
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Information Processing and Remote Computing – IPRC, August 2012

6

Energy Efficient and Reliable Job Submission in Hadoop
Clusters

DG Sudha Sadasivam,

Professor, CSE,
PSG College of Technology,

Coimbatore - 641 004.

S Sangeetha,

Lecturer IT,
PSG Polytechnic College,

Coimbatore - 641 004.

R Radhakrishnan,

Student, CSE,
PSG College of Technology,

Coimbatore - 641 004.

ABSTRACT

MapReduce paradigm is highly suitable for large scale data

intensive applications in the cloud environment. The scale of

these applications necessitates minimization of cluster power

consumption to reduce operational costs and carbon footprint.

Energy consumption can be reduced by selective power down

of nodes during periods of low utilization. Hadoop is basically

used for batch processing of huge jobs. Before jobs are

submitted, the files used them are uploaded into the cluster. A

file is split up into a number of chunks and distributed across

the Hadoop cluster. This paper addresses the problem of block

allocation in distributed file system to improve reliability and

energy efficiency. A framework to reduce power requirements

of a cluster by identifying the number of replicas and their

placement for reliable completion of the job has been

designed. This will address the issues like block allocation,

reliable job submission and minimization of cluster nodes to

reduce power consumption. This framework is integrated with

hadoop’s namenode. The scheduler component in Hadoop has

also been modified to enable submission of jobs to active data

node containing data to be operated on. A greedy approach

and an evolutionary approach using Particle Swarm

Optimization (PSO) has been designed to identify suitable

nodes to be activated in a cluster. Experimental results

demonstrate the performance of these approaches.

Keywords
 Energy efficiency, hadoop, reliability, PSO.

1. INTRODUCTION
A distributed file system is designed to hold a large volume of

data distributed across the network for access by a number of

clients. The Network File System (NFS), the most ubiquitous

distributed file system, provides remote access to a single

logical volume stored on a single machine. An NFS server

makes a portion of its local file system visible to external

clients. The clients can then mount this remote file system

directly into their own Linux file system, and interact with it

as though it were part of the local drive. Although it is

transparent, it is limited in its power. The files in an NFS

volume all reside on a single machine. Hence it is less

reliable, scalable and server can get overloaded. Hadoop

Distributed File System (HDFS) [3] is designed to be robust

by storing large amount of information (terabytes or

petabytes) across a large number of machines. It is tolerant to

failures and scalable.

Hadoop [1] is a large scale distributed framework of

commodity hardware that is suitable to process a batch of data

intensive applications in parallel. Files in HDFS are chunked,

replicated and distributed across multiple machines to for

reliability. Conventional Hadoop grid ensures reliability by

maintaining all nodes in active state. At any point of time

atleast 15% of the nodes are idle [2]. This affects the energy

efficiency of the cluster. In Hadoop data and computations

are clustered. Choosing proper nodes to replicate the blocks

and then submitting the jobs to those nodes can reduce the

energy consumption. By default HDFS [3] maintains three

copies of information in the cluster for reliability. Decreasing

the replicas can compromise on reliability. This paper

addresses the problem of block allocation in the cluster to

maintain energy efficiency and reliability. It identifies the

minimum number of nodes in a cluster to maintain reliability

and consume less power. A greedy approach and an

evolutionary approach using PSO have been designed and

implemented. The scheduler component is also modified to

submit the jobs to suitable datanodes.

Energy consumed by datacenters doubles on an average over a

period of 5 years [1]. A power controller to address power

conservation requirement in hadoop cluster has been

proposed. It dynamically reconfigures the cluster based on

current workload based on the workload. Migration of blocks

has been proposed. This approach has been tested on GridSim

[4]. Such dynamic reconfiguration on hadoop clusters requires

major changes in HDFS code.

