
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

6

Upright load allocation for Cloud Computing via various

Performance Options

Amit Batra
Kurukshetra University

CSE Department,
H.C.T.M Kaithal, India.

Rajender Kumar
Kurukshetra University

CSE Department,
H.C.T.M., Kaithal, India

Arvind Kumar
Kurukshetra University

CSE Department,
H.C.T.M., Kaithal, India

ABSTRACT

Cloud computing looks to deliver software as a provisioned

service to end users, but the underlying infrastructure must be

sufficiently scalable and robust. In our work, we focus on

large-scale enterprise cloud systems and examine ho-w

enterprises may use a service-oriented architecture (SOA) to

provide a streamlined interface to their business processes. To

scale up the business processes, each SOA tier usually

deploys multiple servers for load distribution and fault

tolerance, a scenario which we term horizontal load

distribution. One limitation of this approach is that load

cannot be distributed further when all servers in the same tier

are loaded. In complex multitiered SOA systems, a single

business process may actually be implemented by multiple

different computation pathways among the tiers, each with

different components, in order to provide resilience and

scalability. Such multiple implementation options gives

opportunities for vertical load distribution across tiers. In this

chapter, we look at a novel request routing framework for

SOA-based enterprise computing with multiple

implementation options that takes into account the options of

both horizontal and vertical load distribution.

General Terms

Cloud Computing, Scheduling, Genetic Algorithm.

Keywords

Service oriented architecture (SOA), chromosome,

GA(Genetic algorithm), servers per service time, server

completion time(α).

1. INTRODUCTION
Cloud computing looks to have computation and data storage

moved away from the end user and onto servers located in

data

centers, thereby relieving users of the burdens of application

provisioning and management (Dikaiakos, Pallis, Katsaros,

Mehra, & Vakali, 2009; Cloud Computing, 2009). Software

can then be thought of as purely a service that is delivered and

consumed over the Internet, offering users the flexibility to

choose applications on-demand and allowing providers to

scale out their capacity accordingly. As rosy as this picture

seems, the underlying server-side infrastructure must be

sufficiently robust, feature-rich, and scalable to facilitate

cloud computing. In this chapter we focus on large-scale

enterprise cloud systems and examine how issues of scalable

provisioning can be met using a novel load distribution

system. In enterprise cloud systems, a service-oriented

architecture (SOA) can be used to provide a streamlined

interface to the underlying business processes being offered

through the cloud. Such an SOA may act as a programmatic

front-end to a variety of building-block components

distinguished as individual services and their supporting

servers (e.g. (DeCandia et al., 2007)). Incoming requests to

the service provided by this composite SOA must be routed to

the correct components and their respective servers, and such

routing must be scalable to support a large number of

requests. In order to scale up the business processes, each tier

in the system usually deploys multiple servers for load

distribution and fault tolerance. Such load distribution across

multiple servers within the same tier can be viewed as

horizontal load distribution, as shown in Fig. 1. One limitation

of horizontal load distribution is that load cannot be further

distributed when all servers in the given tier are loaded as a

result of mis-configured infrastructures – where too many

servers are deployed at one tier while too few servers are

deployed at another tier.

2. SCHEDULING COMPOSITE

SERVICES
In this section, we formally define the problem and describe

how we model its complexity. We assume the following

scenario elements: Requests for a workflow execution are

submitted to a scheduling agent. The workflow can be

embodied by one of several implementations, so each request

is assigned to one of these implementations by the scheduling

agent. Each implementation invokes several service types,

such as a web application server, a DBMS, or a computational

analytics server. Each service type can be embodied by one of

several instances of the service type, where each instance can

have different computing requirements. For example, one

implementation may require heavy DBMS computation (such

as through a stored procedure) and light computational

analytics, whereas another implementation may require light

DBMS querying and heavy computational analytics. We

assume that these implementations are set up by

administrators or engineers. Each service type is executed on

a server within a pool of servers dedicated to that service type

Each service type can be served by a pool of servers. We

assume that the servers make agreements to guarantee a level

of performance defined by the completion time for completing

a web service invocation. Although these SLAs can be

complex, in this paper we assume for simplicity that the

guarantees can take the form of a linear performance

degradation under load, an approach similar to other

published work on service SLAs (e.g. (DeCandia et al.,

2007)). We would like to ideally perform optimal scheduling

to simultaneously distribute the load both vertically (across

different implementation options) and horizontally (across

different servers supporting a particular service type). There

are thus two stages of scheduling, as shown in Fig. 2 In the

first stage, the requests are assigned to the implementations.

