
IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

94

Optimizing Fitness Function for the Game of Go-Moku

Thaker Chirag S
Research Scholar, Faculty of

Engg. SGVU,Jaipur

 Dharm Singh
College of Technology and

Engineering, MPUAT

Udaipur, India

Shah Sanjay M
Research Scholar, Faculty of

Engg. SGVU, Jaipur

ABSTRACT

Game playing has been the area of research in Artificial

intelligence. Particularly, board game playing programs are

often described as being a combination of search and

knowledge. Board Games, due to its very nature, provide

dynamic environments that make them ideal area of

computational intelligence theories, architectures, and

algorithms. In board games, it has always been the challenging

task to build a quality evaluation function. The goodness or

badness of the evaluation function is determined by its accuracy,

relevance, cost and outcome. All of these parameters must be

addressed and the weighed results are added to an evaluation

function experimentally. Evolutionary algorithms such as

Genetic algorithm are applied to the game playing because of

the very large state space of the problem. While following the

natural evolution, the fitness of an individual is defined with

respect to its competitors and collaborators, as well as to the

environment. Evolutionary algorithms follow the same path to

evolve game playing programs. Among all computer board

games, Go-moku, which is a variant of a Game of GO. This

paper mainly highlights how genetic algorithm can be applied to

game of Go-Moku.

Keywords

Deterministic Games, Board Games, Go-Moku, Chromosome,

Fitness function.

1. INTRODUCTION
Playing games require sophisticated intelligence in a well-

defined problem where success is easily measured. Most of the

board games provide very large state space to search. Games

have therefore proven to be important domains for studying

problem solving techniques. Most of the research in game

playing has attracted researchers on creating deeper level

searches through the possible game scenarios. Through games,

efficiency of AI working can be measured in terms of capability

to acquire intelligence. The old techniques of artificial

techniques were developed, tested and improvised for such

games. [1][2]

While implementing any problem, which requires knowledge

and decision making process, there is lot to learn. In fact, one of

the leading contributions of applying AI expertise to develop

game-playing programs was the realization that a search-

intensive (“brute-force”) approach. This has potential of

producing high-quality performance using minimal domain

specific knowledge. Due to consistent efforts made by AI

research groups all over the world, very powerful and result

providing search techniques have been developed and

successfully deployed to variety of problems.The application

domain of game learning and move making programs are

primarily an optimization problem. The degree of sophistication

lies in efficiency of search algorithms which in turn evaluates

current power of its evaluation function in very large search

space. In this paper, how a genetic approach can be applied to

the Go-Moku game is presented.The availability of cheap and

powerful hardware has made the programming of complex

problem easy and affordable. Availability of these hardware and

software tools made it possible to simulate complex physical

learning environments, resulting in an exploration of artificially

improved soft cognitive moves by computer programs in all

sorts of board games. Game playing programs have become a

facet of many people’s routine lives. [3]

The high state complexity of almost all traditional board games

leads it to AI research area of state space search for making a

next move. These games provide challenges in the form of

guiding the evolution with the use of human knowledge and

achieving successful and intelligent game playing behaviour

[4][5]

2. HISTORY AND RULES OF GO-MOKU
Japan country has given many board games to the world. The

game of GO is a well known board game from Japan. The game

of Go-Moku is a variant of the game of GO. It is also known as

a connect-5 game. It is a two player game. It falls in the category

of zero-sum deterministic finite board game with perfect

information. In two player games, the result can be win by one

of the players or a draw.The game is having very simple rule but

a highly complex game. It is played on a square board of 19 X

19 size. The rows and column are labelled.

The players alternate their moves. The player with black piece

starts the game. The move can be made in any free position on

the board. The game is over when one of the player has got five

pieces in one line either horizontally, vertically, or diagonally-

major or minor. To reduce the advantage to the first player, in a

variant of the game, the next move of black is restricted in 5 * 5

square area of first move. [18].

State-space complexity of any board game represents the

number of possible board states in the game. For example, in the

game of Go-Moku, there are 361 board locations where each

location can take one of three values, giving approximately 3361

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

95

total state space. The players need to understand some important

structures to maximize win and to minimize loss.

