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ABSTRACT 

CUDA is a parallel programming environment that facilitates 

significant performance improvement by leveraging the 

massively parallel processing capability of the GPU. The 

general purpose computing, on graphics processing unit (GP-

GPU) has turn up as a new cost effective parallel computing 

framework, in high performance computing research that 

enables large amounts of datasets to be processed in parallel. 

Large scale scientific data intensive applications have been 

playing a major role in modern high performance computing 

research. This large amount of data can be accessed by 

scientific data analysis applications such as multi-dimensional 

range query, but not much research has been conducted on 

multidimensional range query on the GP-GPU. Inherently 

multi-dimensional indexing trees such as R-Trees are not well 

suited for GPU environment because of its irregular tree 

traversal. It has been known that traversing hierarchical tree 

structures in an irregular manner make it difficult to exploit 

parallelism and to maximize the utilization of GPU processing 

units. Then to avoid the drawbacks of R-Tree the novel MPTS 

(Massively Parallel Three-phase Scanning) R-tree traversal 

algorithm for multi-dimensional range query was proposed, 

that Recursive access to tree nodes into sequential access. 

Furthermore, the recursive tree search algorithms often fail 

because of the GPU’s tiny runtime stack size. Then the 

proposed work of a novel parallel tree traversal algorithm—

massively parallel restart scanning (MPRS) for multi-

dimensional range queries avoids recursion and irregular 

memory access. Then the proposed MPRS algorithm traverses 

hierarchical tree structures with mostly contiguous memory 

access patterns without recursion, which offers more chances 

to optimize the parallel SIMD algorithm. 

Keywords 
CUDA, GPGPU,Parallel multi-dimensional indexing, multi-

dimensional range query,Parallel R-tree 

1. INTRODUCTION 
Modern GPUs that have many processing units are being with 

success and widely used as high performance accelerators for 

several general computations in variedfields.The general 

purpose computing on graphics processing unit (GP-GPU) has 

turn up as a new cost effective parallel computing paradigm in 

high performance computing research that allows large 

amount of data to be processed in parallel. GPUs enable large 

independent datasets to be processed in a single instruction 

multiple data (SIMD) fashion, so a broad range of 

computationally expensive but inherently parallel computing 

problems, such as medical image processing , scientific 

computing , and computational chemistry , have been 

successfully accelerated by GPUs. 

In many scientific disciplines, sensor devices and simulators 

generate truly large amounts of multi-dimensional datasets, 

and the datasets are expanding in size every day. 

Multidimensional range query is one of the most common 

access patterns into such datasets, and is an important class of 

problems in data-intensive scientific computing and computer 

graphics as well. In order to handle multidimensional range 

queries efficiently, a large number of efficient and scalable 

indexing structures such as R-trees [6], R*-trees [5], and 

Hybrid-trees [7] have been proposed and improved. The R-

tree is a data structure for organizing and querying 

multidimensional non-uniform, overlapping data. But because 

of irregular tree traversal R-Trees are not well suited for GPU 

environment. Regardless of their popularity, hierarchical 

multi-dimensional indexing trees are known to be inherently 

not well- suited for parallel processing due to their irregular 

and recursive back-tracking tree traversal patterns. In 

computer graphics, task parallelism is exploited to utilize a 

large numberof GPU cores, i.e., each processing unit in GPU 

traverses a binary BVH for different rays or objects. With 

such task parallelism approach, a very large number of queries 

can be processed concurrently, but it does not improve the 

response time of each individual query. As another form of 

parallelism, data parallelism can be exploited to make each 

individual query run faster. 

CUDA (Compute Unified Device Architecture) programming 

model allows programmers to run parallel algorithms on GPU 

that can take the advantage of data-parallelism or task-

parallelism while running serial portion of the algorithms 

simultaneously on CPU. Although NVIDIA keeps improving 

GPU architecture and CUDA programming model so that 

application programmers write general-purpose parallel 

programs on GPU, Still GPU has many restrictions because of 

the runtime stack size. As the stack size of the GPU is very 

small it will make difficulties to convert various sequential 

algorithms into parallel algorithms with parallel random 

access memory. In order to resolve the tiny runtime stack 

problem, several treetraversal methods have been proposed in 

the computer graphics community, such as kd-restart [8], 
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fixed short stack [9], rope tree[10], and parent link [11] search 

algorithms.  