In the second stage each implementation has a known set of

instances of a service type, and each instance is assigned to

servers within the pool of servers for the instance’s service

type. Clearly, an exhaustive search through this solution space

is prohibitively costly for all but the smallest configurations.

In the next section we describe how we use a genetic search

algorithm to look for the optimal scheduling assignments.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

7

Figure: 1 Horizontal load distribution: load is distributed

across a server pool within the same tier.

3. GENETIC ALGORITHM

A GA is a computer simulation of Darwinian natural selection

that iterates through various generations to converge toward

the best solution in the problem space. A potential solution to

the problem exists as a chromosome, and in our case, a

chromosome is a specific mapping of requests-to

implementations and instances to- servers along with its

associated workload execution time. Genetic algorithms are

commonly used to find optimal exact solutions or near

optimal approximations in combinatorial search problems

such as the one we address. It is known that a GA provides a

very good tradeoff between exploration of the solution space

and exploitation of discovered maxima (Goldberg, 1989).

Furthermore, a genetic algorithm does have an advantage of

progressive optimization such that a solution is available at

any time, and the result continues to improve as more time is

given for optimization. Note that the GA is not guaranteed to

find the optimal solution since the recombination and

mutation steps are stochastic. Our choice of a genetic

algorithm stemmed from our belief that other search heuristics

(for example, simulated

Figure: 2 The scheduling and assignment spans two stages.

In the first stage, requests are assigned to

implementations, and in the second stage, service type

instances are assigned to servers.

annealing) are already along the same lines as a GA. These

are randomized global search heuristics, and genetic

algorithms are a good representative of these approaches.

Prior research has shown there is no clear winner among these

heuristics, with each heuristic providing better performance

and more accurate results under different scenarios (Lima,

Francois, Srinivasan, & Salcedo, 2004; Costa & Oliveira,

2001; Oliveira & Salcedo, 2005). Furthermore, from our own

prior work, we are familiar with its operations and the factors

that affect its performance and optimality convergence.

Additionally, the mappings in our problem context are ideally

suited to array and matrix representations, allowing us to use

prior GA research that aid in chromosome recombination

(Davis, 1985). There are other algorithms that we could have

considered, but scheduling and assignment algorithms are a

research topic unto themselves, and there is a very wide of

range of approaches that we would have been forced to omit.

Pseudo-code for a genetic algorithm is shown in Algorithm 1.

The GA executes as follows. The GA produces an initial

random population of chromosomes. The chromosomes then

recombine (simulating sexual reproduction) to produce

children using portions of both parents. Mutations in the

children are produced with small probability to introduce

traits that were not in either parent.The children with the best

scores (in our case, the lowest workload execution times) are

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

8

chosen for the next generation. The steps repeat for a fixed

number of iterations, allowing the GA to converge toward the

best chromosome. In the end it is hoped that the GA explores

a large portion of the solution space. With each

recombination, the most beneficial portion of a parent

chromosome is ideally retained and passed from parent to

child,

We used two data structures in a chromosome to represent

each of the two scheduling stages. In the first stage, R requests

are assigned to M implementations, so its representative

structure is simply an array of size R, where each element of

the array is in the range of [1,M], as shown in Fig. 3.

Figure 3 An example chromosome representing the

assignment of R requests to M implementations.

