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ABSTRACT 

This paper provides an advancement in earlier low and high 

efficient entropy encoder architecture for H.264/AVC which 

contains all three entropy encoding methods available in the 

H.264/AVC standard, by replacing simple CAVLC encoder 

used by high-throughput CAVLC encoder and CABAC 

encoder by real-time multi-bin CABAC encoder in order to 

further increase overall throughput of the system. The high-

throughput CAVLC encoder that uses a dual-coefficient 

scanning phase which determines all the required data for 

encoding phase which helps in improving the speed of the 

encoding phase. And real-time multi-bin CABAC encoder 

implements the parallelism among the steps of CABAC 

encoding operation and thus achieves the increased 

throughput. The proposed architecture is expected to achieve 

higher throughput as compared to the present architecture but 

at the cost of increased complexity. 

Keywords 
H.264/AVC video compression, CABAC, CAVLC, syntax 
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1. INTRODUCTION 
The H.264/AVC is the recent video coding standard. The 

standard provides 50% reductions in bitrate compared to 

previous standards like MPEG-2, H.263, etc., however 

significantly increases the computational complexity when 

compared to MPEG-4 part 2[1, 6].  Entropy encoder hardware 

is a key challenge in the development of a complete 

H.264/AVC encoder architecture. The block diagram of 

H.264/AVC is as shown in Figure 1 which highlights the 

entropy encoder that receives data from all coding blocks used 

by the encoder. These information includes the block size, 

inter/intra decision, motion vectors, quantization parameter, 

residual information, etc. The information sent to the entropy 

encoder is divided into datum, each named a “Syntax 

Element” (SE). A SE is composed by a type and a value. The 

type informs the origin of the SE while the value is the data to 

be encoded. The decoder will receive the coded SE and if the 

semantics specification of the standard is given, it  will guide 

the construction order of the syntax elements.  This process 

has to be strictly followed to produce a bitstream which is 

compatible with the H.264/AVC standard.  

The entropy is the block which is responsible for representing 

the syntax elements in a lossless and as compact as possible 

representation. The EE contributes to the overall compression 

rate In the H.264/AVC standard three entropy encoders are 

defined: Exponential Golomb (EXPG), Context-based 

Adaptive Variable Length Coding (CAVLC) and Context-

based Adaptive Binary Arithmetic Coding (CABAC) 

 

Figure 1. H.264/AVC Encoder block diagram[1] 

The work in [1] presents an entropy encoder architecture with 

all three entropy encoding methods available in the 

H.264/AVC standard, while optimized to achieve high 

definition video (HD1080) with limited hardware and power 

resources. In order to further increase the throughput, work 

proposed in [1] is extended by replacing CAVLC and 

CABAC encoders by high throughput CAVLC[1, 9] and real 

time multi-bin CABAC encoders respectively. 

2. BACKGROUND 
Entropy encoder is a key challenge in development of 

H.264/AVC encoder architecture. The EE contributes to the 

overall compression rate and in turn throughput that need to 

be achieved. In order to obtain a good tradeoff between high 

throughput and FPGA resource usage for entropy encoder 

process, architecture that taking advantage of all the three 

encoders of H.264/AVC has been developed earlier. In order 

to further increase the throughput same work is extended with 

some advancements. 

3. PREVIOUS WORK DONE 
In [1] paper, author Cristiano C. Thiele contributes with an 

entropy encoder architecture with all three entropy encoding 

methods available in the H.264/AVC standard[7], while 

optimized to achieve high definition video (HD1080) with 

limited hardware and power resources in this process.  Also a 

complete double-mode binary encoder for H.264/AVC is 

proposed with good tradeoffs between area and throughput; 

however it does not reach real time HD1080 capability. 

In [2] paper, author Marc P. Hoffman investigated and 

realized a high-performance implementation of CAVLC. The 

design is based on previous architectures, but implements a 

modified scanning phase that allows for an improved 

encoding phase. This design is capable of encoding a 16 x 16 

macroblock (MB) in a maximum of 258 clock cycles. At 200 

MHz, the proposed implementation can encode one 1,080 p 

frame in at least 0.0105 s, or a minimum of 95 frames per 

second. This CAVLC design is intended for use by high-

throughput H.264 architectures with wide-area surveillance 

applications. Its memory requirements are that of most high-
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throughput architectures, as a result of the arithmetic table 

elimination techniques use. The proposed architecture also 

displays relatively low power requirements, consistent with 

FPGA design. 

In [3] paper, author P Jayakrishnan presented An optimized 

scheme for accessing the contexts and a Binary Arithmetic 

Encoder (BAE) capable of processing four bins per cycle. 