Optimisation of energy efficiency of servers can be done at

component level in processors, memories and disks [7, 8, 9,

10]. Dynamic VoltageScaling (DVS), request batching and

multi-speed disks [11, 12, 13] can also be used to improve

energy efficiency. The proposed approach uses the global

state of cluster to handle workload imposed on it.

A multi-tiered infrastructure [14] that enables dynamic

migration of virtual machine execution flow within and across

computer nodes has been studied. Within a node the

framework allocates and re-allocates virtual processors to

their physical counterparts. Across nodes the framework

employs live migration to relocate complete guest operating

system instances to distinct physical hosts. Hadoop forms a

single data compute cluster. So migration of jobs can be done

only based on data block location.

A power-aware application placement controller for

heterogeneous virtualized server clusters is proposed [15]. It

considers power, migration costs and benefits. Hadoop does

not advocate the migration of partially executed jobs. The

blocks and the job have to be migrated to a new node and re-

execution should occur. Server virtualization technologies to

enable the replication and migration of server functions across

WANs are proposed [16]. Extentions to existing cloudsim

toolkit [17] to model power aware resource provisioning,

which includes generation of dynamic workload patterns,

workload prediction and adaptive provisioning, dynamic

lifecycle management of random workload, and

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Information Processing and Remote Computing – IPRC, August 2012

7

implementation of power aware allocation policies and chip

aware VM scheduler has been proposed. This paper suggests

its implementation on a simulator. A metascheduler called

Adaptive Power-Aware Virtual Machine Provisioner (APA-

VMP) that schedules the workload in such a way that the total

incremental power drawn by the server pool is minimum

without compromising the performance objectives has been

proposed [18]. The APA-VMP makes use of swarm

intelligence methodology to detect and track the changing

optimal target servers for VM placement very efficiently. The

work was implemented on CloudSim and is more suitable for

computational clouds that involves migration of jobs and does

not consider data placement.

A power-aware linear programming based scheduling policy

[19] for heterogeneous compute clusters has been proposed.

This work is not suitable for data intensive clusters like

Hadoop. GreenHDFS [20] relies on data classification driven

approach for data placement. It moves data blocks

dynamically from hot zone to cold zone of less power

consumption. Such movement involves considerable changes

in HDFS code. The approach has only been simulated.

Two standard approaches are used to improve energy

efficiency in a cluster

 Covering Set(CS): This approach keeps only a small

fraction of the cluster nodes powered on by ensuring that

at least one copy of data is maintained in these nodes. It

is based on altering the data placement policy of the

underlying DFS to save energy. Some of the drawbacks

of this approach include longer execution time of

workloads and modifications in DFS software.

 All In Strategy (AIS) uses all the nodes in the cluster to

run a batch of jobs and then powers down the entire

cluster. Here the entire cluster is made active to execute

the jobs and then moved to low power state. Energy

efficiency of AIS approach for large workloads is lower

than that of CS approach. A fraction of time is wasted to

power up/down all the servers.

The proposed approach uses a combination of both to balance

data availability and performance. It selects the minimum

number of nodes to be maintained in active state in the cluster

by taking into consideration data availability. When the

cluster is idle all nodes are powered down. The framework

also includes components for reliable execution of jobs. A

reliability factor based on history and utilization based on

processor MIPS, CPU usage and memory usage are

considered to aid submission of jobs to reliable and efficient

nodes.

2. SYSTEM ARCHITECTURE
 The proposed scheduler is developed for the purpose of

energy efficient and reliable job completion in hadoop. This

scheduler examines the utilization level and number of

replicas in nodes of the cluster and submits the job only to the

nodes that are selected to live in the cluster to run the job. To

submit the job to the selected nodes, the active trackers for

selected nodes are obtained. Then directions are given to the

namenode explicitly to submit the job to those active trackers.

Check for the utilization levels of those active trackers ensures

reliability. The various steps for the proposed approach are

as follows:

1) Load the file(s) required for the proposed jobs into

HDFS

2) Read name node metadata to identify the location of

blocks of files.

