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ABSTRACT 

Game playing has been the area of research in Artificial 

intelligence. Particularly, board game playing programs are 

often described as being a combination of search and 

knowledge.  Board Games, due to its very nature, provide 

dynamic environments that make them ideal area of 

computational intelligence theories, architectures, and 

algorithms. In board games, it has always been the challenging 

task to build a quality evaluation function. The goodness or 

badness of the evaluation function is determined by its accuracy, 

relevance, cost and outcome. All of these parameters must be 

addressed and the weighed results are added to an evaluation 

function experimentally. Evolutionary algorithms such as 

Genetic algorithm are applied to the game playing because of 

the very large state space of the problem. While following the 

natural evolution, the fitness of an individual is defined with 

respect to its competitors and collaborators, as well as to the 

environment. Evolutionary algorithms follow the same path to 

evolve game playing programs. Among all computer board 

games, Go-moku, which is a variant of a Game of GO. This 

paper mainly highlights how genetic algorithm can be applied to 

game of Go-Moku.  
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1. INTRODUCTION 
Playing games require sophisticated intelligence in a well-

defined problem where success is easily measured. Most of the 

board games provide very large state space to search. Games 

have therefore proven to be important domains for studying 

problem solving techniques. Most of the research in game 

playing has attracted researchers on creating deeper level 

searches through the possible game scenarios. Through games, 

efficiency of AI working can be measured in terms of capability 

to acquire intelligence. The old techniques of artificial 

techniques were developed, tested and improvised for such 

games. [1][2] 

While implementing any problem, which requires knowledge 

and decision making process, there is lot to learn. In fact, one of 

the leading contributions of applying AI expertise to develop 

game-playing programs was the realization that a search-

intensive (“brute-force”) approach. This has potential of 

producing high-quality performance using minimal domain 

specific knowledge. Due to consistent efforts made by AI 

research groups all over the world, very powerful and result 

providing search techniques have been developed and  

 

successfully deployed to variety of problems.The application 

domain of game learning and move making programs are 

primarily an optimization problem. The degree of sophistication 

lies in efficiency of search algorithms which in turn evaluates 

current power of its evaluation function in very large search 

space. In this paper, how a genetic approach can be applied to 

the Go-Moku game is presented.The availability of cheap and 

powerful hardware has made the programming of complex 

problem easy and affordable.  Availability of these hardware and 

software tools  made it possible to simulate complex physical 

learning environments, resulting in an exploration of artificially 

improved soft cognitive moves by computer programs in all 

sorts of board games. Game playing programs have become a 

facet of many people’s routine lives. [3]  

The high state complexity of almost all traditional board games 

leads it to AI research area of state space search for making a 

next move. These games provide challenges in the form of 

guiding the evolution with the use of human knowledge and 

achieving successful and intelligent game playing behaviour 

[4][5]   

2. HISTORY AND RULES OF GO-MOKU 
Japan country has given many board games to the world. The 

game of GO is a well known board game from Japan. The game 

of Go-Moku is a variant of the game of GO. It is also known as 

a connect-5 game. It is a two player game. It falls in the category 

of zero-sum deterministic finite board game with perfect 

information.  In two player games, the result can be win by one 

of the players or a draw.The game is having very simple rule but 

a highly complex game. It is played on a square board of 19 X 

19 size. The rows and column are labelled.  

The players alternate their moves. The player with black piece 

starts the game. The move can be made in any free position on 

the board. The game is over when one of the player has got five 

pieces in one line either horizontally, vertically, or diagonally-

major or minor.  To reduce the advantage to the first player, in a 

variant of the game, the next  move of black is restricted in 5 * 5 

square area of first move. [18]. 

State-space complexity of any board game represents the 

number of possible board states in the game. For example, in the 

game of Go-Moku, there are 361 board locations where each 

location can take one of three values, giving approximately 3361   
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total state space. The players need to understand some important 

structures to maximize win and to minimize loss. 