Table 1: shows important structures of the game

Open four Four Three Split three

 4 same

colour

pieces in a

row, with

both sides

open

4 same

colour pieces

in a row,

with only

one side

open

3 same colour

pieces in a

row, chance

to convert it

into four in

next move

3 same colour

pieces in a

row, with an

empty

position.

Chance to

convert it into

four in next

move

In the next

move,

definite win

for player

having

open four.

In the next

move, there

is a chance

to win if

opponent do

not occupy

the open

position of

Four.

In the next

move,

possibility to

convert it into

Four or Open

Four

In the next

move,

possibility to

convert it into

Four or Open

Four

3. GENETIC ALGORITHMS
The Genetic Algorithm was developed by John Holland (1975,

1992) and his students, including David Goldberg (1988). The

original applications were in engineering and were

predominantly optimisation problems. But the GA can search

for more general optima. Axelrod (1997) recounts how his

colleague at Michigan, John Holland, mentioned that there was

this new technique in Artificial Intelligence (or what has become

known as Machine Learning) which, by simulating natural

selection, was able to search for optima in extremely non-linear

spaces. With state-space games, the state summarises all history

that is payoff-relevant, and players' strategies are restricted to

depend only on the state and the time. [19]Games, naturally are

a problem involved with searching of state space. Genetic

algorithm is the subset of evolutionary algorithms. It is a natural

choice for game playing and learning problems because it

provides an algorithmic and logical framework for exploiting all

possible board game scenarios through natural-evolution

processes like selection, cross over and mutation. It iteratively

evolves intermediate candidate solutions to problem domains

that have large solution search spaces. It does not use exhaustive

search or conventional optimization techniques but uses

randomized searching. In practice, Genetic algorithms have been

applied to a broad range of learning and optimization problems

through a set of Genetic Parameters. [9][10]The program

acquires a novel set of evaluation function parameters as

generations of the genetic algorithms are executed through a

series of experiments.

The process of evolution starts with a random set of candidate

solutions also called as chromosomes. These set of candidate

solutions is known as population. Using a cross over process and

mutation operators, it evolves the population towards an optimal

set of solutions. As there is no guarantee of an optimal solution

in the case of Genetic algorithm, the main challenge is to design

a “genetic” process that maximizes the likelihood of generating

such an optimized solution. [11]As Genetic Algorithms is

iterative in nature, in each generation, the first step is typically

to evaluate the fitness of each candidate solution in the current

population of chromosomes, based on the fitness values and to

select the fittest candidate solutions to act as parents of the next

generation of candidate solutions. After the selection process,

the selected parents are recombined or mated through a

crossover operator and then mutated using a mutation operator

to generate offspring. The fittest parents and their new offspring

form a new population, from which the process is repeated to

create new populations in the coming generations. Selection,

recombination, and mutation are generic operations in any

genetic algorithm.

The operations of evaluation, selection, recombination and

mutation are usually performed repetitively for each of the

iteration. So in a genetic algorithm, a major challenge is the

design of the fitness function and the structure of chromosomes

which reflects the problem domain. The value returned by the

fitness function is called as fitness value. Other important

parameters in Genetic algorithms are the size of the population,

the portion of the population taking part in recombination, and

the mutation rate. The mutation rate defines the probability with

which a bit is changed in a chromosome that is produced by a

crossover [12]. The mutation operator provides for some

randomness and mainly to avoid the problems like local maxima

and local minima. It does not aim to complete an exhaustive

search, but it has power to quickly identify and converge on

useful solutions. It provides an effective means for going beyond

the structured conventional engineering approach which is very

common to many forms of human design. The solution search

process is inherently parallel and can be accelerated significantly

by utilizing an evolutionary search algorithmic to find fitter

solutions through strong moves. At a stage, all that is required is

to be able to compare two solutions and indicate which is better.