3) Use greedy / PSO approach to identify the minimum

set of machines to hold all the blocks of information

for a particular batch of jobs (details in section 4).

4) Use Wake On LAN (WOL) [23] to turn move

redundant machines to sleep state. Wake‐On‐LAN

(WOL) allows a server to be moved into power

saving mode. When a wake‐up packet is received, the

system powers up as normal.

5) Inform the namenode not to create new replicas.

6) Capture the static and dynamic node features.

Dynamic node features include CPU load average,

RAM space, Hard disk space, Disk I/O rate and static

node features include number of CPUs, total hard

disk capacity and total RAM capacity. The dynamic

node price is evaluated using equation 1.

Dynamic node price =
 (1)

Fractional Price =

Where

Lavg is Load average

HDutil =

RAMutil =

7) A learning scheduler that contains classifier finds the

best tracker for a job. It identifies the best tracker(s)

for the job based on equation 2, 3 and 4.The classifier

takes in to account the number of job features and

satisfying number of node features. If the features are

not satisfying then the probability of that feature

variable is taken as zero. The node which satisfies the

highest probability is considered as the best fit for the

task. If a task is suitable for more than one node, the

most suitable node is selected based on equation 3.

Here the reliability depends on the history of node

reliability. Reliability of active nodes

(reliability_active) identified in step 4 is set to 1.

Reliability of inactive nodes is set to a very low

value. A history is also maintained for node

reliability (reliability_history) based on how many

times a task were completed successfully by the

node. It is gathered from the job tracker logs. Now

the reliability is given by equation 3. The provider

rating that is minimum is chosen.

P (Node) =

 (2)

historyyreliabilit

activeyreliabilityreliabilit

_

*_

(3)

Provider Rating =

 (4)

If many jobs satisfy a single node then based on the utility

function they are passed to the tracker from the queues. The

utility function is first in first out type (with backfilling of

small jobs between large jobs).

8) Job Submission: The job is submitted explicitly to

most suitable node.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Information Processing and Remote Computing – IPRC, August 2012

8

9) Updating history file: Once a job has been executed

successfully, history files are updated, so that in

future if same job is submitted to the user, the

scheduler can directly submit the job to suitable

tracker. Two history files are maintained - one for the

job and another for the node reliability. Once a job

has been executed successfully, the node reliability is

incremented; else the node reliability is decremented.

The details of jobs executed successfully and the

node details are maintained in another history file.

The history file contains jobs features like RAM,

Hard disk space, input size, maps and reduces and the

name of the cluster node(s) to which the job has been

assigned. Thus the response time is improved by

gathering the knowledge of past runs.

Fig 1: Flow Chart

3. A CASE STUDY

Consider the node features of machines in a cluster as in table

1. The other features are provided in table 2.

Let all nodes have 400 GB hard disk (HD) and 2000 MB

RAM totally. Let the Fixed Price be assigned as 100.

Dynamic Price = Fixed Price + Fixed Price * (Load Avg +

Hard Disk Utilised / Total Hard Disk + RAM utilized / Total

RAM)

 The details of jobs J1 and J2 submitted are as follows:

 J1: RAM=500MB. HD=120 GB M=8 R=0, reliability = 0.5,

price between 125 to 150

Load

Avg

Hard

Disk

Utilis

ed

RAM

utiliz

ed

Dynamic

Price

Node Name

0.4 80 963 136.05 C1

0.3 144 1300 143.67 C2

0.5 272 876 153.93 C3

0.6 300 1563 171.05 C4

0.2 272 460 137 C5

0.15 320 1544 157.4 C6

Update job history Assign Utility Function

Assign Job after

checking for

overload

Classifier

Job History

Data Nodes

Gather Node

features
Dynamic Node

Features

Node + Job

Features

Node

Reliability

Update node

reliability

Node

Reliability

(Active nodes)

Job Features

Upload input files

for the batch of jobs

Identify block

locations

Find list of active

machines to be

maintained
Greedy PSO

Matc

Turn off redundant

machines

Learning from history

No

Yes

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Information Processing and Remote Computing – IPRC, August 2012

9

J2: RAM=400Mb, HD=100GB, M=6, R=2, reliability = 0.7,

price between 130 to 170

Let J1 and J2 are jobs and C (I) are cluster nodes. P(J1 CI)

indicates the probability of success of submitting J1 to CI

machine.

