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ABSTRACT 

Cloud computing looks to deliver software as a provisioned 

service to end users, but the underlying infrastructure must be 

sufficiently scalable and robust. In our work, we focus on 

large-scale enterprise cloud systems and examine ho-w 

enterprises may use a service-oriented architecture (SOA) to 

provide a streamlined interface to their business processes. To 

scale up the business processes, each SOA tier usually 

deploys multiple servers for load distribution and fault 

tolerance, a scenario which we term horizontal load 

distribution. One limitation of this approach is that load 

cannot be distributed further when all servers in the same tier 

are loaded. In complex multitiered SOA systems, a single 

business process may actually be implemented by multiple 

different computation pathways among the tiers, each with 

different components, in order to provide resilience and 

scalability. Such multiple implementation options gives 

opportunities for vertical load distribution across tiers. In this 

chapter, we look at a novel request routing framework for 

SOA-based enterprise computing with multiple 

implementation options that takes into account the options of 

both horizontal and vertical load distribution. 
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1. INTRODUCTION 
Cloud computing looks to have computation and data storage 

moved away from the end user and onto servers located in 

data 

centers, thereby relieving users of the burdens of application 

provisioning and management (Dikaiakos, Pallis, Katsaros, 

Mehra, & Vakali, 2009; Cloud Computing, 2009). Software 

can then be thought of as purely a service that is delivered and 

consumed over the Internet, offering users the flexibility to 

choose applications on-demand and allowing providers to 

scale out their capacity accordingly. As rosy as this picture 

seems, the underlying server-side infrastructure must be 

sufficiently robust, feature-rich, and scalable to facilitate 

cloud computing. In this chapter we focus on large-scale 

enterprise cloud systems and examine how issues of scalable 

provisioning can be met using a novel load distribution 

system. In enterprise cloud systems, a service-oriented 

architecture (SOA) can be used to provide a streamlined 

interface to the underlying business processes being offered 

through the cloud. Such an SOA may act as a  programmatic 

front-end to a variety of building-block  components 

distinguished as individual services and their supporting 

servers (e.g. (DeCandia et al., 2007)). Incoming requests to 

the service provided by this composite SOA must be routed to 

the correct components and their respective servers, and such 

routing must be scalable to support a large number of 

requests. In order to scale up the business processes, each tier 

in the system usually deploys multiple servers for load 

distribution and fault tolerance. Such load distribution across 

multiple servers within the same tier can be viewed as 

horizontal load distribution, as shown in Fig. 1. One limitation 

of  horizontal load distribution is that load cannot be further 

distributed when all servers in the given tier are loaded as a  

result of mis-configured infrastructures – where too many 

servers are deployed at one tier while too few servers are 

deployed at another tier. 

2. SCHEDULING COMPOSITE 

SERVICES 
In this section, we formally define the problem and describe 

how we model its complexity. We assume the following 

scenario elements: Requests for a workflow execution are 

submitted to a scheduling agent. The workflow can be 

embodied by one of several implementations, so each request 

is assigned to one of these implementations by the scheduling 

agent. Each implementation invokes several service types, 

such as a web application server, a DBMS, or a computational 

analytics server. Each service type can be embodied by one of 

several instances of the service type, where each instance can 

have different computing requirements. For example, one 

implementation may require heavy DBMS computation (such 

as through a stored procedure) and light computational 

analytics, whereas another implementation may require light 

DBMS querying and heavy computational analytics. We 

assume that these implementations are set up by 

administrators or engineers. Each service type is executed on 

a server within a pool of servers dedicated to that service type 

Each service type can be served by a pool of servers. We 

assume that the servers make agreements to guarantee a level 

of performance defined by the completion time for completing 

a web service invocation. Although these SLAs can be 

complex, in this paper we assume for simplicity that the 

guarantees can take the form of a linear performance 

degradation under load, an approach similar to other 

published work on service SLAs (e.g. (DeCandia et al., 

2007)). We would like to ideally perform optimal scheduling 

to simultaneously distribute the load both vertically (across 

different  implementation options) and horizontally (across 

different servers supporting a particular service type). There 

are thus two stages of scheduling, as shown in Fig. 2 In the 

first stage, the requests are assigned to the implementations. 

