
National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

24

Duplication based List Scheduling in Heterogeneous
Distributed Computing

R.S.Singh,

Department of Computer
Engineering

Institute of Technology

BHU, Varanasi, India

 A.K.Tripathi
 Department of
Computer Engineering

Institute of Technology

BHU, Varanasi, India

 S.Saurabh
 Department of
Computer Engineering

Institute of Technology

BHU, Varanasi, India

 V.Singh
Department of Computer
Engineering

Institute of Technology

BHU, Varanasi, India

ABSTRACT

Whenever tasks of an application are scheduled in

Heterogeneous Distributed Computing environment, idle slots

on processors are efficiently utilized to minimize the overall

running time. Since task assignment problem has been proved

to be NP-complete problem, many heuristics have been given

in the literature caring empty slots on processors as well as

dependencies among tasks. This paper presents an efficient

and effective way to allocate tasks of an application in the

Heterogeneous Distributed Computing environment.

Generally in list based static scheduling where computation

time and communication time are known a-priori. First tasks

are prioritized and then the processors that minimize the cost

function are assigned to the appropriate tasks. Duplication

based scheduling is another category of static scheduling. In

this category communication costs among the processors are

avoided by duplicating the tasks on same processor. This

paper presents a duplication based list scheduling that

overwhelms the existing scheduling algorithms in both the

categories.

Keywords

Distributed Computing, Critical Path, Heterogeneous System,

Static Scheduling.

1. INTRODUCTION
Heterogeneous Distributed Computing involves independent

resources of diverse capabilities interconnected by a high

speed network to solve computationally intensive parallel and

distributed applications. It becomes important to be able to

maximize the utilization of computing and communication

infrastructure for justifying the cost that may have gone into

creation of these software and hardware resources.

Fortunately computational demands of jobs and applications

have also been increasing quite fast and the trend is likely to

continue into the future as well.

The performance of a compute intensive application on such

platforms is highly dependent on the allocation of the tasks

onto these resources. One of the major problems in

Heterogeneous Distributed Computing is to schedule the tasks

of an application such that overall running time is minimized.

Task scheduling problem is proven to be NP-complete [1,2].

Many heuristics have been proposed in the literature for tasks

scheduling problem as there is no exact solution to NP-

complete problem. Task scheduling is characterized into two

categories: static scheduling and dynamic scheduling. In static

scheduling, which is done at compile time, all the information

associated with a parallel program such as task processing

time, communication time and data dependencies are known

a-priori. In dynamic scheduling, many scheduling decisions of

a parallel application are taken at run time. Thus the objective

of dynamic scheduling is not only to schedule tasks but also

consider the scheduling overhead, fault tolerance issues etc.

This paper has consideration to static scheduling.

Various static scheduling heuristics have been proposed in the

literature. On basis of the approaches these heuristics use,

they have been classified into four groups: list scheduling

algorithms, cluster based algorithms, duplication based

algorithms and random search algorithms.

In list based heuristics, tasks are put in a priority list with each

task having unique priority value. Priority of a task depends

upon priorities of its ancestors. Now tasks from the priority

list are taken one by one following three phases: task selection

phase, processor selection phase and status update phase. In

task selection phase highest priority task is taken for

scheduling. In processor selection phase, extracted task is

assigned to a processor that optimizes some predefined cost

function. The status update phase updates the status of the

system. HEFT, CPOP, LDCP etc. are list based heuristics [3-

7].

In cluster based algorithms, a set of tasks, communicating

with each other are grouped together to form a cluster [8,9]. If

the number of clusters is greater than the number of

processors available, the two communicating clusters are

grouped to make a single cluster and this process is repeated

until the number of clusters available equals the number of

resources available. Now each cluster is allocated to the

processors in such a way that overall running time is

minimized.

In duplication heuristics the highly communicating tasks are

redundantly allocated on the same processors. This is to

effectively reduce the start time of the waiting tasks and thus

improve overall running time of the applications. Duplication

based heuristics are useful in case of Heterogeneous

Distributed Computing System having high communication

latencies and low bandwidths [10-16].