P(J1C1)=0.92 ,P(J1C2)=0.92 ,P(J1C3)=0.83,P(J1C4)=0.67,

P(J1C5)=0.83, P(J1C6)=0.67.

P(J2C1)=0.92, P(J2C2)=0.83, P(J2C3)=0.75, P(J2C4)=0.92,

P(J2C5)=0.83, P(J2C6)=0.83

Hence J1 can be submitted to cluster nodes C1, C2 and J2 is

submitted to C1, C4, based on pricing. C2 is switched off.

Hence the jobs are submitted to C1 and C4.

Table 1, Features captured during one execution (1)

4. NODE SELECTION
The selection of nodes from the cluster is based on the number

of replicas the node that it has. To select the node from

different size of cluster we have implemented two approaches:

 Greedy Approach

 Particle Swarm Optimization Approach

Greedy approach is implemented based on the node that

has total number of replicas of different blocks of file in

HDFS. The nodes are sorted based on total number of replicas

and the nodes are selected one by one until it covers at least

one of the replicas of a block. This approach is efficient for

the small cluster size.

Since the subset cover problem is a NP hard problem, the

number of combinations to be explored becomes very large.

To accommodate for the node selection from large cluster

Particle Swarm Optimization is used. PSO […] shares many

similarities with evolutionary computation techniques such as

Genetic Algorithms (GA). The system is initialized with a

population of random solutions and searches for optima by

updating generations. However, unlike GA, PSO has no

evolution operators such as crossover and mutation. In PSO,

the potential solutions, called particles, fly through the

problem space by following the current optimum particles.

PSO is initialized with a group of random particles (solutions)

from which an optimal solution is searched by updating

generations. Each particle is updated in every iteration by

following two "best" values. The first one is the best solution

(fitness) the particle has achieved so far. This value is called

personal best (pbest). The "best" value that is obtained so far

by any particle in the population is the second one. This best

value is a global best (gbest). When a particle takes part of the

population as its topological neighbors, the best value is a

local best and is called lbest.

After finding the two best values, the particle updates its

velocity and positions in iteration ‘i+1’ with following

equation (4) and (5).

v[i+1] = 0.7298(v[i] + c1 * rand() * (pbest[i] - present[i])

+ c2 * rand() * (gbest[i]-present[i]))

 (4)

present[i+1] = persent[i] + v[i+1] (5)

The pseudo code of the procedure is as follows:

1) Initialize the particles by reading in the block

locations.

2) Identify the valid particles using the constraint

3) Repeat for each particle in parallel.

a. Calculate current fitness (Number of blocks

covered)

b. If current >pbest then update pbest

4) Update gbest by comparing values of all pbest

5) Update particle velocity according to equation (4)

6) Update particle position based on equation (5)

7) Repeat steps 3 to 6 for convergence.

v[i] is the particle velocity, present[i] is the current particle

fitness (solution). pbest[i] and gbest[i] are personal and global

based. rand for the ith generation. rand() is a random number

between (0,1). c1, c2 are learning factors. Usually c1 = c2 =

0.5.

In our problem each particle is a subset of nodes in the cluster.

Valid particles and each particle (solutions) are subject to

satisfy the constraint that they cover all of the blocks needed

for the batch of jobs. The fitness function is the count of

number of blocks covered. The computation of velocity, local

best and global best is found for every particle and iterated

over time until the solution converges at certain amount of

time.