In Genetic algorithm, the proposed solution does not aim to find

global optimum. The program’s main objective lies in tuning an

evaluation function to adjust its parameters so that the overall

game performance of the program is enhanced. In fact, for a

large set of such high complexity driven problems, a unique

global optimum does not exist. At first glance, automatic tuning

of the evaluation function appears like an optimization task,

which is very well suited for Evolutionary algorithms like GA.

The many parameters associated with the evaluation function

which are nothing but the mirroring of the features associated

with the game, can be encoded as a bit string.Genetic algorithm

explores a large number of points simultaneously in a search

space. This phenomenon avoids the chances of poor local

optima quickly, thus resulting in a quicker and fruitful search.

The mutation rate defines the probability with which a bit is

changed in a chromosome that is produced by a crossover [12].

The mutation operator provides for some randomness and

mainly to avoid the problems like local maxima and local

minima.The space to be searched is huge. Due to the complexity

of Go-Moku game, any search algorithm based method which is

based on exhaustive search for the problem space is infeasible.

3.1 Fitness Function
An important parameter in the implementation of Genetic

algorithm is the fitness value returned by the fitness function. As

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

96

the genetic process evolves, the fitness value of each

chromosome is found out. The chromosomes with worst fitness

values are discarded while keeping the best chromosomes. To

avoid the problem of local minima or local maxima sometimes a

mutation rate is increased. This paper uses genetic algorithm in

game playing by constructing a static evaluation function. The

function uses the structures and features of the game of Go-

Moku.

4. APPLYING GA TO GO-MOKU
The board is represented as a two-dimensional 19 * 19 elements

array. Each board position can have any of the following values:

-1= Free position in neighboring zone, 0 =Free position, 1=

Computer player (using GA) piece, 2= Human player piece.The

neighboring zone of considered board position is the set of all

occupied positions i.e. positions with value 1 or 2. The fitness

value is derived using fitness function for a move to position (x,

y) on the board. The chromosome represents a sequence of

alternate plays by computer algorithm and player. The fitness

function uses a table of weights to calculate the fitness value for

a considered board position. The fitness value of a gene is

calculated as the sum of weights of all sequences of pieces

surrounding the gene under consideration. The static evaluation

function gives more weightage to GA player than the human

player. If we reverse the role of weightage, then the program

will work in a mode of defense.

For figure 1[20],

FV = value of two structure for GA + 2 * value of one structure

for Human play.The algorithm calculates the sum total of first

genes which occur as per the prediction value selected. If the

prediction value is 3, then sum total of first 3 genes take

place.This value is used to decide the next actual move

suggested by the first gene of selected chromosome.

Fig: 1

4.1 Implementation
The game board interface is represented as a square of 19 * 19

and the intersections are used as the valid places for move. The

pieces are represented as circles.The chromosome is represented

as a structure with three variables x, y and fitness value for that

position. The weights for the various structures are used per the

static weight table. The fitness value of the considered board

position is calculated as the sum total of the weight values of the

surrounding genes in the neighbourhood. According to the

fitness values found for all considered board positions, the move

having the maximum fitness values is selected as the next move

by computer.

The parameters of GA used were,

• genes per chromosome =20,

• Population size =20

• Rate of crossover = 0.5

• Number of iterations = 20

5. CONCLUSION
The simplicity of fitness function is heavily based on the feature

characteristics of the game. This function when passes through

the genetic cycle of selection-crossover-mutation with weight

tuning through iterative process of generations it exposes a

possibility of improvement and some rearrangement of weights

to produce brilliant moves for attack and defense strategies. This

implementation, which takes moderate number of Genetic

Algorithm constituents like Number of Genes in Chromosome,

Population size, Number of Generations, not only improves the

working cycle of better game moves, but also show very

promising side of Genetic move optimization.

6. REFERENCES

[1] Hong, J.-H. and Cho, S.-B. (2004). Evolution of emergent

behaviors for shooting game characters in robocode. In

Evolutionary Computation, 2004. CEC2004. Congress on

Evolutionary Computation, volume 1, pages 634–638,

Piscataway, NJ. IEEE.

[2] J. Clune. Heuristic evaluation functions for general game

playing. In Proc. of AAAI, 1134–1139, 2007.

