
International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

5

High-Throughput Entropy Encoder Architecture

for H.264/AVC

Mahamaya P. Chimurkar
ME 2nd year

Department of Computer Science
Amravati

ABSTRACT

This paper provides an advancement in earlier low and high

efficient entropy encoder architecture for H.264/AVC which

contains all three entropy encoding methods available in the

H.264/AVC standard, by replacing simple CAVLC encoder

used by high-throughput CAVLC encoder and CABAC

encoder by real-time multi-bin CABAC encoder in order to

further increase overall throughput of the system. The high-

throughput CAVLC encoder that uses a dual-coefficient

scanning phase which determines all the required data for

encoding phase which helps in improving the speed of the

encoding phase. And real-time multi-bin CABAC encoder

implements the parallelism among the steps of CABAC

encoding operation and thus achieves the increased

throughput. The proposed architecture is expected to achieve

higher throughput as compared to the present architecture but

at the cost of increased complexity.

Keywords
H.264/AVC video compression, CABAC, CAVLC, syntax

elements, etc.,

1. INTRODUCTION
The H.264/AVC is the recent video coding standard. The

standard provides 50% reductions in bitrate compared to

previous standards like MPEG-2, H.263, etc., however

significantly increases the computational complexity when

compared to MPEG-4 part 2[1, 6]. Entropy encoder hardware

is a key challenge in the development of a complete

H.264/AVC encoder architecture. The block diagram of

H.264/AVC is as shown in Figure 1 which highlights the

entropy encoder that receives data from all coding blocks used

by the encoder. These information includes the block size,

inter/intra decision, motion vectors, quantization parameter,

residual information, etc. The information sent to the entropy

encoder is divided into datum, each named a “Syntax

Element” (SE). A SE is composed by a type and a value. The

type informs the origin of the SE while the value is the data to

be encoded. The decoder will receive the coded SE and if the

semantics specification of the standard is given, it will guide

the construction order of the syntax elements. This process

has to be strictly followed to produce a bitstream which is

compatible with the H.264/AVC standard.

The entropy is the block which is responsible for representing

the syntax elements in a lossless and as compact as possible

representation. The EE contributes to the overall compression

rate In the H.264/AVC standard three entropy encoders are

defined: Exponential Golomb (EXPG), Context-based

Adaptive Variable Length Coding (CAVLC) and Context-

based Adaptive Binary Arithmetic Coding (CABAC)

Figure 1. H.264/AVC Encoder block diagram[1]

The work in [1] presents an entropy encoder architecture with

all three entropy encoding methods available in the

H.264/AVC standard, while optimized to achieve high

definition video (HD1080) with limited hardware and power

resources. In order to further increase the throughput, work

proposed in [1] is extended by replacing CAVLC and

CABAC encoders by high throughput CAVLC[1, 9] and real

time multi-bin CABAC encoders respectively.

2. BACKGROUND
Entropy encoder is a key challenge in development of

H.264/AVC encoder architecture. The EE contributes to the

overall compression rate and in turn throughput that need to

be achieved. In order to obtain a good tradeoff between high

throughput and FPGA resource usage for entropy encoder

process, architecture that taking advantage of all the three

encoders of H.264/AVC has been developed earlier. In order

to further increase the throughput same work is extended with

some advancements.

3. PREVIOUS WORK DONE
In [1] paper, author Cristiano C. Thiele contributes with an

entropy encoder architecture with all three entropy encoding

methods available in the H.264/AVC standard[7], while

optimized to achieve high definition video (HD1080) with

limited hardware and power resources in this process. Also a

complete double-mode binary encoder for H.264/AVC is

proposed with good tradeoffs between area and throughput;

however it does not reach real time HD1080 capability.

In [2] paper, author Marc P. Hoffman investigated and

realized a high-performance implementation of CAVLC. The

design is based on previous architectures, but implements a

modified scanning phase that allows for an improved

encoding phase. This design is capable of encoding a 16 x 16

macroblock (MB) in a maximum of 258 clock cycles. At 200

MHz, the proposed implementation can encode one 1,080 p

frame in at least 0.0105 s, or a minimum of 95 frames per

second. This CAVLC design is intended for use by high-

throughput H.264 architectures with wide-area surveillance

applications. Its memory requirements are that of most high-

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

6

throughput architectures, as a result of the arithmetic table

elimination techniques use. The proposed architecture also

displays relatively low power requirements, consistent with

FPGA design.