5. EXPERIMENTAL RESULTS
This section details on the results of node selection using

PSO, This chapter explains the results that were taken to

measure time required to select the nodes to live using Particle

Swarm optimization, time required to complete MapReduce

jobs with configurations, minimum number of nodes required

to cover all of the block replicas in HDFS and amount energy

saved from the proposed system. The results provided here are

based on the storage of block replicas in cluster and behavior

of the algorithm used in selection of nodes and scheduling of

MapReduce job in the cluster.

5.1. Performance of PSO
Table 3 shows the result of applying PSO after obtaining the

block locations. The results provided in the table 1 are based

on the location of replicas among the nodes of a cluster. There

may be variation in results when the cluster status varies. It

can be seen that the number of nodes required has reduced by

55% to 65%. From table 2, it can be seen that even though the

data blocks remain a constant, as the number of machines

increases the minimum number of machines required also

increases. This is because as the cluster size becomes large,

the blocks gets placed sparsely. As the data size increases,

minimum number of required blocks also increases. The

reduction in number of machines required to do the job varies

from 80% to 60% (table 3).

Free

RAM

(MB)

Fre

e

Har

d

disk

(GB

)

No

.m

ap

tas

ks

No.

red

uce

Tas

ks

Relia

bility

_hist

ory

Reliab

ility_a

ctive

(nodes

selecte

d)

Loa

d

Ave

rag

e

No

de

na

me

1037 320 8 2 0.3 1 0.4 C1

700 256 5 3 0.5 0.0001 0.3 C2

1124 128 5 1 0.6 1 0.5 C3

437 100 6 3 0.8 1 0.6 C4

1540 128 6 2 0.4 0.0001 0.2 C5

456 80 5 2 0.7 0.0001 0.15 C6

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Information Processing and Remote Computing – IPRC, August 2012

10

Table 3, PSO results for various numbers of machines and

blocks

Table 4, Performance with varying number of machines

Table 5: Performance with varying number of blocks

NUMBER OF

MACHINES

NUMBER OF

BLOCKS

MINIMUM NO

OF MACHINES

REQUIRED

1000 1000 200

1000 5000 350

1000 10000 400

When the greedy approach used for the selection of nodes

from the large from cluster, it takes more time. So it is

suggested to use intelligence approach like PSO reach the near

optimal solution quickly.

5.2. Measure of energy efficiency and

reliability
The result provided below is based on the nodes selected to be

live in cluster to perform the MapReduce job and power

required for nodes in the cluster. The power savings is

measured in terms of power required for Dell PowerEdge

SC1425 Rack Server without including power consumption

by Air Conditioners. Since power supply for SC 1425 Rack

Server is 450 watts and cluster consists of 9 nodes including

NameNode. So the power saving is found by power consumed

the other nodes in the cluster. Reliability is measured in terms

of running the MapReduce job completely with failure of any

live nodes in the cluster. It simply tells how many failures of

nodes can be tolerated during the process of MapReduce job.

The result of power savings is shown in fig.2. The reliability

of cluster is shown in fig.3.

Table 6, Measure of reliability and energy efficiency

Fig 2: Energy efficiency

 Fig 3: Reliability measure

5.3 Time efficiency
The table 7 shows the time required for the completion of job

with our proposed scheduler, default scheduler with some

nodes powered down and default scheduler. Here the size of

input file processed by a MapReduce job is about 1.2 GB and

each block is of size 64 MB. We have encountered errors

when using default scheduler with nodes powered down. As

the proposed scheduler submits the job only to live nodes in

the cluster, it reduces time required to run the MapReduce job

and ensures the reliability during the job processing.