The second stage where instances are assigned to servers is

more complex. In Fig. 4 we show an example chromosome

that encodes one scheduling assignment. The representation is

a 2-dimensional matrix that maps {implementation, service

type instance} to a service provider. For an implementation i

utilizing service type instance j, the (i, j)th entry in the table is

the identifier for the server to which the business process is

assigned.

Figure 4 An example chromosome representing a

scheduling

assignment of (implementation, service type instance)

service provider. Each row represents an implementation,

and each column represents a service type instance. Here

there are M workflows and T service types instances. In

workflow 1, any request for service type 3 goes to server 9.

4. CHROMOSOME RECOMBINATION
Two parent chromosomes recombine to produce a new child

chromosome. The hope is that the child contains the best

contiguous chromosome regions from its parents.

Recombining the chromosome from the first scheduling stage

is simple since the chromsomes are simple 1-dimensional

arrays. Two cut points are chosen randomly and applied to

both the parents. The array elements between the cut points in

the first parent are given to the child, and the array elements

outside the cut points from the second parent are appended to

the array elements in the child. This is known as a 2-point

crossover and is shown in Fig. 5. For the 2-dimensional

matrix, chromosome recombination was implemented by

performing a one-point crossover scheme twice (once along

each dimension). The crossover is best explained by analogy

to Cartesian space as follows. A random location is chosen in

the matrix to be coordinate (0, 0).

Figure :5 An example recombination between two parents

to

produce a child for the first stage assignments. This

recombination uses a 2-point crossover recombination of

two

one-dimensional arrays. Contiguous subsections of both

parents are used to create the new child.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

9

5. GA EVALUATION FUNCTION
The evaluation function returns the resulting workload

execution time given a chromosome. Note the function can be

mplemented to evaluate the workload in any way so long as it

is consistently applied to all chromosomes across all

generations. Our evaluation function is shown in Algorithm

2. In lines 6–8, it initialises the execution times for all the

servers in the chromosome. In lines 11–17, it assigns

requests to implementations and service type instances to

servers using the two mappings in the chromosome. The end

result of this phase is that the instances are accordingly

enqueued the servers. In lines 19–21 the running times of the

servers are calculated. In lines 24–26, the results of the servers

are used to compute the results of the implementations. The

function returns the maximum execution time among the

implementations.

6. HANDLING ONLINE ARRIVING

REQUESTS
As mentioned earlier, the problem domain we consider is that

of batch-arrival request routing. We take full advantage of

such a scenario through the use of the GA, which has

knowledge of the request population. We can further extend

this approach to online arriving requests, a lengthy discussion

which we omit here due to space limits. A typical approach is

to aggregate the incoming requests into a queue, and when a

designated timer expires, all requests in the queue at that time

are scheduled. There may still be uncompleted requests from

the previous execution, so the requests may be mingled

together to produce a larger schedule. An alternative approach

is to use online stochastic optimization techniques commonly

found in online decision-making systems (Van Hentenryck &

Bent, 2006). First, we can continue to use the GA, but instead

of having the complete collection of requests available to us,

we can allow requests to aggregate into a queue first. When a

periodic timer expires, we can run the GA on those requests

while aggregating any more incoming requests into another

queue. Once the GA is finished with the first queue, it will

process the next queue when the periodic timer expires again.

If the request arrival rate is faster than the GA’s processing

rate, we can take advantage of the fact that the GA can be run

as an incomplete, near-optimal search heuristic: we can go

ahead and let the timer interrupt the GA, and the GA will have

∗some∗ solutions that, although sub-optimal, is

probabilistically better than a greedy solution. This typical

methodology is also shown in (Dewri, Ray, Ray, &Whitley,

2008), where requests for broadcast messages are queued, and

the messages are optimally distributed through the use of an

evolutionary strategies algorithm (a close cousin of a genetic

algorithm). Second (and unrelated to genetic algorithms), we

can use online stochastic optimization techniques to serve

online arrivals. This approach approximates the offline

problem by sampling historical arrival data in order to make

the best online decision. A good overview is provided in

(Bent & Van Hentenryck, 2004). In this technique, the online

optimizer receives an incoming sequence of requests, gets

historical data over some period of time from a sampling

function that creates a statistical distribution model, and then

calculates and returns an optimized allocation of requests to

available resources. This optimization can be done on a

periodic or continuous basis.