[3] J¨org Denzinger, Kevin Loose, Darryl Gates, and John

Buchanan. Dealing with parameterized actions in behavior

testing of commercial computer games. In Proceedings of

the IEEE 2005 Symposium on Computational Intelligence

and Games (CIG), pages 37–43, 2005.

[4] Matt Gilgenbach. Fun game AI design for beginners. In

Steve Rabin, editor, AI Game Programming Wisdom 3,

2006.

[5] S. Schiffel and M. Thielscher. A multiagent semantics for

the game description language. In Proc. of the Int.’l Conf.

on Agents and Artificial Intelligence, Porto 2009. Springer

LNCS.

[6] T. Srinivasan, P.J.S. Srikanth, K. Praveen and L. Harish

Subramaniam, “AI Game Playing Approach for Fast

Processor Allocation in Hypercube Systems using Veitch

diagram (AIPA)”, IADIS International Conference on

Applied Computing 2005, vol. 1, Feb. 2005, pp. 65-72.

[7] Thomas P. Runarsson and Simon M. Lucas. Co-evolution

versus self-play temporal difference learning for acquiring

position evaluation in small-board go. IEEE Transactions

on Evolutionary Computation, 9:628 – 640, 2005.

[8] Yannakakis, G., Levine, J., and Hallam, J. (2004). An

evolutionary approach for interactive computer games. In

Evolutionary Computation, 2004. CEC2004. Congress on

Evolutionary Computation, volume 1, pages 986–993,

Piscataway, NJ. IEEE.

[9] A. Hauptman and M. Sipper. Evolution of an efficient

search algorithm for the Mate-in-N problem in chess. In

Proceedings of the 2007 European Conference on Genetic

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

97

Programming, pages 78–89. Springer, Valencia, Spain,

2007.

[10] P. Aksenov. Genetic algorithms for optimising chess

position scoring. Master’s Thesis, University of Joensuu,

Finland, 2004. Y. Bjornsson and T.A. Marsland. Multi-cut

alpha-beta-pruning in game-tree search. Theoretical

Computer Science, 252(1-2):177–196, 2001.

[11] O. David-Tabibi, A. Felner, and N.S. Netanyahu. Blockage

detection in pawn endings. Computers and Games CG

2004, eds. H.J. van den Herik, Y. Bjornsson, and N.S.

Netanyahu, pages 187–201. Springer-Verlag, 2006.

[12] A. Hauptman and M. Sipper. Using genetic programming

to evolve chess endgame players. In Proceedings of the

2005 European Conference onGenetic Programming, pages

120–131. Springer, Lausanne, Switzerland, 2005.

[13] G. Kendall and G. Whitwell. An evolutionary approach for

the tuning of a chess evaluation function using population

dynamics. In Proceedings of the 2001 Congress on

Evolutionary Computation, pages 995–1002. IEEE Press,

World Trade Center, Seoul, Korea, 2001.

[14] Holland, J. H. (1975). Adaptation in Natural and Artificial

Systems: An Introductory Analysis with Applications to

Biology, Control and Artificial Intelligence. Ann Arbor,

MI: University of Michigan Press.

[15] Goldberg, D. E. (1989). Genetic Algorithms in

Search,Optimization and and Machine Learning. Reading,

MA: Addison-Wesley.

[16] Buckles Bill P. and Petry, Frederick E. Genetic Algorithms.

Los Alamitos, CA: The IEEE Computer Society Press.

1992.

[17] Haupt, Randy L, and Haupt, Sue Ellen. (1998). Practical

Genetic Algorithms. New York: John wiley & Sons

[18] L.V. Allis,H.J. van den Herik ,M.P.H. Huntjens. Go-Moku

and Threat Space Search.

[19] Robert E. Marks Playing Games with Genetic Algorithms

[20] Sanjay M Shah, Chirag S Thaker, Dharm Singh Multimedia

Based Fitness Function OptimizationThrough Evolutionary

Game Learning at International Conference on ETNCC

2011 at MPUAT, Udaipur on 22-24 April 2011.