Hence parallelism and throughput is achieved by the means of 

reduction in syntax and bit level dependency. The allocation 

of bits in various Syntax Elements(SE) is analysed for the 

reduction in large amount of bit level operations involved and 

computational complexity involved.  

In [4] paper, author G. D. Licciardo proposed a new context-

adaptive variable length-coding encoder architecture 

particularly aimed to be implemented with field 

programmable logics (FPL) like FPGAs. The design 

implements different approaches in order to minimize the area 

cost as well as to speed up the coding efficiency, which allows 

real-time compression of 1080 p video streams coded in 

YCbCr 4:2:0 format. Priority cascading logics have been 

implemented in order to increase the parallelization degree of 

the pre-coding stage, whereas the employment of the 

arithmetic table elimination technique has allowed a large-

area reduction of the encoder thanks to the elimination of 18 

of the 38 tables needed for the encoding stage. The design 

achieves real time elaboration with an operation frequency of 

63 MHz and occupies 2200 look-up table (LUT)s when 

implemented on a low-cost, low-end XILINX Spartan 3 

FPGA, thus overcoming the most recent FPL implementation 

and making this encoder quite comparable both in terms of 

area and speed with some recently proposed ASIC 

implementations, so that it turns out to be a valid alternative 

also for application specific implementations.  

In [5] paper, author Dieison Silveira presented the Reference 

Frame Context Adaptive Variable-Length Coder RFCAVLC), 

which is a low-complexity lossless solution to compress the 

reference data before storing them in the external memory. 

The proposed RFCAVLC reaches an average compression 

ratio superior to 32 % for the evaluated video sequences. The 

RFCAVLC design is able to reach real-time encoding for 

WQSXGA (3,200 X 2,048 pixels) at 33 fps. The RFCAVLC 

also achieves power savings related to external memory 

communication that exceeds 30 % when processing HD 

1,080p videos at 30 fps. 

4. EXISTING METHODOLOGY 
The entropy encoder architecture proposed in [1] was based 

strictly on the features defined by the H.264/AVC standard. 

The block diagram of EE architecture is as shown in figure 4.  

 

         Figure 2 – Entropy encoder block diagram[1]. 

The inputs to the EE are all syntax elements that need to be 

assembled, and all added residual information as well. The 

outputs are 8-bit data and ready signal data. The SE REG is a 

set of registers that store the syntax elements used to assemble 

the NAL header, SPS, PPS Slice and MB headers. The MB 

Buffer is a memory that stores an entire macroblock. The final 

block is Assembler that works with four types of data: 

absolute syntax element, EXPG coded elements, CAVLC 

elements and CABAC binary code. 

4.1 EXPG 
As described in [1] the EXPG coder generates variable length 

codes with regular construction. The SE coded by EXPG are 

divided in four types: Unsigned, Signed, Mapped and 

Truncated. The EXPG code structure is presented based on 

ZeroPrefix and INFO as follows: 

Code = [ZeroPrefix]1[INFO] 

Where ZeroPrefix is extracted from CodeNum as  

 M = log2(CodeNum + 1), M indicates the number of zeros in 

ZeroPrefix. 

And INFO = CodeNum + 1 -2M 

4.2 CAVLC 
There is number of literature available describing the working 

of CAVLC. As discussed in [1, 2] CAVLC codes the residual 

information of a block. The coder can work with 4x4 (16 or 

15 coefficients) or 2x2 (4 coefficients) block sizes, according 

to the block type: Luma/Croma and DC/AC[1]. These blocks 

of data are represented as coefficient arrays in the CAVLC 

block diagram shown in Figure 2. CAVLC takes every 4 x 4 

and 2 x 2 block of coefficients and reorders the data into a 

vector using a zigzag scan, These coefficient vectors are 

analyzed and converted into binary bit streams using a 

combination of look-up tables and simple arithmetic. CAVLC 

also predicts the number of coefficients in the current array 

using the context variables nA and nB. These two variables 

represent the number of non-zero coefficients in the 

neighboring 4 x 4 blocks, in particular the blocks that lie 

above (nA) and to the left (nB) of the current 4 x 4 block. The 

predicted number of non-zero coefficients in the current 4 x 4 

block nC is equal to the average of nA and nB. If one of the 

two context variables are not available, then nC is simply set 

equal to the available context variable. If neither are available, 

nC is set equal to 0. Also, nC is automatically set to 0 when 

encoding DC data.  