Table 7: Time measurement with various situations

TYPE OF CONFIGURATION

TIME

min Sec

Proposed Scheduler 10 52

Default Scheduler

with some nodes powered down
12 57

Default Scheduler 14 19

0

500

1000

1500

2000

2500

3 5 6 7

Energy efficiency

0

0.5

1

1.5

2

2.5

3

3.5

3 5 6 7

N
o

 o
f

fa
ilu

re
 t

o
la

ra
n

ce

No of nodes selected

Reliability

NUMBE

R OF

MACHIN

ES

NUMBE

R OF

BLOCK

S

MINIMUM

NO OF

MACHINES

REQUIRED

NUMB

ER OF

ITERA

TIONS

TIM

E

(sec)

9 120 4 10 1

500 1000 150 16 4

1000 5000 380 19 9

2000 10000 700 23 12

NUMBER

OF

MACHINES

TIME POWER

SAVINGS

(Watts)

RELIABI

LITTY min Sec

3 10 52 2250 1

5 9 29 1350 2

6 8 35 900 2

7 5 20 450 3

NUMBER OF

MACHINES

NUMBER OF

BLOCKS

MINIMUM NO

OF

MACHINES

REQUIRED

500 10000 200

1000 10000 320

2000 10000 650

No of nodes selected

S

a

v

i

n

g

W

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Information Processing and Remote Computing – IPRC, August 2012

11

6. CONCLUSION
This paper proposes an energy efficient and reliable block

placement strategy in hadoop. Two approaches have been

suggested to identify the set of active nodes. A learning

scheduler is used to submit the jobs to the cluster in an

efficient and reliable manner. Job history files are maintained

that can perform job matching and assign it to correct tracker

in the cluster. If information about a job is not available in the

history file then job classification takes place based on job and

node features. This minimizes the time required to run the job

and ensures reliability in the completion of job. The system

provides flexibility in powering up and down the nodes using

Wake On Lan mechanism for energy efficiency. Experimental

results demonstrate that the proposed approach performs

better than default schedulers in Hadoop in terms of energy

consumption and reliability.

7. ACKNOWLEDGEMENTS
The authors acknowledge the team members of Grid and

Cloud Systems Group, Yahoo R&D, India for their help in

carrying out this project. The authors thank Dr R

Rudramoorthy, Principal for his support. This project is an

outcome of PSG-Yahoo Research on grid and cloud

computing.

8. REFERENCES
[1] Hadoop - http://developer.yahoo.com – Hadoop internals

and tutorial.

[2] HDFS - http://hadoop.apache.org/hdfs – Study about

HDFS and its development.

[3] R. Buyya, M. Murshed, Gridsim: a toolkit for the

modeling and simulation of distributed resource

management and scheduling for grid computing,

Concurrency and Computation: Practice and Experience

14 (2002), 1175{1220.

doi:http://dx.doi.org/10.1002/cpe.710.

[4] Willis Lang and Jignesh M. Patel, Energy Management

for MapReduce Clusters, Computer Sciences

Department, University of WisconsinMadison, USA.

[5] Nitesh Maheshwari, Radheshyam Nanduri, Vasudeva

Varma, Dynamic Energy Efficient Data Placement and

Cluster Reconfiguration Algorithm for MapReduce

Framework, Search and Information Extraction Lab,

Language Technologies Research Centre (LTRC), IIIT

Hyderabad.

[6] Jacob Leverich, Christos Kozyrakis, On the Energy

(In)efficiency of Hadoop Clusters, Computer Systems

Laboratory, Stanford University.

[7] Yanpei Chen, Laura Keys, Randy Katz , Hadoop Summit

2009 – Towards Energy Efficient Hadoop -, RAD Lab,

UC Berkeley.

[8] Hyeong S. Kim Dong In Shin Young Jin Yu Hyeonsang

Eom Heon Y. Yeom,, Towards Energy Proportional

Cloud for Data Processing Frameworks, School of

Computer Science and Engineering, Seoul National

University.

[9] M. Weiser, B. Welch, A. Demers, S. Shenker,

Scheduling for reduced cpu energy, in: OSDI '94:

Proceedings of the 1st USENIX conferencon Operating

Systems Design and Implementation, USENIX

Association, Berkeley, CA, USA, 1994, p. 2.