In [3] paper, author P Jayakrishnan presented An optimized

scheme for accessing the contexts and a Binary Arithmetic

Encoder (BAE) capable of processing four bins per cycle.

Hence parallelism and throughput is achieved by the means of

reduction in syntax and bit level dependency. The allocation

of bits in various Syntax Elements(SE) is analysed for the

reduction in large amount of bit level operations involved and

computational complexity involved.

In [4] paper, author G. D. Licciardo proposed a new context-

adaptive variable length-coding encoder architecture

particularly aimed to be implemented with field

programmable logics (FPL) like FPGAs. The design

implements different approaches in order to minimize the area

cost as well as to speed up the coding efficiency, which allows

real-time compression of 1080 p video streams coded in

YCbCr 4:2:0 format. Priority cascading logics have been

implemented in order to increase the parallelization degree of

the pre-coding stage, whereas the employment of the

arithmetic table elimination technique has allowed a large-

area reduction of the encoder thanks to the elimination of 18

of the 38 tables needed for the encoding stage. The design

achieves real time elaboration with an operation frequency of

63 MHz and occupies 2200 look-up table (LUT)s when

implemented on a low-cost, low-end XILINX Spartan 3

FPGA, thus overcoming the most recent FPL implementation

and making this encoder quite comparable both in terms of

area and speed with some recently proposed ASIC

implementations, so that it turns out to be a valid alternative

also for application specific implementations.

In [5] paper, author Dieison Silveira presented the Reference

Frame Context Adaptive Variable-Length Coder RFCAVLC),

which is a low-complexity lossless solution to compress the

reference data before storing them in the external memory.

The proposed RFCAVLC reaches an average compression

ratio superior to 32 % for the evaluated video sequences. The

RFCAVLC design is able to reach real-time encoding for

WQSXGA (3,200 X 2,048 pixels) at 33 fps. The RFCAVLC

also achieves power savings related to external memory

communication that exceeds 30 % when processing HD

1,080p videos at 30 fps.

4. EXISTING METHODOLOGY
The entropy encoder architecture proposed in [1] was based

strictly on the features defined by the H.264/AVC standard.

The block diagram of EE architecture is as shown in figure 4.

 Figure 2 – Entropy encoder block diagram[1].

The inputs to the EE are all syntax elements that need to be

assembled, and all added residual information as well. The

outputs are 8-bit data and ready signal data. The SE REG is a

set of registers that store the syntax elements used to assemble

the NAL header, SPS, PPS Slice and MB headers. The MB

Buffer is a memory that stores an entire macroblock. The final

block is Assembler that works with four types of data:

absolute syntax element, EXPG coded elements, CAVLC

elements and CABAC binary code.

4.1 EXPG
As described in [1] the EXPG coder generates variable length

codes with regular construction. The SE coded by EXPG are

divided in four types: Unsigned, Signed, Mapped and

Truncated. The EXPG code structure is presented based on

ZeroPrefix and INFO as follows:

Code = [ZeroPrefix]1[INFO]

Where ZeroPrefix is extracted from CodeNum as

 M = log2(CodeNum + 1), M indicates the number of zeros in

ZeroPrefix.

And INFO = CodeNum + 1 -2M

4.2 CAVLC
There is number of literature available describing the working

of CAVLC. As discussed in [1, 2] CAVLC codes the residual

information of a block. The coder can work with 4x4 (16 or

15 coefficients) or 2x2 (4 coefficients) block sizes, according

to the block type: Luma/Croma and DC/AC[1]. These blocks

of data are represented as coefficient arrays in the CAVLC

block diagram shown in Figure 2. CAVLC takes every 4 x 4

and 2 x 2 block of coefficients and reorders the data into a

vector using a zigzag scan, These coefficient vectors are

analyzed and converted into binary bit streams using a

combination of look-up tables and simple arithmetic. CAVLC

also predicts the number of coefficients in the current array

using the context variables nA and nB. These two variables

represent the number of non-zero coefficients in the

neighboring 4 x 4 blocks, in particular the blocks that lie

above (nA) and to the left (nB) of the current 4 x 4 block. The

predicted number of non-zero coefficients in the current 4 x 4

block nC is equal to the average of nA and nB. If one of the

two context variables are not available, then nC is simply set

equal to the available context variable. If neither are available,

nC is set equal to 0. Also, nC is automatically set to 0 when

encoding DC data.