 

Figure 3. The CAVLC block diagram [2] 

After CAVLC receives the coefficient vector and nC, it is 

ready to parse the data.CAVLC encodes each vector into the 

following five sections of data: coefficient token, trailing 
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ones, levels, total zeros, and run before. The coefficient token 

section represents the number of non-zero coefficients and the 

number of trailing ones in the current vector. The trailing 

ones section is determined algorithmically and represents the 

sign of each trailing one. The levels section contains up to 16 

VLC codewords, that contain the magnitude and sign of all 

the non-zero coefficients in the current vector, excluding 

trailing ones. The total zeros section of the CAVLC bit 

stream contains the number of zero coefficients that appear 

before the last non-zero coefficient in the current vector. The 

final section of the CAVLC bit stream for a 4 x 4 (or 2 x 2) 

block of data is the run before section. This section is made 

up of a varying number VLC codewords that represent the 

number of zeros that run before each non-zero coefficient.  

4.3 CABAC 
Also for describing the working of CABAC wide range of 

literature is available. As explained in [1, 3] the CABAC 

codes the SEs of macroblock prediction, quantization 

parameters and the residual information of the quantized 

transform macroblock. As in the CAVLC case, the 

coefficients are scanned by CABAC in zigzag order to take 

advantage of quantized transform block sparsity 

characteristics.  

The syntax elements extracted from the block are:  

coded_block_flag(CBF),significant_coeff_flag,last_significan

t_coeff_flag, coeff_abs_level_minus1,  coeff_sign_flag. 

 

Figure 4. Block diagram of CABAC encoder[3] 

The CABAC coding process involves the following steps:  

4.3.1 Binarization: In this process the syntax element 

is converted into a binary code named binstring. There are 

four main methods used to make this:  Unary (U), Truncated 

Unary (TU), Fixed Length (FL) and Parameterizable Exp-

Golomb (EGk). Some syntax elements work with methods 

which are derived from these ones.  

4.3.2 Context Model Selection: A Context Model 

is a probabilistic model with the statistical occurrence rate for 

each symbol, while each syntax element has a set of allowed 

Context Models. In order to generate the index for the more 

appropriate Context Model, the following data are taken into 

account: the syntax element itself, previous context model, 

and the bin value previously coded. There are more than 

hundred context models specified in the H.264 standard, given 

the diversity of image data sets. There are specific syntax 

elements which do not require a context model, due to the 

equiprobable occurrence of these symbols.  

4.3.3 Arithmetic Encoding: The arithmetic encoder 

is responsible for generating the bitstream from the reading of 

the bins and their models of context, when the latter exist. 

This process begins by defining the division of an initial range 

R into sub-ranges based on Context Model. There is a symbol 

value defined for each sub-range. There are just two sub-

ranges for each bin, associated with the possible values of ‘0’ 

and ‘1’. The bin is read and compared with the symbol value.  

The corresponding sub-range is selected and sets the new 

range R. This process is iterative. 

5. ANALYSIS AND DISCUSSION 
The CAVLC encoder is often seen as a bottleneck in the 

H.264 encoding engine. The encoder requires knowledge of 

previously encoded data to operate, which limits the number 

of instances of the CAVLC encoder to one per slice (a fixed 

portion of a coded video frame). With this limitation, 

encoding high-definition video (720 and 1,080 p) in real-time 

requires a high-performance design that is difficult to 

implement in software. Thus there is need of a high-

performance implementation of CAVLC. 

Also though CABAC is considered better entropy coding 

method, but it requires a significant amount of logic and 

increases the hardware implementation cost on a large scale. 

Due to the SE level dependency as well as bit-level 

dependency, it is also difficult to parallelize, thus the 

throughput of a single CABAC encoding engine is limited. 

This makes the design of CABAC encoder very challenging 

and crucial in the whole video encoding system. It can be seen 

from the trend that the designs are transferring from 1 

bin/cycle to multi-bin/cycle to provide a higher throughput. 

The BAE logic is duplicated and cascaded sequentially to 

process multiple bins in one cycle. 

6. PROPOSED METHODOLOGY 
The entropy encoder architecture[1, 9, 10] proposed by 

Cristiano C. Thiele consists of Macroblock buffer, EXPG, 

CAVLC and CABAC encoder, and a final assembler. In this 

paper, CAVLC encoder is replaced with high-throughput 

CAVLC encoder and also CABAC encoder with real-time 

multi-bin CABAC encoder in order to increase the overall 

throughput of the architecture proposed in [5].  

6.1 Proposed Methodology For CAVLC 
The five sections that make up the CAVLC encoder can be 

performed in parallel with some pre-processing. This pre-

processing is performed in the scanning phase of the CAVLC 

architecture, shown in Figure 5. To improve the throughput of 

the architecture, the suffix length and magnitude of each level, 

in addition to the number of zeros that run before each non-

zero, are determined during the scanning phase. Having this 

data allows the encoding phase to be completed in a constant 

3-clock cycles.  