It also discuss a Massively Parallel 3 -phase-search algorithm 

for a spatial indexing structure - KDB-tree [4], which enables 

us to avoid irregular search path. Massively Parallel Three-

phase Scanning algorithm performs pruning of irrelevant tree 

nodes and efficiently serves multi-dimensional range queries 

on the GPU. 

Multi-dimensional range query may overlap multiple 

bounding boxes of a single tree node. Hence, legacy multi-

dimensional range query algorithms use recursion or stack, 

and visit the overlapping child nodes in depth-first order. 

Since the runtime stack on the GPU is tiny, we develop a 

variant of multi-dimensional indexing trees-MPHR-tree, 

where each tree node embeds the largest leaf index 

(monotonically increasing sequence number of a leaf node, or 

a Hilbert value) of its sub-tree, which helps avoid the 

recursion and irregular memory access. The embedded leaf 

index is necessary for a novel multi-pass range query 

algorithm—massively parallel restart scanning that traverses 

the MPHR-tree structures in a mostly sequential fashion. 

MPRS avoids visiting the already visited nodes by keeping 

track of the largest index of visited leaf nodes. 

2. RELATED WORK 
In spatial-temporal database community, there has been 

extensive research on multidimensional indexing tree 

structures, starting with the seminal work on R-trees [6]. R-

tree is a balanced tree structure whose tree node consists of an 

array of minimum bounding boxes (MBBs). The MBB of a 

tree node is the smallest multidimensional box that 

encompasses all the data in the sub-tree, i.e., the MBB in R-

tree leaf node encloses nearby spatial objects and the MBB of 

internal tree nodes encloses all the underlying MBBs of lower 

level sub-trees in a hierarchical way. 

CUDA threads use the fast shared memory as their runtime 

stack, but the latest Tesla GPUs have only 48 bytes of shared 

memory. Due to their tiny stack sizes, the recursive search 

algorithms of multidimensional indexing structures often fail. 

Although a large number of multi-dimensional indexing 

structures have been proposed, the search algorithms of those 

methods are similar in a sensethat they recursively prune out 

the sub trees depending on whether a given query range 

overlaps the bounding boxes of sub-trees.In order to resolve 

the tiny runtime stack problem, several tree traversal methods 

have been proposed in the computer graphics community, 

such as Kd-restart [8], fixed short stack [9], rope tree [10], and 

parent link [11] search algorithms. 

As multi-core architectures have evolved, a couple of recent 

efforts were made to exploit SIMD execution of GPU to 

improve database query performance. Zhou et al. Proposed to 

compare multiple keys of B+-trees at the same time using 

SIMD instruction [12]. Kaldewey et al. [13] also proposed a 

parallel search algorithm, called P-ary search, for one 

dimensional sorted lists and showed that it outperforms binary 

search algorithm on the GPU. Kim et al. Presented FAST 

(Fast ArchitectureSensitive Tree), which rearranges a binary 

search tree into tree-structured blocks to maximize data-level 

and thread-level parallelism on GPU architecture [14]. Each 

block of FAST is the unit of parallel processing in a single 

streaming multi- processor (SMP) of the GPU. For multi-

dimensional range queries, there can be several child nodes to 

visit. After one path is taken and the path search is completed, 

it is necessary to backtrack to the last place where there were 

multiple choices in paths so that another path can be 

taken.Although GPUs have a large number of processing 

units, each processing unit of high-performance GPUs is 

known to run a lot slower than a CPU core. Hence, some 

efforts have been made to improve the query processing 

throughput instead of reducing response time of each query. 

Fix et al. proposed a braided parallel one dimensional query 

processing method for B+-trees, wherein a single B+-tree 

exists in global memory of GPU and multiple independent 

queries are concurrently processed across SMs, and a block of 

threads in each SM process individual query in parallel [15]. 

Luo et al. [16] proposed a parallel R-tree traversal algorithm 

on GPU. Their work is similar to ours in a sense that they also 

tried to avoid irregular memory access and recursion by 

employing a queue in the shared memory of SMP. Their 

algorithm transforms the R-tree search into a breadth-first 

search (BFS). But storing tree nodes to visit in the shared 

memory is not very scalable since GPUs provide very small 

shared memory space. 