Figure 3. The CAVLC block diagram [2]

After CAVLC receives the coefficient vector and nC, it is

ready to parse the data.CAVLC encodes each vector into the

following five sections of data: coefficient token, trailing

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

7

ones, levels, total zeros, and run before. The coefficient token

section represents the number of non-zero coefficients and the

number of trailing ones in the current vector. The trailing

ones section is determined algorithmically and represents the

sign of each trailing one. The levels section contains up to 16

VLC codewords, that contain the magnitude and sign of all

the non-zero coefficients in the current vector, excluding

trailing ones. The total zeros section of the CAVLC bit

stream contains the number of zero coefficients that appear

before the last non-zero coefficient in the current vector. The

final section of the CAVLC bit stream for a 4 x 4 (or 2 x 2)

block of data is the run before section. This section is made

up of a varying number VLC codewords that represent the

number of zeros that run before each non-zero coefficient.

4.3 CABAC
Also for describing the working of CABAC wide range of

literature is available. As explained in [1, 3] the CABAC

codes the SEs of macroblock prediction, quantization

parameters and the residual information of the quantized

transform macroblock. As in the CAVLC case, the

coefficients are scanned by CABAC in zigzag order to take

advantage of quantized transform block sparsity

characteristics.

The syntax elements extracted from the block are:

coded_block_flag(CBF),significant_coeff_flag,last_significan

t_coeff_flag, coeff_abs_level_minus1, coeff_sign_flag.

Figure 4. Block diagram of CABAC encoder[3]

The CABAC coding process involves the following steps:

4.3.1 Binarization: In this process the syntax element

is converted into a binary code named binstring. There are

four main methods used to make this: Unary (U), Truncated

Unary (TU), Fixed Length (FL) and Parameterizable Exp-

Golomb (EGk). Some syntax elements work with methods

which are derived from these ones.

4.3.2 Context Model Selection: A Context Model

is a probabilistic model with the statistical occurrence rate for

each symbol, while each syntax element has a set of allowed

Context Models. In order to generate the index for the more

appropriate Context Model, the following data are taken into

account: the syntax element itself, previous context model,

and the bin value previously coded. There are more than

hundred context models specified in the H.264 standard, given

the diversity of image data sets. There are specific syntax

elements which do not require a context model, due to the

equiprobable occurrence of these symbols.

4.3.3 Arithmetic Encoding: The arithmetic encoder

is responsible for generating the bitstream from the reading of

the bins and their models of context, when the latter exist.

This process begins by defining the division of an initial range

R into sub-ranges based on Context Model. There is a symbol

value defined for each sub-range. There are just two sub-

ranges for each bin, associated with the possible values of ‘0’

and ‘1’. The bin is read and compared with the symbol value.

The corresponding sub-range is selected and sets the new

range R. This process is iterative.

5. ANALYSIS AND DISCUSSION
The CAVLC encoder is often seen as a bottleneck in the

H.264 encoding engine. The encoder requires knowledge of

previously encoded data to operate, which limits the number

of instances of the CAVLC encoder to one per slice (a fixed

portion of a coded video frame). With this limitation,

encoding high-definition video (720 and 1,080 p) in real-time

requires a high-performance design that is difficult to

implement in software. Thus there is need of a high-

performance implementation of CAVLC.

Also though CABAC is considered better entropy coding

method, but it requires a significant amount of logic and

increases the hardware implementation cost on a large scale.

Due to the SE level dependency as well as bit-level

dependency, it is also difficult to parallelize, thus the

throughput of a single CABAC encoding engine is limited.