Guided random search techniques are based on enumerative

techniques to search guided by some additional information. It

uses principle of evolution and natural genetics. A genetic

algorithm is one type of evolution computation that is

commonly used [17-19].

This paper combines list based scheduling and duplication

based scheduling approaches and gives a hybrid static

scheduling algorithm. Task duplication approach can

effectively be used in any list based heuristic. Idea is to

effectively use the time slot on processors during which no

task has been scheduled by a list based scheduling algorithm.

We analyze tens of thousands of experimental runs to explain

that why the proposed algorithm performs better in certain

settings.

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

25

The rest of the paper is organized as follows: Section 2 and

Sectioan 3 cover the basic DAG (Directed Acyclic Graph)

model to represent a parallel application. DAGs to some

important problem have also been given in this section.

Performance metrics are also given in this section. Section 4

gives basic idea of random task graph generator. This random

task graph generator is based on certain important parameters.

Parameters are also listed in the section. Section 5 gives the

new hybrid static scheduling algorithm and theoretically

explains why it should work better in certain settings.

Experimental evaluation of our work is given in Section 6.

Conclusion and planned future work is presented in Section 7.

2. PRELIMINARIES
DAG Model

A parallel application is represented in form of a DAG. A

DAG G= (V,E) consists of a set of nodes V and a set of

directed edges E. Set V represents tasks and set E represents

dependencies among tasks. A directed edge (i,j) E G,

represented dependency of task j(child) on task i(parent). This

dependency shows that child task can not start execution

before execution of its parent as well as child task has to

receive data from the parent task. If there is more than one

parent to a child task, child task shall only be executed when

its entire parents are executed and data from all parent task

have been received by the child task. Data is an e*e matrix

where Data (i,j) is the communication cost between task i and

task j. If both task i and task j reside on same processor, Data

(i,j) is assumed to be zero.

In a DAG a task without any parent is called entry task and a

task without any child is called an exit task. Some scheduling

algorithms may require single-entry and single-exit task

graph, so without loss of generality it is assumed that there is

one entry node to the tasks graph and one exit node to the task

graph. If there is more than one entry node in a DAG, they are

connected by a zero cost pseudo entry node by zero cost

pseudo edges. In these connections pseudo entry node is

parent to all the entry nodes. In the similar fashion there is a

pseudo exit node of zero cost and this exit node is set child of

entire exit nodes by zero cost pseudo edges. Fig. 1 gives a

DAG corresponding to Fast Fourier Transform Algorithm

while Fig.2 corresponds to Gaussian Elimination algorithm.

Fig 1: A DAG for FFT Algorithm

Fig 2: A DAG for Gaussian Elimination Algorithm

Fig 3: An Example DAG

Resource Model

Heterogeneous Distributed Computing environment has

diversely capable for solving parallel and distributed

applications. It is assumed that dedicated communication

channels are available i.e. bandwidth is contention free.

Communication cost between processors P1 and P2 depends

on network initialization at P1 and P2 in addition to the

communication time. Time for network initialization is

considered to be negligible with respect to the communication

time in the network. It is also assumed that data transfer rate is

fixed and constant. So the communication cost of an edge (i,j)

is equal to the amount of data to be transmitted from task i to

task j divided by data transfer rate of the network. Without

loss of generality, data transfer rate is assumed to be unity.

We also assume that heterogeneous processors are fully

connected i.e. a processor is connected to every other

processor in the network. Computation cost matrix C has

running time of all the tasks on all the processors. C (i,j)

represents the computation cost of task i on processor j. In a

heterogeneous system it is not necessary that if a task i takes

lesser time on processor j than processor k, then every task

will have lesser time on processor j than k. This is due to

diverse capabilities of the processors. Fig. 3 shows an

example DAG and Fig. 4 is computation cost matrix.

The DAG has five tasks labelled A, B, C, D and E.

Dependencies among these tasks are also there for example

A

C D

E

B

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

26

Task D is dependent upon task A and task B. Computation

cost matrix gives running time of tasks on processors P1 and

P2.