2.1  Parallel Multidimensional Indexing on 

GPU 

2.1.1 Background of CUDA 
In order to process a large amount of data in parallel, a CUDA 

performs parallel to access small portions of the large input 

dataset in parallel. Each CUDA thread block consists of a set 

of CUDA threads that need to share intermediate data results 

and cooperate on memory access with each other through 

thread synchronization mechanisms that CUDA provides. In 

addition to the little small shared memory, CUDA enabled 

GPU cards to access global memory which can be shared by 

all CUDA threads. 
A warp is the minimum thread scheduling unit in CUDA 

architecture, but the warp is uncontrollable by programmers. 

Instead, programmers will specify the number of blocks and 

the number of threads per block when accessing a CUDA 

kernel function. The blocks are distributed across the multiple 

SMPs, and multiple threads in a single block are executed by 

a set of CUDA process units during a single SMP at the same 

time. 

2.2 Stackless Multidimensional Range 

Query Processing 
In computer graphics, Stackless ray traversal algorithms have 

been proposed mainly because a large number of rays are 

traced in parallel and the overhead of using runtime stack can 

be very high, i.e., the size of memory space for runtime stack 

can be as large as the maximum stack depth times the number 

of rays. Hence, several Stackless traversal algorithms have 

been proposed for efficient ray tracing on the GPU. 

2.2.1 Kd-Restart for Range Query Processing 
The Kd-restart traversal algorithm [8], modifies the standard 

kd-tree traversal to eliminate all stack operations  by restarting 

the search at the root of the tree. While the removal of the 

stack  was motivated by the limitations of current GPUs, it 

also reduces the working set size needed to trace rays 

through a kd-tree Instead of backtracking, the kd-restart 

algorithm traverses a tree structure, multiple times from root 

node to a leaf node. In each leaf node, it visits, the algorithm 

computes a crossing point of the ray with hyper-plane 

boundaries of the leaf node. With the piercing point along the 

ray, kd-restart algorithm truncates the ray and searches the kd-

tree with the updated ray from root node. Since the ray is 

truncated per each restarted traversal, it avoids visiting 

already visited leaf nodes. 
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However, if a query is not a line segment, but a multi-

dimensional region, pruning out visited regions will not create 

a simple rectangular region, which will complicate the next 

restart. Hence, kd-restart algorithm cannot be directly applied 

in multi-dimensional range query processing. Another 

problem with kd-restart algorithm is that its memory access 

pattern is very irregular, and the number of tree node accesses 

for each query is very diverse, which significantly hurts SIMD 

efficiency. 

2.2.2  Rope Trees 
In order to avoid backtracking to previously visited tree 

nodes, auxiliary links—ropes between neighboring tree nodes 

can be added to kd-trees [17], [18]. Havran et al. [17] 

proposed rope tree where each node has pointers called ropes 

which store the neighboring nodes in each dimension, i.e., a 

three-dimensional kd-tree node has six ropes. 

2.2.3 Parent Link Algorithm 
Hapala et al. [11] proposed a parent link search algorithm for 

bounding volume hierarchies. In their proposed bounding 

volume hierarchies, each tree node stores a pointer to its 

parent node. When a tree traversal needs to backtrack to its 

parent node, the parent node can be fetched from global 

memory using the parent pointer. Although parent link 

algorithm eliminates the stack operations, the backtracking 

using parent pointer requires additional global memory 

accesses. A parent link algorithm can be used not only for ray 

tracing, but also for n-ary data parallel range query 

processing, thus we develop parent link algorithm for n-ary R-

tree and multi-way BVH to compare against our MPRS 

algorithm. 

2.2.4  Skip Pointer 
Skip pointer [10] is similar to rope tree in a sense that each 

tree node has an auxiliary link to its right sibling node or a 

right sibling of its parent node. If the current tree node is not 

hit by a ray, skip pointer is followed instead of backtracking 

to its previously visited parent node. Unlike rope tree, skip 

pointer does not take into account the ray direction, which is 

known to incur performance penalty. 

The Skip pointer algorithm does not consider any direction 

preference, we can adopt it for multi-dimensional range query 

in order to avoid stack operations and make the search path 

always visit non-visited node. If a tree node has no 

overlapping child node, skip pointer algorithm follows the 

skip pointer to visit a right sibling node or a sibling of its 

parent node. 