[10] A. Rangasamy, R. Nagpal, Y. Srikant, Compiler-directed

frequency and voltage scaling for a multiple clock

domain micro architecture, in: CF '08: Proceedings of the

5th conference on Computing frontiers, ACM, New

York, NY,USA, 2008, pp.

209{218.doi:http://doi.acm.org/10.1145/1366230.136626

7

[11] R. Lebeck, X. Fan, H. Zeng, C. Ellis, Power aware page

allocation, in: ASPLOS-IX: Proceedings of the ninth

international conference on Architectural support for

programming languages and operating systems,

ACM,NewYork,NY,USA,2000,pp.105{116.doi:http://do

i.acm.org/10.1145/378993.379007.

[12] D. P. Helmbold, D. D. Long, T. L. Sconyers, B. Sherrod,

Adaptive diskspindown for mobile computers, Mobile

Networks and Applications 5 (2000) 285{297.

[13] M. Elnozahy, M. Kistler, R. Rajamony, Energy

conservation policies for web servers, in: USITS'03:

Proceedings of the 4th conference on USENIX

Symposium on Internet Technologies and Systems,

USENIX Association, Berkeley, CA, USA, 2003.

[14] E. V. Carrera, E. Pinheiro, R. Bianchini, Conserving disk

energy in net-work servers, in: ICS '03: Proceedings of

the 17th annual international conference on

Supercomputing, ACM, New York, NY, USA, 2003,

pp.86{97.

doi:http://doi.acm.org/10.1145/782814.782829.

[15] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, H.

Franke, Drpm: Dynamic speed control for power

management in server class disks,Computer Architecture,

International Symposium on 0 (2003)

169.doi:http://doi.ieeecomputersociety.org/10.1109/ISC

A.2003.1206998.

[16] Jan Stoess , Christoph Klee , Stefan Domthera , Frank

Bellosa, Transparent, Power-Aware Migration in

Virtualized Systems.

[17] Akshat Verma, Puneet Ahuja and Anindya Neogi,

pMapper: Power and Migration Cost Aware Application

Placement in Virtualized Systems

[18] Live Data Center Migration acrossWANs: A Robust

Cooperative Context Aware Approach K.K.

Ramakrishnan, Prashant Shenoy , Jacobus Van der

Merwe AT&T Labs-Research / � University of

Massachusetts

[19] intelligence R. Jeyarani , R. Vasanth Ram , N. Nagaveni,

Design and implementation of adaptive power-aware

virtual machine provisioner (APA-VMP) using swarm

[20] Power-aware linear programming based scheduling for

heterogeneous computer clusters. Rini T Kaushik, Milind

Bhandarkar, GreenHDFS: Towards an energy-

conserving, storage-efficient, hybrid Hadoop compute

cluster.

[21] WOL – http://wikipedia.org/wol.

[22] PSO reference - http://www.swarmintelligence.org –

Study about PSO.

http://www.springerlink.com/content/?Author=Akshat+Verma
http://www.springerlink.com/content/?Author=Puneet+Ahuja
http://www.springerlink.com/content/?Author=Anindya+Neogi
http://www.springerlink.com/content/p322174380x1m122/
http://www.springerlink.com/content/p322174380x1m122/
http://dl.acm.org/results.cfm?query=Name%3A%22R%2E%20Jeyarani%22&querydisp=Name%3A%22R%2E%20Jeyarani%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=108233470&CFTOKEN=18376675
http://dl.acm.org/results.cfm?query=Name%3A%22R%2E%20Vasanth%20Ram%22&querydisp=Name%3A%22R%2E%20Vasanth%20Ram%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=108233470&CFTOKEN=18376675
http://dl.acm.org/results.cfm?query=Name%3A%22N%2E%20Nagaveni%22&querydisp=Name%3A%22N%2E%20Nagaveni%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=108233470&CFTOKEN=18376675