Table 1: shows important structures of the game 

Open four Four Three Split three 

 4 same 

colour 

pieces in a 

row, with 

both sides 

open  

4 same 

colour pieces 

in a row, 

with only 

one side 

open 

3 same colour 

pieces in a 

row, chance 

to convert it 

into four in 

next move 

3 same colour 

pieces in a 

row, with an 

empty 

position. 

Chance to 

convert it into 

four in next 

move 

In the next 

move, 

definite win 

for player 

having 

open four. 

In the next 

move, there 

is a chance 

to win if 

opponent do 

not occupy 

the open 

position of 

Four. 

In the next 

move, 

possibility to 

convert it into 

Four or Open 

Four 

In the next 

move, 

possibility to 

convert it into 

Four or Open 

Four 

 

3. GENETIC ALGORITHMS 
The Genetic Algorithm was developed by John Holland (1975, 

1992) and his students, including David Goldberg (1988). The 

original applications were in engineering and were 

predominantly optimisation problems. But the GA can search 

for more general optima. Axelrod (1997) recounts how his 

colleague at Michigan, John Holland, mentioned that there was 

this new technique in Artificial Intelligence (or what has become 

known as Machine Learning) which, by simulating natural 

selection, was able to search for optima in extremely non-linear 

spaces. With state-space games, the state summarises all history 

that is payoff-relevant, and players' strategies are restricted to 

depend only on the state and the time. [19]Games, naturally are 

a problem involved with searching of state space. Genetic 

algorithm is the subset of evolutionary algorithms. It is a natural 

choice for game playing and learning problems because it 

provides an algorithmic and logical framework for exploiting all 

possible board game scenarios through natural-evolution 

processes like selection, cross over and mutation.  It iteratively 

evolves intermediate candidate solutions to problem domains 

that have large solution search spaces. It does not use exhaustive 

search or conventional optimization techniques but uses 

randomized searching. In practice, Genetic algorithms have been 

applied to a broad range of learning and optimization problems 

through a set of Genetic Parameters. [9][10]The program 

acquires a novel set of evaluation function parameters as 

generations of the genetic algorithms are executed through a 

series of experiments.  

The process of evolution starts with a random set of candidate 

solutions also called as chromosomes. These set of candidate 

solutions is known as population. Using a cross over process and 

mutation operators, it evolves the population towards an optimal 

set of solutions. As there is no guarantee of an optimal solution 

in the case of Genetic algorithm, the main challenge is to design 

a “genetic” process that maximizes the likelihood of generating 

such an optimized solution. [11]As Genetic Algorithms is 

iterative in nature, in each generation, the first step is typically 

to evaluate the fitness of each candidate solution in the current 

population of chromosomes, based on the fitness values and to 

select the fittest candidate solutions to act as parents of the next 

generation of candidate solutions. After the selection process, 

the selected parents are recombined or mated through a 

crossover operator and then mutated using a mutation operator 

to generate offspring. The fittest parents and their new offspring 

form a new population, from which the process is repeated to 

create new populations in the coming generations. Selection, 

recombination, and mutation are generic operations in any 

genetic algorithm.  

The operations of evaluation, selection, recombination and 

mutation are usually performed repetitively for each of the 

iteration.  So in a genetic algorithm, a major challenge is the 

design of the fitness function and the structure of chromosomes 

which reflects the problem domain. The value returned by the 

fitness function is called as fitness value. Other important 

parameters in Genetic algorithms are the size of the population, 

the portion of the population taking part in recombination, and 

the mutation rate. The mutation rate defines the probability with 

which a bit is changed in a chromosome that is produced by a 

crossover [12]. The mutation operator provides for some 

randomness and mainly to avoid the problems like local maxima 

and local minima. It does not aim to complete an exhaustive 

search, but it has power to quickly identify and converge on 

useful solutions. It provides an effective means for going beyond 

the structured conventional engineering approach which is very 

common to many forms of human design. The solution search 

process is inherently parallel and can be accelerated significantly 

by utilizing an evolutionary search algorithmic to find fitter 

solutions through strong moves. At a stage, all that is required is 

to be able to compare two solutions and indicate which is better. 