2.2.5 Short Stack for R-tree 
Horn et al. [9] extended Foley’s kd-restart algorithm by 

employing a stack of bounded size. Pushing a new node onto 

stack will delete the node at the bottom of stack. When a tree 

traversal backtracks, it first searches the short stack. If the 

short stack is not empty, the parent node can be visited by 

accessing the topmost node on the stack. If the stack is empty, 

it restarts the search operation at the root of the tree again as 

in kd-restart. Since the short stack algorithm can be used for 

n-ary tree structures and range query processing, we 

implemented the short stack algorithm for parallel R-trees and 

multi-way bounding volume hierarchies. For multi-

dimensional range queries, the short stack helps reduce the 

number of global memory accesses compared to a parent link 

and skip pointer. 

2.3 Braided Parallel Indexing vs Data 

Parallel Partitioned Indexing 
In GPU computing, braided parallelism implies that multiple 

independent jobs run in parallel on different SMPs, and each 

independent job is processed in a data parallel fashion across 

multiple processing units in a single SMP. Braided parallelism 

is commonly used in GPU applications since it fits nicely with 

multi-SIMD architecture of GPU. However braided 

parallelism does not scale when the number of submitted tasks 

is small.  

Since maximizing the utilization of GPU processing units 

plays key role in improving the performance of CUDA 

applications, we compared two approaches that parallelize 

index search operations. One method is braided parallelism 

that assigns a different query to each SMP, i.e. a GPU that has 

16 SMPs can execute 16 queries concurrently. Since there’s 

only a single index in GPU memory, the index will be shared 

by all the SMPs, but different parts of the index will be 

accessed to serve different queries. 

As task parallelism scales with a large number of concurrent 

jobs, this braided parallel query processing improves query 

processing throughput when a large number of queries are 

continuously submitted. However it would not help reduce the 

execution time of running each query. 

 In order to improve the response time of individual query, we 

devised another method that makes maximum use of data 

parallelism, where we partition the index into sub-indexes and 

distribute them to each SMP. Partitioning spreads and 

decreases the amount of work to be done for a single query 

across multiple SMPs because each SMP has a smaller 

partitioned index to work on. 

 

Fig 1: Braided Parallel Indexing vs Data Parallel 

Partitioned Indexing 

Figure 1 illustrates the differences between braided parallel 

indexing scheme and data parallel partitioned indexing 

scheme. In braided parallel indexing shown in Figure 1(a), 

each SMP processes different user query, hence if fewer 

number of queries are submitted than the number of available 

SMPs, the utilization of processing units would be poor. 

However in data parallel partitioned indexing shown in Figure 

1(b), the same single query is processed by all SMPs 
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concurrently with different partitioned indexes, thus 

utilization would be higher than that of braided parallel 

indexing even when the number of submitted queries is small. 

2.4 Massively Parallel Three-Phase 

Scanning (MPTS) R-Trees on GPU 
In MPTS search algorithm[3], a set of threads in a CUDA 

block cooperate to check in parallel if the minimum bounding 

boxes (MBBs) of child nodes overlap a given query, i.e., the 

number of threads in each block is set equal to the number of 

node fan-outs (the maximum number of child nodes). This 

parallel search scheme is desirable for SIMD architecture 

since all the threads in a single block read the same tree node 

and each thread independently determines whether a child 

node overlaps a given range query. After all the threads are 

done by comparing a query with MBBs of child nodes, they 

should agree with, which child node to visit next if there are 

more than one overlapping child node. The recursive search 

algorithm navigates down one of the overlapping nodes, and it 

backtracks to the current node so that it visits another 

overlapping node. This recursion needs a large run-time stack 

space, especially when the size of tree structure is large. 

Current run-time stack frame stores child nodes of the current 

node overlap so that when it backtracks to the current stack 

frame it restores the overlap information without comparing 

the MBBs and chooses the next child node to visit. However 

the recursive range query function is not scalable since it often 

fails when the size of the index is large and query range is 

also large. 

 

Fig 2: MPTS R-Tree Search with Sibling Check 

In order to avoid backtracking, MPTS search algorithm 

selects at most one child Node to visit no matter how many 

child nodes overlap a query. As shown in Figure 2, MPTS 

search algorithm keeps choosing the leftmost node in each 

level in the first phase, (from step 1 to step 3), and in the 

second phase, the rightmost node in each level is visited (from 

step 4 to 6). Any node that is not in between the leftmost and 

rightmost nodes has no chance of overlapping the query. If 

there’s an overlapping node outside of the leftmost and 

rightmost nodes, it contradicts that they are the leftmost or 

rightmost nodes. This pruning process determines which 

nodes are irrelevant and reduces the number of tree nodes to 

visit. If a level-1 node has an MBB of child leaf nodes that 

overlaps the query, the child leaf node is fetched and the data 

stored in the leaf node are compared against the query.  