This makes the design of CABAC encoder very challenging

and crucial in the whole video encoding system. It can be seen

from the trend that the designs are transferring from 1

bin/cycle to multi-bin/cycle to provide a higher throughput.

The BAE logic is duplicated and cascaded sequentially to

process multiple bins in one cycle.

6. PROPOSED METHODOLOGY
The entropy encoder architecture[1, 9, 10] proposed by

Cristiano C. Thiele consists of Macroblock buffer, EXPG,

CAVLC and CABAC encoder, and a final assembler. In this

paper, CAVLC encoder is replaced with high-throughput

CAVLC encoder and also CABAC encoder with real-time

multi-bin CABAC encoder in order to increase the overall

throughput of the architecture proposed in [5].

6.1 Proposed Methodology For CAVLC
The five sections that make up the CAVLC encoder can be

performed in parallel with some pre-processing. This pre-

processing is performed in the scanning phase of the CAVLC

architecture, shown in Figure 5. To improve the throughput of

the architecture, the suffix length and magnitude of each level,

in addition to the number of zeros that run before each non-

zero, are determined during the scanning phase. Having this

data allows the encoding phase to be completed in a constant

3-clock cycles.

Figure 5. CAVLC hardware architecture[2]

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

8

Table 1. Coefficient Pairs [2]

6.1.1 The Scanning Phase
To reduce the number of clock cycles required to scan the

vector, a modified method of the dual-coefficient scanning

operation is implemented here.

The proposed scanning operation encounters 1 of the 14

unique pairings of coefficients that are shown in Table 1

during each of its 8 cycles. These pairs are made up of a

combination of zeros, trailing ones, and levels. The data

needed to encode each pair is saved so that the number of

cycles required for the encoding phase is minimized. Table 1

contains all the outputs from the scanning phase as rows and

the coefficient pairs as columns. Each output is updated

according to the pair of coefficients that are currently being

scanned. If the current pair has no effect on an output, then the

table marks the appropriate location with a ‘–’.The level and

zero buffers are the proposed additions to the scanning phase.

These buffers contain the statistics that allow the encoding

phase to determine all the level and run before code words in

a single clock cycle.

Once every coefficient pair from the vector array has been

scanned, the scanning phase is complete. The architecture

then signals that all the registered values are ready for the

encoding phase. All outputs of the scanning phase are

registered while the encoding phase is active.

6.2 Proposed Methodology For CABAC
Also in place of CABAC the projected architecture of

CABAC encoder performs both binarisation and context

modeling in parallel and is a multi-bit parallel processing

design and high throughput CABAC[8]. Hence the number of

cycles needed for processing is reduced and throughput is

increased. CABAC encoder consists of PIPO buffer,

Binarisation and context modeling and Binary arithmetic

encoder.

6.2.1 Binarization and context modeling (BCM)
 To enhance the efficiency of CABAC, the design of CM

should also provide a throughput equal to processing four bins

each cycle on an average. 6 two-port SRAMs are used in our

design to store the “460 contexts” to make context access

efficient. The “460 contexts” are divided into 6 groups

according to the feature of context access order. A simple

forwarding scheme is used to avoid hazards such as read

memory collision. The context model is updated and stored

according to the different types of syntax elements. The

Binarisation and Context Modeler (BCMODS) is processed in

parallel until different data is accessed from the same bank.

6.2.2 PIPO Buffer (14 * 14)
The PIPO buffer is used to connect the output of the

predecessor stage and to provide a stable output. The output

of BCM i.e. Modes of BCMODS are given to PIPO.

6.2.3 Binary Arithmetic Encoder
The BAE is four stage pipelined architecture. The BAE

processes four BCMODS in parallel obtained from the PIPO

buffer. The update range and low stages are duplicated to

obtain the throughput. The amount of complexity involved in

the consequent division of interval subdivision and

renormalization in order to process two element types in

parallel without increasing the critical path. The pipeline

architecture is used in our design of BAE to enlarge the

throughput as much as possible. Four Update Range and four

Update Low logic units are pipelined to achieve a throughput

of 4 bin/cycle in BAE part. The first pipeline stage in BAE is

to generate the four rlps values for each bin according to the

value of pStateIdx from the context modeling module. One of

these four values is selected out in Update Range stage and

will be used as the rangelps (rlps) value in Table 2 for interval

update. The Update Range stage will update the value of

Range four times for the four bins in a cycle and generate the

information needed for the update of Low. Then value of Low

is updated in the next stage and the Bit Pack stage will pack

the output bit of Update Low into the output stream.