In the second stage each implementation has a known set of 

instances of a service type, and each instance is assigned to 

servers within the pool of servers for the instance’s service 

type. Clearly, an exhaustive search through this solution space 

is prohibitively costly for all but the smallest configurations. 

In the next section we describe how we use a genetic search 

algorithm to look for the optimal scheduling assignments. 
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Figure: 1 Horizontal load distribution: load is distributed 

across a server pool within the same tier. 

 

3. GENETIC ALGORITHM 
 

A GA is a computer simulation of Darwinian natural selection 

that iterates through various generations to converge toward 

the best solution in the problem space. A potential solution to 

the problem exists as a chromosome, and in our case, a 

chromosome is a specific mapping of requests-to 

implementations and instances to- servers along with its 

associated workload execution time. Genetic algorithms are 

commonly used to find optimal exact solutions or near 

optimal approximations in combinatorial search problems 

such as the one we address. It is known that a GA provides a 

very good tradeoff between exploration of the solution space 

and exploitation of discovered maxima (Goldberg, 1989). 

Furthermore, a genetic algorithm does have an advantage of 

progressive optimization such that a solution is available at 

any time, and the result continues to improve as more time is 

given for optimization. Note that the GA is not guaranteed to 

find the optimal solution since the recombination and 

mutation steps are stochastic. Our choice of a genetic 

algorithm stemmed from our belief that other search heuristics 

(for example, simulated  

 

 

 
 

Figure: 2 The scheduling and assignment spans two stages. 

In the first stage, requests are assigned to 

implementations, and in the second stage, service type 

instances are assigned to servers. 

 

annealing) are already along the same lines as a GA. These 

are randomized global search heuristics, and genetic 

algorithms are a good representative of these approaches. 

Prior research has shown there is no clear winner among these 

heuristics, with each heuristic providing better performance 

and more accurate results under different scenarios (Lima, 

Francois, Srinivasan, & Salcedo, 2004; Costa & Oliveira, 

2001; Oliveira & Salcedo, 2005). Furthermore, from our own 

prior work, we are familiar with its operations and the factors 

that affect its performance and optimality convergence. 

Additionally, the mappings in our problem context are ideally 

suited to array and matrix representations, allowing us to use 

prior GA research that aid in chromosome recombination 

(Davis, 1985). There are other algorithms that we could have 

considered, but scheduling and assignment algorithms are a 

research topic unto themselves, and there is a very wide of 

range of approaches that we would have been forced to omit. 

Pseudo-code for a genetic algorithm is shown in Algorithm 1. 

The GA executes as follows. The GA produces an initial 

random population of chromosomes. The chromosomes then 

recombine (simulating sexual reproduction) to produce 

children using portions of both parents. Mutations in the 

children are produced with small probability to introduce 

traits that were not in either parent.The children with the best 

scores (in our case, the lowest workload execution times) are 
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chosen for the next generation. The steps repeat for a fixed 

number of iterations, allowing the GA to converge toward the 

best chromosome. In the end it is hoped that the GA explores 

a large portion of the solution space. With each 

recombination, the most beneficial portion of a parent 

chromosome is ideally retained and passed from parent to 

child,  

 

 
 

 

We used two data structures in a chromosome to represent 

each of the two scheduling stages. In the first stage, R requests 

are assigned to M implementations, so its representative 

structure is  simply an array of size R, where each element of 

the array is in the range of [1,M], as shown in Fig. 3. 

 

 

 
 

Figure 3 An example chromosome representing the 

assignment of R requests to M implementations. 

 

The second stage where instances are assigned to servers is 

more complex. In Fig. 4 we show an example chromosome 

that encodes one scheduling assignment. The representation is 

a 2-dimensional matrix that maps {implementation, service 

type instance} to a service provider. For an implementation i 

utilizing service type instance j, the (i, j)th entry in the table is 

the identifier for the server to which the business process is 

assigned.  
 

 

 

 

Figure 4 An example chromosome representing a 

scheduling 

assignment of (implementation, service type instance) 

service provider. Each row represents an implementation, 

and each column represents a service type instance. Here 

there are M workflows and T service types instances. In 

workflow 1, any request for service type 3 goes to server 9. 