In the example shown in Figure 2, let’s assume a single warp 

consists of three threads and the maximum child nodes of 

each tree node are also three. In step one (circled one in the 

figure), two threads will find the red-colored left and middle 

MBBs (A and B) of the root node overlap a given query 

range. The third thread will find out that the root node doesn’t 

have a third child node and wait for the other two threads to 

finish. In the leftmost search phase, the middle overlapping 

MBB B will be ignored, but the left child node A will be 

chosen and visited. In step 2, again the first and second 

threads find out the left and middle MBBs (C and D) overlap, 

and C will be chosen just because it is located in the leftmost 

position among them. In step 3, threads will find out none of 

the MBBs (G and H) overlap. In traditional recursive tree 

traversal algorithms, we should go back to the parent Node, 

but backtracking should be avoided in GPU environment. 

instead, we can blindly navigate down further following the 

rightmost child node (i.e. H → Q and R) although we know 

they do not overlap. This approach will increase the distance 

between leftmost and rightmost nodes and the probability of 

false hits. A better way of avoiding false hits and reducing the 

distance between leftmost and rightmost nodes is the sibling 

jump shown in steps 3, 4, and 5 in Figure 2, which fetches its 

right sibling node when there’s no overlapping MBB in 

current node. 

As itnavigates down the trees we access the one and only 

child node in each level. Hence MPTS search algorithm does 

not require backtracking or global memory access. The 

penalty of eliminating the backtracking is that we may have to 

visit more number of leaf nodes. The leftmost leaf and the 

rightmost leaf node can be located very far from each other in 

the tree structure. In traditional R-trees, the MBBs of a tree 

node are stored in random order. Thus, MPTS search 

algorithm might have to scan all the leaf nodes even for a very 

small query range. 

Scientific datasets are usually static, i.e., they do not change 

once they are acquired from sensor devices. Taking advantage 

of this, we sort the multi-dimensional data objects using a 

space filling curve—Hilbert curve that preserves good spatial 

locality [19]. As Hilbert curve clusters spatially nearby 

objects, we can create tight bounding boxes for the sorted 

datasets. With the bounding boxes, R-trees can be constructed 

in a bottom-up fashion as in Packed R Trees [20]. The 

bottom-up construction makes the node utilization of low 

level tree nodes almost 100 percent, however it may result in 

large overlapping regions for the bounding boxes in the root 

node. 

2.5 Massively Parallel Hilbert R-Tree 
MPTS reduces the number of leaf nodes to be accessed, but 

still it accesses a large number of leaf  nodes that do not have 

requested data. Hence we designed a variant of R-trees that 

work on the GPU without stack problem and does not access 

leaf nodes that have not requested data called MPHR-Trees 

(Massively Parallel Hilbert R Trees. 

MPHR-tree tags each leaf node with a sequential number—

leaf index from left to right, and internal tree nodes of MPHR-

tree store the maximum leaf index of its sub-trees as shown in 

Figs. 3.While traversing the tree structure, the query 

processing threads keeps track of the largest leaf index that 

they have visited. The maximum leaf index stored in each tree 

node is used to avoid recursive backtracking and re-visiting 

previously visited nodes. Instead of the sequential leaf index, 

the Hilbert value of data objects can be used to allow dynamic 

insertion of data object into previously constructed 
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MPHRtree, but the Hilbert value, usually requires a larger 

amount of storage, and multiple data objects can be mapped to 

the same Hilbert value if the level of Hilbert curve is not fine 

grained enough to distinguish all the data objects. 

In order to sort the Hilbert values of the multi-dimensional 

data, we employed Thrust [21], which is an open source C++ 

STL-like GPU library that implements many core parallel 

algorithms including radix sort. After sorting the entire data 

objects using the radix sort on the GPU, B number of 

consecutive data objects are stored in the same leaf node 

where B is the maximum number of data that the leaf node 

can hold. After assigning all the data objects to leaf nodes, the 

bottom-up constructed MPHR-tree builds MBRs of leaf nodes 

via parallel reduction and stores the MBRs in their parent 

nodes. After creating parent nodes, the bottom-up 

construction goes up one level, and repeats until only one root 

node is left. This construction can be easily parallelized on the 

GPU. 