7. EXPERIMENTS AND RESULTS
We ran experiments to show how our system compared to

other well-known algorithms with respect to our goal of

providing request routing with horizontal and vertical

distribution. Since one of our intentions was to demonstrate

how our system scales well up to 1000 requests, we used a

synthetic workload that allowed us to precisely control

experimental parameters, including the number of available

implementations, the number of published service types, the

number of service type instances per implementation, and the

number of servers per service type instance. The scheduling

and execution of this workload was simulated using a

program we implemented in standard C++. The simulation ran

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

10

on an off-the-shelf Red Hat Linux desktop with a 3.0 GHz

Pentinum IV and 2 GB of RAM. In these experiments we

compared our algorithm against the following alternatives: _A

round-robin algorithm that assigns requests to an

implementation and service type instances to a server in

circular fashion. This well-known approach provides a fast

and simple scheme for load-balancing. A random-

proportional algorithm that proportionally assigns instances to

the servers. For a given service type, the servers are ranked by

their guaranteed completion time, and instances are assigned

proportionally to the servers based on the servers’ completion

time. (We also tried a proportionality scheme based on both

the completion times and maximum concurrency but attained

the same results, so only the former scheme’s results are

shown here.) To isolate the behavior of this proportionality

scheme in the second phase of the scheduling, we always

assigned the requests to the implementations in the first phase

using a round-robin scheme. A purely random algorithm that

randomly assigns requests to an implementation and service

type instances to a server in random fashion. Each choice was

made with a uniform random distribution. A greedy algorithm

that always assigns business processes to the service provider

that has the fastest guaranteed completion time. This

algorithm represents a naïve approach based on greedy, local

observations of each workflow without taking into

consideration all workflows. In the experiments that follow,

all results were averaged across 20 trials, and to help

normalize the effects of any randomization used during any of

the algorithms, each trial started by reading in pre-initialized

data from disk. In Table 1 list our experimental parameters for

our baseline experiments.We vary these parameters in other

experiments, as we discuss later.

8. CONCLUSIONS
Cloud computing aims to do the dirty work for the user: by

moving issues of management and provisioning away from

the end consumer and into the server-side data centers, users

are given more freedom to pick and choose the applications

that suit their needs. However, computing in the clouds

depends heavily on the scalability and robustness of

underlying cloud architecture. We discussed enterprise cloud

computing where enterprises may use a service oriented

architecture to publish a streamlined interface to their business

processes.

Table 1. Experiment Parameters

Experimental parameter

Comment

Requests

1 to 1000

Implementations

5, 10, 20

Service types used per

Implementation

uniform random: 1 – 10

Instances per service type

uniform random: 1 – 10

Servers per service type

uniform random: 1 – 10

Server completion time (α)

uniform random: 1 – 12

 seconds

Server maximum

concurrency (β)

uniform random: 1 – 12

Server degradation

coefficient (γ)

uniform random: 0.1 – 0.9

GA: population size

100

GA: number of generations

200

In order to scale up the number of business processes, each

tier in the provider’s architecture usually deploys multiple

servers for load distribution and fault tolerance. Such load

distribution across multiple servers within the same tier can be

viewed as horizontal load distribution. One limitation of this

approach is that load cannot be distributed further when all

servers in the same tier are fullyloaded. Another approach for

providing resiliency and scalabilty is to have multiple

implementation options that give opportunities for vertical

load distribution across tiers. We described in detail a request

routing framework for SOAbased enterprise cloud computing

that takes into account both these options for horizontal and

vertical load distribution. Experiments showed that our

algorithm and methodology can scale well up to a large-scale

system configuration comprising up to 1000 workflow

requests directed to a complex composite service with

multiple implementation options available. The experimental

results also demonstrate that our framework is more agile in

the sense that it is effective in dealing with mis-configured

infrastructures in which there are too many or too few servers

in one tier. As a result, our framework can effectively utilize

available multiple implementations to distribute loads across

tiers.