3. PERFORMANCE METRICS
Our scheduling objective is to optimize certain metrics. These

metrics are schedule length ratio, speed up and running time.

These metrics are generally used for evaluation of the

scheduling algorithms. These metrics are described below.

Schedule Length Ratio (SLR)

SLR is one of the important performance measures of

scheduling algorithm. SLR is defined by

SLR= makespan/ ∑NiεCPminminPjεQ{Wi,j}

where makespan is the overall schedule length. The

denominator is the sum of minimum computation costs of

tasks on the CPmin. CPmin is the critical path which is

obtained by minimum computation cost assignment to the

nodes of DAGs. The SLSR can never be less than one, since

the denominator is the lower bound. Algorithm that gives

smallest SLR of a graph, is the best algorithm with respect to

performance.

Speed up

 Another performance measure of scheduling

algorithm is speed up. Speed up is defined by

Speed up= minPjεQ{∑NiεV Wi,j}/ makespan

The numerator is sequential execution time. Sequential

execution time is computed by assigning all tasks to single

processor that minimizes the overall computation time. The

denominator is parallel execution time. Higher the speed up of

an algorithm decides the goodness of the algorithm with

respect to speed p.

Fig 4: A computation cost matrix for example DAG

Average Running Time

Average Running Time is sum of running times of different

DAGs divided by number of DAGs. So an algorithm with

respect to Average running time is better if it has smaller

Average running time.

4. RANDOM TASK GRAPH

GENERATOR

For the comparison of the results of proposed algorithm with

the results of some good existing algorithms, a Random Task

Graph Generator (RTGG) has been designed. RTGG avoids

biasing towards any specific algorithms. RTGG generates a

large number of task graphs with controlled variation over the

various graph properties. Our framework first executes the

RTGG program to generate the task graphs. Then by

executing the different programs related to different

algorithms, schedules are generated. Finally a program

computes the performance metrics based on the schedules

generated.

Our RTGG requires the following input parameters to build

weighted DAGs:

i)Task size in the graph(v): the value of v is assigned from the

set (20,40,60,80)

ii)Shape parameter of the graph (α): we assume that height of

a DAG is √v/α. α gets its value from (0.5, 1.0, 2.0). the width

of each level is randoml selected from a uniform distribution

with mean value to √v * α. If α >> 1.0, dense graph i.e. high

parallelism degree graph is generated else if α<<1.0, long

graph with low parallelism degree is generated.

iii)Out degree of a node (out_degree): out_degree sets its

value from 1 to v.

iv)Communication to computation cost ratio (CCR): it is ratio

of the average communication cost to average computation

cost. If CCR value is very low for a graph, the graph

represents a compute intensive application. CCR gets its value

from (0.1, 0.5, 1.0, 5.0, and 10.0).

v)The average computation cost of task graph: this is selected

randomly from a predefined set. Computation cost of each

task in a graph is selected randomly from [0, 2*WDAG]

where WDAG is average computation cost of the given graph.

5. PROPOSED ALGORITHM
Selection of nodes for duplication is different than duplication

based algorithm in proposed algorithm. To reduce the start

time of nodes, some algorithms duplicate only the parent

nodes as well as some algorithms try to duplicate ancestors at

higher level. We have implemented the concept of Task

Duplication in the pre-existing CPOP Algorithm [4]. CPOP

algorithm has two phases the task prioritzation and processor

selection phase . The application of Task duplication comes in

the processor selection phase. Whenever a task is being

scheduled, then we find out its Very important parent and

check whether duplicating this on any processor will reduce

the earliest finish time of task. If yes, then duplicate the parent

task on processor and then schedule the task. We must notice

that since the purpose of duplication is only to reduce the

communication cost hence whenever we try to find EST of ni

on any processor pj then the duplication is checked only on pj

because if the parent node is duplicated on any other

processor then also there is no improvement in EST of ni.

We made a function to check whether nk can be duplicated on

pj or not, it checked the availability of pj at that time as well as

checked that is it really worthy to duplicate nk. Rest of the

procedure is same as it used to be in the case of classic HEFT

and CPOP algorithms [4].