2.6  MPRS: Massively Parallel Restart 

Scanning  
Massively parallel restart scanning algorithm[2] is a multi-

dimensional range query processing algorithm we propose 

which traverses the hierarchical tree structures from root node 

to leaf nodes multiple times as in kd-restart algorithm [8]. For 

a given range query, no matter how many MBRs of child 

nodes overlap a given query range, our MPRS algorithm 

always selects the leftmost overlapping child node unless all 

its leaf nodes have been already visited. Once it determines 

which child node to access in the next level, it does not store 

the overlapping child node information in the current tree 

node as an activation record but immediately discards it 

because MPRS algorithm does not backtrack to already visit 

tree nodes. 

The MPRS range query algorithm resembles the B+-tree 

search algorithm in that both search algorithms scan leaf 

nodes. In one-dimensional B+-tree, range query traverses 

hierarchical trees to find out the leftmost (smallest) data value 

within the query range, and performs leaf level scanning until 

it finds out a data value greater than query range and 

terminates the search. However, in multi-dimensional space, 

data objects that overlap a given query range may not be 

located in a single span of leaf nodes. Even after sorting the 

multi-dimensional data objects using the Hilbert space filling 

curve, a query range may overlap leaf nodes in multiple 

segments on the Hilbert curve. The MPRS search algorithm 

finds the smallest (in terms of the Hilbert curve index) multi-

dimensional data object that overlaps a query range (D3 in 

Fig. 3). After it finds out an overlapping data object that has 

the smallest Hilbert value, it starts scanning its next sibling 

data objects to find out if they also overlap. 

Our MPRS search algorithm scans and compares the overlap 

of a given query with data objects on the continuous Hilbert 

segment in a massively parallel way using a large number of 

threads on the GPU. If any single thread finds an overlapping 

data object, the scanning keeps fetching the next group of data 

objects and compares the overlap. However while scanning 

data objects on the Hilbert curve, all threads may find out 

none of the data objects are in the query range. If so, it stops 

scanning leaf nodes and restarts traversing MPHR-tree to find 

out the starting point of the next Hilbert curve segment that 

overlaps the query range. When restarting the tree traversal, 

MPRS search algorithm uses the leaf index stored in tree 

nodes in order to avoid visiting already visited leaf nodes. In 

the restarted tree traversal, any tree node whose maximum 

leaf index is smaller than the maximum leaf index of 

previously visited leaf nodes is ignored. This is simply 

because if we have visited a leaf node v there’s no reason to 

visit internal tree nodes which are parent nodes of v’s left 

siblings. In each  restart traversal, only if a tree node overlaps 

a query and it is the leftmost child node that has at least one 

unvisited leaf node, the tree node is accessed in the next level. 

If all the overlapping data objects are stored in a single span 

of consecutive leaf nodes, the root node is accessed only once, 

which is the best case. Due to the clustering property of 

Hilbert curve, it is unlikely that the overlapping leaf nodes are 

widely spread throughout a large number of leaf nodes 

interleaved by non-overlapping leaf nodes. However, there 

might still be a chance that some nearby data objects can be 

spread across many non-contiguous sections of a Hilbert 

curve. In such a case, multiple restart tree traversal is 

necessary to skip a large number of non-overlapping sections 

of the Hilbert curve. 

 In order to reduce the number of restart tree traversal, we 

employ minimal backtracking, i.e., instead of starting a new 

tree traversal from root node immediately after visiting a non-

overlapping leaf node, our MPRS algorithm fetches a parent 

of the last visited leaf node from global memory. In the parent 

node, it checks if it has any other leaf node that overlaps the 

query range and has a leaf index higher than the maximum 

leaf index of previously visited leaf nodes. If the parent node 

does not have such an overlapping leaf node, MPRS algorithm 

starts another tree traversal from root node. If the parent node 

has an overlapping but unvisited leaf node, leaf node scanning 

continues from the leaf node. 