9. ACKNOWLEDGMENTS
We would like to express our gratitude to all those who gave

us the possibility to complete this paper. Furthermore we

would like to thank Department of Computer Science, Punjabi

University Patiala for giving this esteemed opportunity for

publishing this paper. We would also like to thank Director,

H.C.T.M, Kaithal, as well as Head of Department(CSE),

H.C.T.M., Kaithal for their collaborat-ion and helping us to

make resources availbility.

10. REFERRENCES
[1] Bent, R., & Van Hentenryck, P. (2004). Regrets Only!

Online stochastic optimization under time constraints.

Nineteenth National Conference on Artificial

Intelligence, SanJose, CA.

[2] Buco, M. J., Chang, R. N., Luan, L. Z., Ward, C., Wolf,

J.L., Yu, P. S., et al. (2003). Managing ebusiness on

demand slacontracts in business terms using the cross-sla

executionmanager sam. ISADS, Washington, DC, 157–

164.

[3] Business Process Execution Language for Web Services

(Version 1.1), (2005).

[4] Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., &

Shan,M.-C. (2000). Adaptive and Dynamic Service

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

11

Composition ineFlow. Proceedings of CAISE,

Stockholm, Sweden, 13–31.

[5] Costa, L., & Oliveira, P. (2001). Evolutionary algorithms

approach to the solution of mixed integer

nonlinearprogramming problems. Computers and

ChemicalEngineering, 25(2–3), 257–266.

[6] Davis, L. (1985). Job shop scheduling with

geneticalgorithms. Proceedings of the International

Conference on Genetic Algorithms, Pittsburgh, PA.

[7] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,

Lakshman, A., Pilchin, A., Sivasubramanian, S.,

Vosshall, P.& Vogels, W. (2007). Dynamo: Amazon’s

highly available key-value store. Proceedings of

SOSP, Washington D.C.,205–220.

[8] Dewri, R., Ray, I., Ray, I., & Whitley, D. (2008).

Optimizing on-demand data broadcast scheduling in

pervasiveenvironments. Proceedings of EDBT, Nantes,

France, 559–569.

[9] Dikaiakos, M., Pallis, G., Katsaros, D., Mehra, P., &

Vakali, A. (2009). Cloud computing: Distributed internet

computing for it and scientific research. IEEE Internet

Computing, 13(5), 10–13.

[10] Goldberg, D. (1989). Genetic algorithms in searth,

optimization, and machine learning. Dordrecht: Kluwer.

[11] Holland, J. (1992). Adaptation in natural and artificial

systems. Cambridge, MA: MIT Press.

[12] Lima, R., Francois, G., Srinivasan, B., & Salcedo, R.

(2004). Dynamic optimization of batch emulsion

polymerization using MSIMPSA, a simulated-

annealingbasedalgorithm. Industrial and Engineering

ChemistryResearch, 43(24), 7796–7806.

[13] Oliveira, R., & Salcedo, R. (2005). Benchmark testing of

simulated annealing, adaptive random search and genetic

algorithms for the global optimization of bioprocesses.

International Conference on Adaptive and Natural

Computing Algorithms, Coimbra, Portugal.

[14] Phan, T., & Li, W.-S. (2008a). Dynamic materialization

of query views for data warehouse workloads.

Proceedings ofthe International Conference on Data

Engineering, Long Beach, CA.

[15] Ponnekanti, S., & Fox, A. (2004). Interoperability

among Independently Evolving Web Services.

Proceedings ofMiddleware, Toronto, Canada.

[16] Shankar, M., De Miguel, M., & Liu, J. W.-S. (2004). An

end-to-end qos management architecture Proceedings of

theFifth IEEE Real Time Technology and Applications

Symposium, Vancouver, British Columbia, Canada, p.

176.