1. Set computation cost of task and communication

costs of edge with mean values.

2. Compute upward rank (ranku) by traversing graph

upward starting from the exit task.

3. Compute downward rank (rankd) by traversing

graph downward, starting from entry task.

 P1 P2

A 2 3

B 3 6

C 10 10

D 12 3

E 5 12

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

27

4. Compute priority(ni) = rankd(ni) + ranku(ni) for

each task ni in the graph.

5. |CP| = priority(nentry), where nentry is the entry

task.

6. SETCP = {nentry}, where SETCP is the set of task

on the critical path.

7. nk <-nentry

8. while nk is not exit task do

9. Select nj where ((nj € successor(nk)) and

(priority(nj) == |CP|))

10. SETCP = SETCP Union {nj}

11. nk <-nj

12. end while

13. Select critical path processor {PCP} while

minimizes

 ∑NjεSETCP wi,j, for pj € Q.

14. Initialize the priority queue with entry task.

15. while there is an unscheduled task in the priority

queue do

16. Select the highest priority task ni from priority

queue.

17. if ni € SETCP then

18. Assign the task ni on PCP

19. else

20. for all processors pi

21. if VIP(ni) can be duplicated on pj , duplicate it on

pj

22. EST (ni,pj) = EFT(nk,pj)

23. else EST(ni,pj) = AFT(nk) + ci,k

24. EFT(ni,pj) = EST(ni,pj) + wi.j

25. Assign processor with least EFT to nj

26. end for

27. end while

6. RESULTS
For the CPOP algorithm, which is a list based scheduling

duplication of tasks sufficiently, decreases the execution time

of an application[4]. The reason is that in CPOP all the tasks

that lie on critical path must be scheduled on critical path

processor. The CCR value was kept 0.1 and the value of alpha

was kept 0.5. For each value of parameters thousands of

graphs were generated and scheduled using HEFT, CPOP and

duplication based CPOP algorithms [4]. Then the average

values of SLR, speedup and execution time for each test case

were calculated. The average execution time of duplication

based CPOP is better than the HEFT, CPOP algorithms. Fig. 5

gives graph for number of nodes vs. average execution time. It

is clear that with increase in number of nodes, average

execution time in duplication based CPOP decreases faster

than any other algorithm. Similarly on average duplication

based CPOP has better average schedule length ratio. Fig. 6

depicts the relation between number of nodes and average

schedule length ratio. Fig. 7 depicts that quality of schedule

with respect to speed is also better in proposed algorithm than

any other algorithm.

Fig 5: No. of nodes vs. average execution time

Fig 6: No. of nodes vs. average SLR

Fig 7: No. of nodes vs. average speedup

The results obtained are about 30-40% better than those

produced by CPOP algorithm and about 40-50% better than

HEFT algorithm. The results get increasingly better as the

number of nodes is increased from 20 to 90.

7. CONCLUSION AND FUTURE WORK

In this paper we present a duplication based list scheduling

algorithm for scheduling task of an application onto a

heterogeneous computing system. To avoid biasing towards

proposed algorithm random task graph generator has been

used to compare the scheduling results of proposed method

and some existing efficient methods. Random task graphs are

generated by deciding important input parameters like number

of nodes, communication to computation cost ratio and shape

parameters. This selection makes a wide range of task graphs

National Conference on Advancement of Technologies – Information Systems & Computer Networks (ISCON – 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

28

with various characteristics. Speedup, average running time

and schedule length ratio are the three metrics that decide

goodness of a scheduling algorithm. Experimental results how

that duplication based list scheduling heuristic often

outperforms many other scheduling algorithms in duplication

based algorithm category as well as in list based scheduling

algorithm category.

In future we will extend the work to partially connected

resources. Availability based scheduling is another future

direction to work, where some processors may have internal

job queues.

8. REFERENCES
[1] Garey, M. R. and Johnson D. S. 1979 Computers and

Intrctability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York, NY,

USA

[2] Yang, T. and Gerasoulis, A. 1994 DSC: Scheduling

parallel tasks on an unbounded number of processors.

