. ACM

SIGGRAPH/EUROGRAPHICS Conf. Graph. Hardware,

2005, pp. 15–22.

[9] D. Horn, J. Sugerman, M. Houston, and P. Hanrahan,

―Interactive k-d tree GPU raytracing,‖ in Proc. Symp.

Interact. 3D Graph. Games, 2007, pp. 167–174.

[10] B. Smits, ―Efficiency issues for ray tracing,‖ J. Graph.

Tools, vol. 3,no. 2, pp. 1–14, 1998

[11] Hapala, T. Davidoiv, I. Wald, V. Havran, and P.

Slusallek, ―Efficient stack-less BVH traversal for ray

tracing,‖ in Proc. 27th Spring Conf. Comput. Graph.,

2011, pp. 7–12.

[12] Jingren Zhou and Kenneth A. Ross. Implementing

database operations using simd instructions. In

Proceedings of 2002 ACM SIGMOD

InternationalConference on Management of Data

(SIGMOD), 2002.

[13] Tim Kaldewey, Jeff Hagen, Andrea Di Blas, and Eric

Sedlar. Parallel search

on video cards. In Proceedings of the First USENIX

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing (NCAC 2015)

24

conference on Hot topics

in parallelism (HotPar 09), 2009.

[14] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric

Sedlar, Anthony D Nguyen, Tim Kaldewey, Victor W.

Lee, Scott A. Brandt, and Pradeep Dubey. Fast: Fast

architecture sensitive tree search on modern cpus and

gpus. In Proceedings of 2010 ACM SIGMOD

International Conference on Management

of Data (SIGMOD), 2010.

[15] Jordan Fix, Andrew Wilkes, and Kevin Skadron.

Accelerating braided b+ tree searches on a gpu with

cuda. In 2nd Workshop on Applications forMulti and

Many Core Processors: Analysis, Implementation, and

Performance (A4MMC), in conjunction with ISCA, 2011

[16] Lijuan Luo, Martin D.F. Wong, and Lance Leong.

Parallel implementation of R-trees on the GPU. In

Proceedings of the 17th Asia and South Pacific

DesignAutomation Conference (ASP-DAC), 2012.

[17] V. Havran, J. Bittner, and J. Zara, ―Ray tracing with rope

trees,‖ in Proc. 14th Spring Conf. Comput. Graph., 1998,

pp. 130–139.

[18] S. Popov, J. Gunther, H.-P. Seidel, and P. Slusallek,

―Stackless KDtree traversal for high performance GPU

ray tracing,‖ Comput. Graph. Forum (Proc. Eurograph.),

vol. 26, pp. 415–424, 2007.

[19] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz,

―Analysis of the clustering properties of the hilbert

space-filling curve,‖ IEEE Trans. Knowl. Data Eng., vol.

13, no. 1, pp. 124–141, Jan. 2001.

[20] R. Rew, G. Davis, and S. Emmerson. (1997). NetCDF

User’s Guide for C [Online]. Available:

http://www.unidata.ucar.edu/packages /netcdf/cguide.pdf

[21] NVIDIA Thrust. (2014). [Online]. Available:

https://developer.nvidia.com/thrust

IJCATM : www.ijcaonline.org