In Genetic algorithm, the proposed solution does not aim to find 

global optimum. The program’s main objective lies in tuning an 

evaluation function to adjust its parameters so that the overall 

game performance of the program is enhanced. In fact, for a 

large set of such high complexity driven problems, a unique 

global optimum does not exist. At first glance, automatic tuning 

of the evaluation function appears like an optimization task, 

which is very well suited for Evolutionary algorithms like GA. 

The many parameters associated with the evaluation function 

which are nothing but the mirroring of the features associated 

with the game, can be encoded as a bit string.Genetic algorithm 

explores a large number of points simultaneously in a search 

space. This phenomenon avoids the chances of poor local 

optima quickly, thus resulting in a quicker and fruitful search. 

The mutation rate defines the probability with which a bit is 

changed in a chromosome that is produced by a crossover [12]. 

The mutation operator provides for some randomness and 

mainly to avoid the problems like local maxima and local 

minima.The space to be searched is huge. Due to the complexity 

of Go-Moku game, any search algorithm based method which is 

based on exhaustive search for the problem space is infeasible. 

3.1 Fitness Function 
An important parameter in the implementation of Genetic 

algorithm is the fitness value returned by the fitness function. As 
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the genetic process evolves, the fitness value of each 

chromosome is found out. The chromosomes with worst fitness 

values are discarded while keeping the best chromosomes. To 

avoid the problem of local minima or local maxima sometimes a 

mutation rate is increased. This paper uses genetic algorithm in 

game playing by constructing a static evaluation function. The 

function uses the structures and features of the game of Go-

Moku. 

4. APPLYING GA TO GO-MOKU 
The board is represented as a two-dimensional 19 * 19 elements 

array. Each board position can have any of the following values:  

-1= Free position in neighboring zone, 0 =Free position, 1= 

Computer player (using GA) piece, 2= Human player piece.The 

neighboring zone of considered board position is the set of all 

occupied positions i.e. positions with value 1 or 2. The fitness 

value is derived using fitness function for a move to position (x, 

y) on the board. The chromosome represents a sequence of 

alternate plays by computer algorithm and player. The fitness 

function uses a table of weights to calculate the fitness value for 

a considered board position. The fitness value of a gene is 

calculated as the sum of weights of all sequences of pieces 

surrounding the gene under consideration. The static evaluation 

function gives more weightage to GA player than the human 

player. If we reverse the role of weightage, then the program 

will work in a mode of defense. 

For  figure 1[20],  

FV = value of two structure for GA + 2 * value of  one structure 

for Human play.The algorithm calculates the sum total of first 

genes which occur as per the prediction value selected. If the 

prediction value is 3, then sum total of first 3 genes take 

place.This value is used to decide the next actual move 

suggested by the first gene of selected chromosome. 

 

Fig: 1 

4.1 Implementation 
The game board interface is represented as a square of 19 * 19 

and the intersections are used as the valid places for move.  The 

pieces are represented as circles.The chromosome is represented 

as a structure with three variables x, y and fitness value for that 

position. The weights for the various structures are used per the 

static weight table. The fitness value of the considered board 

position is calculated as the sum total of the weight values of the 

surrounding genes in the neighbourhood. According to the 

fitness values found for all considered board positions, the move 

having the maximum fitness values is selected as the next move 

by computer.  

The parameters of GA used were,  

• genes per chromosome =20,  

• Population size =20 

• Rate of crossover = 0.5 

• Number of iterations = 20 

5. CONCLUSION 
The simplicity of fitness function is heavily based on the feature 

characteristics of the game. This function when passes through 

the genetic cycle of selection-crossover-mutation with weight 

tuning through iterative process of generations it exposes a 

possibility of improvement and some rearrangement of weights 

to produce brilliant moves for attack and defense strategies. This 

implementation, which takes moderate number of Genetic 

Algorithm constituents like Number of Genes in Chromosome, 

Population size, Number of Generations, not only improves the 

working cycle of better game moves, but also show very 

promising side of Genetic move optimization. 
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