4. CHROMOSOME RECOMBINATION 
Two parent chromosomes recombine to produce a new child 

chromosome. The hope is that the child contains the best 

contiguous chromosome regions from its parents. 

Recombining the chromosome from the first scheduling stage 

is simple since the chromsomes are simple 1-dimensional 

arrays. Two cut points are chosen randomly and applied to 

both the parents. The array elements between the cut points in 

the first parent are given to the child, and the array elements 

outside the cut points from the second parent are appended to 

the array elements in the child. This is known as a 2-point 

crossover and is shown in Fig. 5. For the 2-dimensional 

matrix, chromosome recombination was implemented by 

performing a one-point crossover scheme twice (once along 

each dimension). The crossover is best explained by analogy 

to Cartesian space as follows. A random location is chosen in 

the matrix to be coordinate (0, 0).  

 

 
Figure :5 An example recombination between two parents 

to 

produce a child for the first stage assignments. This 

recombination uses a 2-point crossover recombination of 

two 

one-dimensional arrays. Contiguous subsections of both 

parents are used to create the new child. 
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5. GA EVALUATION FUNCTION 
The evaluation function returns the resulting workload 

execution time given a chromosome. Note the function can be 

mplemented to evaluate the workload in any way so long as it 

is consistently applied to all chromosomes across all 

generations. Our  evaluation function is shown in Algorithm 

2. In lines 6–8, it  initialises the execution times for all the 

servers in the   chromosome. In lines 11–17, it assigns 

requests to  implementations and service type instances to 

servers using the two mappings in the chromosome. The end 

result of this phase is that the instances are accordingly 

enqueued the servers. In lines 19–21 the running times of the 

servers are calculated. In lines 24–26, the results of the servers 

are used to compute the results of the implementations. The 

function returns the maximum  execution time among the 

implementations. 

6. HANDLING ONLINE ARRIVING 

REQUESTS 
As mentioned earlier, the problem domain we consider is that 

of batch-arrival request routing. We take full advantage of 

such a scenario through the use of the GA, which has 

knowledge of the request population. We can further extend 

this approach to online arriving requests, a lengthy discussion 

which we omit here due to space limits. A typical approach is 

to aggregate the incoming requests into a queue, and when a 

designated timer expires, all requests in the queue at that time 

are scheduled. There may still be uncompleted requests from 

the previous execution, so the requests may be mingled 

together to produce a larger schedule. An alternative approach 

is to use online stochastic optimization techniques commonly 

found in online decision-making systems (Van Hentenryck & 

Bent, 2006). First, we can continue to use the GA, but instead 

of having the complete collection of requests available to us, 

we can allow requests to aggregate into a queue first. When a 

periodic timer expires, we can run the GA on those requests 

while aggregating any more incoming requests into another 

queue. Once the GA is finished with the first queue, it will 

process the next queue when the periodic timer expires again. 

If the request arrival rate is faster than the GA’s processing 

rate, we can take advantage of the fact that the GA can be run 

as an incomplete, near-optimal search heuristic: we can go 

ahead and let the timer interrupt the GA, and the GA will have 

∗some∗ solutions that, although sub-optimal, is 

probabilistically better than a greedy solution. This typical 

methodology is also shown in (Dewri, Ray, Ray, &Whitley, 

2008), where requests for broadcast messages are queued, and 

the messages are optimally distributed through the use of an 

evolutionary strategies algorithm (a close cousin of a genetic 

algorithm). Second (and unrelated to genetic algorithms), we 

can use online stochastic optimization techniques to serve 

online arrivals. This approach approximates the offline 

problem by sampling historical arrival data in order to make 

the best online decision. A good overview is provided in 

(Bent & Van Hentenryck, 2004). In this technique, the online 

optimizer receives an incoming sequence of requests, gets 

historical data over some period of time from a sampling 

function that creates a statistical distribution model, and then 

calculates and returns an optimized allocation of requests to 

available resources. This optimization can be done on a 

periodic or continuous basis. 