 

Figure 5. CAVLC hardware architecture[2] 
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Table 1. Coefficient Pairs [2] 

 

6.1.1 The Scanning Phase 
To reduce the number of clock cycles required to scan the 

vector, a modified method of the dual-coefficient scanning 

operation  is implemented here.  

The proposed scanning operation encounters 1 of the 14 

unique pairings of coefficients that are shown in Table 1 

during each of its 8 cycles. These pairs are made up of a 

combination of zeros, trailing ones, and levels. The data 

needed to encode each pair is saved so that the number of 

cycles required for the encoding phase is minimized. Table 1 

contains all the outputs from the scanning phase as rows and 

the coefficient pairs as columns. Each output is updated 

according to the pair of coefficients that are currently being 

scanned. If the current pair has no effect on an output, then the 

table marks the appropriate location with a ‘–’.The level and 

zero buffers are the proposed additions to the scanning phase. 

These buffers contain the statistics that allow the encoding 

phase to determine all the level and run before code words in 

a single clock cycle. 

Once every coefficient pair from the vector array has been 

scanned, the scanning phase is complete. The architecture 

then signals that all the registered values are ready for the 

encoding phase. All outputs of the scanning phase are 

registered while the encoding phase is active. 

6.2 Proposed Methodology For CABAC 
Also in place of CABAC the projected architecture of 

CABAC encoder performs both binarisation and context 

modeling in parallel and is a multi-bit parallel processing 

design and high throughput CABAC[8]. Hence the number of 

cycles needed for processing is reduced and throughput is 

increased. CABAC encoder consists of PIPO buffer, 

Binarisation and context modeling and Binary arithmetic 

encoder. 

6.2.1 Binarization and context modeling (BCM) 
 To enhance the efficiency of CABAC, the design of CM 

should also provide a throughput equal to processing four bins 

each cycle on an average. 6 two-port SRAMs are used in our 

design to store the “460 contexts” to make context access 

efficient. The “460 contexts” are divided into 6 groups 

according to the feature of context access order. A simple 

forwarding scheme is used to avoid hazards such as read 

memory collision. The context model is updated and stored 

according to the different types of syntax elements. The 

Binarisation and Context Modeler (BCMODS) is processed in 

parallel until different data is accessed from the same bank.  

6.2.2 PIPO Buffer (14 * 14)  
The PIPO buffer is used to connect the output of the 

predecessor stage and to provide a stable output. The output 

of BCM i.e. Modes of BCMODS are given to PIPO.   

 

6.2.3 Binary Arithmetic Encoder                                    
The BAE is four stage pipelined architecture. The BAE 

processes four BCMODS in parallel obtained from the PIPO 

buffer. The update range and low stages are duplicated to 

obtain the throughput. The amount of complexity involved in 

the consequent division of interval subdivision and 

renormalization in order to process two element types in 

parallel without increasing the critical path. The pipeline 

architecture is used in our design of BAE to enlarge the 

throughput as much as possible. Four Update Range and four 

Update Low logic units are pipelined to achieve a throughput 

of 4 bin/cycle in BAE part. The first pipeline stage in BAE is 

to generate the four rlps values for each bin according to the 

value of pStateIdx from the context modeling module. One of 

these four values is selected out in Update Range stage and 

will be used as the rangelps (rlps) value in Table 2 for interval 

update. The Update Range stage will update the value of 

Range four times for the four bins in a cycle and generate the 

information needed for the update of Low. Then value of Low 

is updated in the next stage and the Bit Pack stage will pack 

the output bit of Update Low into the output stream. 

 

Figure 6. Architecture of BAE [3] 
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7. POSSIBLE OUTCOME AND RESULT 
From the design of BAE it is clear that BAE will be capable 

of achieving maximum number of bin/cycle on an average, 

reduction in critical path and also will result in high speed. 

Also CAVLC will result in higher throughput. So, overall 

throughput of proposed architecture will be increased. 

Table 2 Equations Of Range And Low Updation [3] 

 

8. CONCLUSION 

The proposed architecture is expected to achieve increased 

throughput at the expense of increased complexity. The 

proposed architecture is unique as it includes all entropy 

encoders presented in the H.264/AVC specification. The 

proposed entropy encoder is capable to reach processing 

power sufficient to support full high definition video encoding 

for the H.264/AVC standard. Also proposed entropy encoder 

architecture for H.264/AVC provides a real-time full high 

definition (HD1080) resolution video coding. 

9. FUTURE SCOPE 
Future work can be done on overcoming the limitations of the 

proposed architecture. Further work can be done on making 

an encoder aware of environmental and communications 

conditions, capable of adjusting itself to meet channel, quality 

and energy constraints. 
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