 

Fig 3:Massively parallel restart scanning with MPHR-tree 

structure 

Fig. 3 shows an example of MPHR-tree and the MPRS search 

path for the data objects and the query ill. In the beginning, 

visited LeafIdx is set to 0 and each thread compares the MBR 

of each child node with a query range. Suppose the query 

range overlaps MBRs—R1, R3, and R4 in the root node. The 

MPRS algorithm ignores R3 and R4, and visits the leftmost 

child node L1 (1). Again, the query is compared with the 

MBRs in the node I1, and the leftmost overlapping leaf node 

L1 (2) is selected. Once we reach a leaf node, the multi-
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dimensional coordinates of the data objects in the leaf node 

L1 are compared with the given query range. If some of the 

data objects overlap in a leaf node, its right sibling leaf node 

L2 will be visited and checked for overlapping data(3). In the 

example, MPRS algorithm keeps visiting right sibling leaf 

nodes L3 and L4. However because L4 has no overlapping 

data objects, its right sibling leaf node L5 is not accessed but 

we check its parent node I1 (4). Note that I1 was a previously 

visited node in this example, but note that parent check may 

visit an unvisited internal tree node if an overlapping section 

of Hilbert curve is long. Since I1 does not have any other 

overlapping child node which was never visited, MPRS 

algorithm restarts the search from root node. 

When leaf node scanning stops, the visitedLeafIdx is set to 16 

that is the largest leaf index stored in node I1. In the next 

restart traversal, although R1 overlaps the query range, R1’s 

leaf index 16 is not greater than the current visitedLeafIdx, 

thus thread 1 ignores R1. Thread 2 also ignores R2 since its 

MBR does not overlap the query range. Thread 3 detects the 

overlap between R3 and the query, and since its leaf index 48 

is greater than the current visitedLeafIdx, I3 will be selected 

as the next child node to visit(5). Thread 4 will also find its 

MBR R4 overlaps, but I4 will not be accessed since it is not 

the leftmost overlapping child node in current tree traversal. 

In I3, L9 will be selected as the child node to visit (6). In L9, 

data objects that overlap the query—D33, D34, D35, and D36 

are found. Thus, its right sibling nodes L10, L11, L12, L13, 

and L14 are scanned and the visitedLeafIdx will be updated to 

56 (7). Since L14 does not have any overlapping data object, 

parent check optimization fetches its parent node I4 from 

global memory. In node I4, R17 is the only MBR that 

overlaps but its leaf index 52 is smaller than the current 

visitedLeafIdx 56, hence it returns after setting visitedLeafIdx 

to 64 (8). In the next round of restart, a block of threads do not 

find any overlapping child node in the root node that has a 

leaf index value greater than 64. Finally, the search kernel 

function returns and the search finishes. 

3. CONCLUSION AND DISCUSSION 
In this paper, we discuss parallel multi-dimensional range 

query algorithm for GPU. The MPHR and MPRS algorithms 

improve the utilization of GPU architecture for range query 

processing, and avoids the irregular search path of 

transforming the tree traversal problem into a sequence data 

processing problem. 

We have also compared the performance of braided parallel 

indexing against the data-parallel partitioned indexing and 

that shows braided parallel indexing improves system 

throughput when a large number of concurrent queries are 

submitted and data parallel partitioned indexing helps 

improve individual query response time. We also extended 

several Stackless rays tracing algorithms—short stack, parent 

link, and skip pointer for multidimensional range query with 

n-ary indexing trees, and conducted comparative performance 

study and showed our MPRS range query processing 

algorithm outperforms the other Stackless tree traversal 

algorithms mainly because our MPRS algorithm accesses 

mostly sequential memory blocks and does not backtrack to 

previously visited tree nodes. 

In this work, it will discuss a novel parallel multi-dimensional 

indexing structure, MPHR-trees and MPRS tree traversal 

algorithm for multi-dimensional range query processing on 

the GPU. It has been known that multidimensional indexing 

structures are not well suited to parallel systems due to 

recursion and irregular tree access patterns. MPRS tree 

traversal algorithm (i) uses a large number of GPU threads to 

process a single query in a SIMD fashion in order to improve 

the query execution time, (ii) avoids warp-divergence by 

fetching only a single tree node in each step for a block of 

threads in a streaming multiprocessor, (iii) avoids recursion or 

stack operations by restarting tree traversal and avoiding 

visiting previously visited tree nodes by tracking the largest 

leaf index of visited tree nodes, (iv) and accesses mostly 

contiguous memory block by leaf node scanning. 
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