 

 
 

7. EXPERIMENTS AND RESULTS 
We ran experiments to show how our system compared to 

other well-known algorithms with respect to our goal of 

providing request routing with horizontal and vertical 

distribution. Since one of our intentions was to demonstrate 

how our system scales well up to 1000 requests, we used a 

synthetic workload that allowed us to precisely control 

experimental parameters, including the number of available 

implementations, the number of published service types, the 

number of service type instances per implementation, and the 

number of servers per service type instance. The scheduling 

and execution of this workload was simulated using a 

program we implemented in standard C++. The simulation ran 
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on an off-the-shelf Red Hat Linux desktop with a 3.0 GHz 

Pentinum IV and 2 GB of RAM. In these experiments we 

compared our algorithm against the following alternatives: _A 

round-robin algorithm that assigns requests to an 

implementation and service type instances to a server in 

circular fashion. This well-known approach provides a fast 

and simple scheme for load-balancing. A random-

proportional algorithm that proportionally assigns instances to 

the servers. For a given service type, the servers are ranked by 

their guaranteed completion time, and instances are assigned 

proportionally to the servers based on the servers’ completion 

time. (We also tried a proportionality scheme based on both 

the completion times and maximum concurrency but attained 

the same results, so only the former scheme’s results are 

shown here.) To isolate the behavior of this proportionality 

scheme in the second phase of the scheduling, we always 

assigned the requests to the implementations in the first phase 

using a round-robin scheme. A purely random algorithm that 

randomly assigns requests to an implementation and service 

type instances to a server in random fashion. Each choice was 

made with a uniform random distribution. A greedy algorithm 

that always assigns business processes to the service provider 

that has the fastest guaranteed completion time. This 

algorithm represents a naïve approach based on greedy, local 

observations of each workflow without taking into 

consideration all workflows. In the experiments that follow, 

all results were averaged across 20 trials, and to help 

normalize the effects of any randomization used during any of 

the algorithms, each trial started by reading in pre-initialized 

data from disk. In Table 1 list our experimental parameters for 

our baseline experiments.We vary these  parameters in other 

experiments, as we discuss later. 

8. CONCLUSIONS 
Cloud computing aims to do the dirty work for the user: by 

moving issues of management and provisioning away from 

the end consumer and into the server-side data centers, users 

are given more freedom to pick and choose the applications 

that suit their needs. However, computing in the clouds 

depends heavily on the scalability and robustness of 

underlying cloud  architecture. We discussed enterprise cloud 

computing where enterprises may use a service oriented 

architecture to publish a streamlined interface to their business 

processes. 

Table 1. Experiment Parameters 

 

 
Experimental parameter 

 

 
Comment 

 

Requests 

 

 

1 to 1000 

 

Implementations 

 

 

5, 10, 20 

 

Service types used per 

Implementation 

 

 

uniform random: 1 – 10 

 

Instances per service type 

 

 

uniform random: 1 – 10 

 

Servers per service type 

 

 

uniform random: 1 – 10 

 

Server completion time (α) 

 

uniform random: 1 – 12 

 seconds 

 

Server maximum 

concurrency (β) 

 

 

uniform random: 1 – 12 

 

Server degradation 

coefficient (γ ) 

 

 

uniform random: 0.1 – 0.9 

 

GA: population size 

 

 

100 

 

GA: number of generations 

 

 

200 

 

In order to scale up the number of business processes, each 

tier in the provider’s architecture usually deploys multiple 

servers for load distribution and fault tolerance. Such load 

distribution across multiple servers within the same tier can be 

viewed as horizontal load distribution. One limitation of this 

approach is that load cannot be distributed further when all 

servers in the same tier are fullyloaded. Another approach for 

providing resiliency and scalabilty is to have multiple 

implementation options that give opportunities for vertical 

load distribution across tiers. We described in detail a request 

routing framework for SOAbased enterprise cloud computing 

that takes into  account both these options for horizontal and 

vertical load distribution. Experiments showed that our 

algorithm and methodology can scale well up to a large-scale 

system configuration comprising up to 1000 workflow 

requests directed to a complex composite service with 

multiple implementation options available. The experimental 

results also demonstrate that our framework is more agile in 

the sense that it is effective in dealing with mis-configured 

infrastructures in which there are too many or too few servers 

in one tier. As a result, our framework can effectively utilize 

available multiple implementations to distribute loads across 

tiers. 
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