Figure 6. Architecture of BAE [3]

International Journal of Computer Applications (0975 – 8887)

National Conference on Recent Trends in Computer Science & Engineering (MEDHA 2015)

9

7. POSSIBLE OUTCOME AND RESULT
From the design of BAE it is clear that BAE will be capable

of achieving maximum number of bin/cycle on an average,

reduction in critical path and also will result in high speed.

Also CAVLC will result in higher throughput. So, overall

throughput of proposed architecture will be increased.

Table 2 Equations Of Range And Low Updation [3]

8. CONCLUSION

The proposed architecture is expected to achieve increased

throughput at the expense of increased complexity. The

proposed architecture is unique as it includes all entropy

encoders presented in the H.264/AVC specification. The

proposed entropy encoder is capable to reach processing

power sufficient to support full high definition video encoding

for the H.264/AVC standard. Also proposed entropy encoder

architecture for H.264/AVC provides a real-time full high

definition (HD1080) resolution video coding.

9. FUTURE SCOPE
Future work can be done on overcoming the limitations of the

proposed architecture. Further work can be done on making

an encoder aware of environmental and communications

conditions, capable of adjusting itself to meet channel, quality

and energy constraints.

10. REFERENCES
[1] Cristiano C. Thiele, Bruno B. Vizzotto, Andre L. M.

Martins, Vagner S. da Rosa, Sergio Bampi. : “A Low-

Cost and High Efficiency Entropy Encoder Architecture

for H.264/AVC”. IEEE, -1-4673-2658-2/12, 2012.

[2] Marc P. Hoffman, Eric J. Balster, William F. Turri. :

“High-throughput CAVLC architecture for real-time

H.264 coding using reconfigurable devices”. Springer-

Verlag Berlin Heidelberg 2013, DOI 10.1007/s11554-

013-0345-2, 2013.

[3] P Jayakrishnan, P V Anitha Lincy, R Mohamed Niyas. :

“A Real Time Multi-bin CABAC Encoder for Ultra High

Resolution Video”. IEEE, 978-1-4673-5090-7/13, pp.

402-405, 2013.

[4] G. D. Licciardo, L. Freda Albanese. :”Design of a

context-adaptive variable length encoder for real-time

video compression on reconfigurable platforms”. IET

Image Processing, Vol. 6, Iss. 4, pp. 301-308, 2012.

[5] Dieison Silveira, Bruno Zatt, Luciano Agostini, Marcelo

Porto. : “Reference frame context-adaptive variable-

length coder: a real-time hardware-friendly approach for

lossless external memory bandwidth reduction in current

video-coding systems”. Springer-Verlag Berlin

Heidelberg 2014, DOI 10.1007/s11554-014-0443-9,

Published on-09 August 2014.

[6] I. Richardson “The H.264 Advanced Video Compression

Standard”, 2nd ed, John Wiley & Sons, 2010.

[7] INTERNATIONAL TELECOMMUNICATION UNION.

IYU-T Recommendation H.264(03/10); Advanced Video

Coding for Generic Audiovisual Services, 2010.

[8] L. C. Wu, Y. L. Lin, “A high throughput CABAC

encoder for ultra high resolution video”, ISCAS, 2009,

pp 1048-1051.

[9] F. L. Ramos, A. Susin, S. Bampi, “High Throughput

CAVLC Hardware Architecture with Parallrl Coefficients

Processing for HDTV H.264/AVC Encoding”. Athenas,

International Conference on Electronics, Circuits, and

Systems (ICECS), 2010.

[10] L. F. Albanese, G. D. Licciardo, High speed CAVLC

Encoder Suitable for Field Programmable Platforms,

Polonia, International Conference on Signals and

Electronic Systems(ICSES), 2010.

IJCATM : www.ijcaonline.org