IEEE Trans. Parallel Distrib. Syst., 5(9):951–967.

[3] Ilavarasan, E. and Thambidurai, P. 2007 Low

Complexity Performance Effective Task Scheduling

Algorithm for Heterogeneous Computing

Environments. Journal of Computer Sciences 3 (2): 94-

103

[4] Topcuoglu, H., Hariri, S., and Wu, M.Y. 2002

Performance-effective and low-complexity task

scheduling for heterogeneous computing. IEEE Trans.

Parallel Distrib. Syst., 13(3):260–274.

[5] Adam, T. L., Chandy K. M., and Dickson J. R. 1974 A

comparison of list schedules for parallel processing

systems. Commun. ACM, 17(12):685–690.

[6] Kwok, Y.K. and Ahmad, I. 1999 Benchmarking and

comparison of the task graph scheduling algorithms. J.

Parallel Distrib. Comput., 59(3):381–422.

[7] Liu, G. Q., Poh, K. L. and Xie., M. 2005 Iterative list

scheduling for heterogeneous computing. J. Parallel

Distrib. Comput., 65(5):654–665.

[8] Liou, J. and Falls, M. A. 1996 An efficient clustering

heuristic for scheduling dags on multiprocessors. In Proc.

Symp. Parallel and Distributed Processing.

[9] Bittencourt,L. F., Madeira, E. R. M., Cicerre, F. R. L. ,

and Buzato, L. E. 2005 A Path Clustering Heuristic for

Scheduling Taks Graphs onto a Grid. 3rd ACM

International Workshop on Middleware for Grid

Computing, Grenoble, France. Nov.

[10] Ahmad, I. and Kwok, Y.K. 1994 A new approach to

scheduling parallel programs using task duplication. In

Proc. Int’l Conf Parallel Processing, volume 2, pages 47–

51.

[11] Ahmad, I. and Kwok,Y.K.1998 On exploiting task

duplication in parallel program scheduling. IEEE Trans.

Parallel Distrib. Syst, 9(9):872–892.

[12] Park, G.L., Shirazi, B. and Marquis, J. 1997 DFRN: A

new approach for duplication based scheduling for

distributed memory multiprocessor systems. In IPPS ’97:

Proceedings of the 11th International Symposium on

Parallel Processing, pages157–166, Washington, DC,

USA, IEEE Computer Society.

[13] Kwok, Y.K. and Ahmad, I. 1994 Exploiting duplication

to minimize the execution times of parallel programs on

message-passing systems. In Proceedings of the 6th

Symposium on Parallel and Distributed Processing,

pages 426–433, Los Alamitos, CA, USA, October, IEEE

Computer Society Press.

[14] Ranaweera , S. and Agrawal, D. P. 2000 A task

duplication based scheduling algorithm for

heterogeneous systems. In 14th International Parallel and

Distributed Processing Symposium (SPDP’2000), pages

445–450, Washington - Brussels - Tokyo, May.

[15] Darbha, S. and Agrawal, D. P. 1997 A task duplication

based scalable scheduling algorithm for distributed

memory systems. J. Parallel Distrib. Comput, 46(1):15–

27.

[16] Bansal, S., Kumar, P. and Singh, K. 2003 An Improved

Duplication Stratgy for Scheduling Precedence

Constrained Graphs in Multiprocessors. IEEE Trans.

Parallel and Distributed Systems,Vol.31, No.4,pp.533-

544,june.

[17] Goldberg, D. E. 1989 Genetic algorithms in search,

optimization, and machine learning. Addison-Wesley,

Reading, Massachusetts.

[18] Wang, L., Siegel, H. J., Roychowdhury, V. P., and

Maciejewski, A. A. 1997 Task matching and scheduling

in heterogeneous computing environments using a

genetic-algorithm-based approach. Journal of Parallel

and Distributed Computing,47(1):8–22, November.

[19] Ali, S., Sait, S. M., and Benten, M. S.T. 1994 GSA:

Scheduling and allocation using genetic algorithm. In

Proceedings of the 1994 European Design Automation

Conference, pages 84–89, Toronto, Canada, September.

