
IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

84

A Comparative Analysis of Election Algorithm in

Distributed Systems

Heta Jasmin Jhaveri
Student of Government Engineering College,

 Sector 28

 Gandhinagar

Sanjay Shah
Professor of Government Engineering College,

Sector 28

Gandhinagar

ABSTRACT
In distributed system, an important challenge faced is the

adoption of efficient algorithms for coordinator election. The

main role of an elected coordinator is to manage the use of a

shared resource in an optimal manner. Among all the algorithms

reported in the literature, the Bully and Ring algorithms have

gained more popularity. This paper proposes a comparative

analysis of the various election algorithms in distributed system

and also presents a new approach for effective election.

General Terms

Distributed Systems, Election algorithms

Keywords

Election, Coordinator, Priority, Status table.

1. INTRODUCTION
A distributed system is a collection of processors interconnected

by a communication network in which each processor has its

own local memory and other peripherals and the communication

between them is held by message passing over the

communication network [1].

Features of Distributed System:

1. Inherently distributed applications

2. Information sharing among distributed users

3. Resource sharing

4. Better price performance ratio

5. Shorter response times and higher throughput

6. Higher reliability

7. Extensibility and incremental growth

8. Better flexibility in meeting users needs

Several distributed algorithms require that there be a coordinator

node in the entire system that performs some type of

coordination activity needed for the smooth running of other

nodes in the system. As the nodes in the system need to interact

with the coordinator node, they all must unanimously who the

coordinator is. Also if the coordinator node fails due to some

reason (e.g. link failure) then a new coordinator node must be

elected to take the job of the failed coordinator [1].

Leader election is a fundamental problem in the distributed

systems. The election node starts when one or more nodes

discover that the leader has failed, and it terminates when the

remaining nodes know who the new leader is.

Election algorithms are based on the following assumptions:

1. Each process in the system has a unique priority

number.

2. Whenever an election is held, the process having the

highest priority number among the currently active

process is elected as the coordinator.

3. On recovery, a failed process can take appropriate

actions to rejoin the set of active processes.

2. EXISTING ALGORITHMS
Among the prominent algorithms are those listed below:

(1) Hector Garcia-Molina,(1982; also known as Bully

Algorithm).

(2) Silberschatz and Galvin (1994)

(3) Sandipan Basu (2010)

2.1 Hector Garcia-Molina,(1982; also known

as bully algorithm).[3]

2.1.1 Assumptions
 Every node in the system has a unique priority

number.

 Every node in the system knows the priority of the

other nodes.

 Whenever an election is held. The node having the

highest priority number among the currently live nodes

is elected as the coordinator.

 On recovery, a failed process can take appropriate

actions to rejoin the set of active processes.

2.1.2 Algorithm
When a node (say n1) sends a request message to the

coordinator and does not receive a reply within a fixed timeout

period, it assumes that the coordinator has failed. It then initiates

an election by sending an election message to every other node

with a higher priority number than itself. If node n1 does not

receive any response to its election message within a fixed

timeout period, it assumes that among the currently active nodes

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

85

it has the highest priority number. Therefore it takes the job of

the coordinator and sends a broadcast message: coordinator

message to all the nodes in the system that has lower priority

than itself declaring that it is the new coordinator. If n1 receives

a response for its election message, this means that there are

nodes live that have higher priority than itself, so n1 does not

take any action and waits to receive the final result of the

election.

When a node n2 receives an election message from a node with

lower priority than it, it sends a response message: alive

message to the sender informing that it is alive and will take

over the election activity. Now n2 holds an election if it is not

already holding one. In this way, the election activity moves on

to the nodes that has the highest priority number among the

currently active processes and eventually wins the election and

becomes the new coordinator.

A failed node n must initiate an election after a recovery. If the

current coordinators priority number is higher than the node n

then the current coordinator will win the election initiated by

node n. On the other hand, if n’s priority is higher than the

current coordinator, it will not receive any response for its

election message. So it wins the election and takes over the

coordinator’s job from the currently active coordinator.

Therefore, the active process having the highest priority number

always wins the election. Hence the algorithm is called the

“bully” algorithm.

2.1.3 Operation
Initially there are 6 alive nodes in the system and node 6 with

the highest priority is the coordinator. But node 6 has crashed

which is realized by node 2, so it sends an election message to

nodes 3,4,5,6 with higher priority than node 2.

Fig 1.1

As node 6 has crashed, so node 2 receives OK message only

from nodes 3, 4,5 and discovers that there are nodes which are

live with higher priority than itself.

Fig 1.2

Now node 3 sends election message to nodes 4, 5, 6. Similarly,

node 5 and 5 sends message to nodes with higher priority than

theirs.

Fig 1.3

Nodes 4, 5 sends OK message to node 3 and 3,4 respectively.

Node 5 discovers that among the currently live nodes, it has the

highest priority.

Fig 1.4

Node 5 broadcasts coordinator message to all the nodes.

Fig 1.5

2.2 Silberschatz And Galvin (1994)

2.2.1 Assumptions

1. All the nodes in the system are organized as a logical ring.

2. The ring is unidirectional in the nodes so that all the messages

related to election algorithm are always passed only in one

direction.

2.2.2 Algorithm
While the message circulates over the ring, if the successor of

the sender nodes is down the sender can skip over successor, or

the one after that until an active member is located.

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

86

When a node n1 sends a request message to the current

coordinator and does not receive a reply within a fixed timeout

period, it assumes that the coordinator has crashed. So it initiates

an election by sending an election message to its successor. This

message contains the priority of node n1. On receiving the

election message, the successor appends its own priority number

to the message and passes it on to the next active member in the

ring.

In this manner, the election message circulates over the ring

from one active node to another and eventually returns back to

node n1. Node n1 recognizes the message as its own election

message by seeing that in the list of priority numbers held within

the message the first priority number is its own.

Among this list, it elects the node with the highest priority as the

new coordinator and then circulates a coordinator message over

the ring to inform the other active nodes. When the coordinator

message comes back to node n1, it is removed by node n1.

When a node n2 recovers after failure, it creates an inquiry

message and sends it to its successor. The message contains the

identity of node n2. If the successor is not the current

coordinator it simply forwards the enquiry message to its own

successor. In this way, the inquiry message moves forward

along the ring until it reaches the current coordinator. On

receiving the inquiry message, the current coordinator sends a

reply to node n2 informing that it is the current coordinator.

2.3 Sandipan Basu Algorithm

2.3.1 Assumptions

The following assumptions are made for this algorithm:-

(1) All nodes in the system are assigned a unique

identification numbers from 1 to N.

(2) All the nodes in the system are fully connected.

(3) On recovery, a failed process can take appropriate

actions to rejoin with the set of active processes.

(4) When a process wants some service from the

coordinator, the coordinator is bound to response

within the fixed time out period; besides its other

tasks.

(5) (5) We assume that a failure cannot cause a node to

deviate from its algorithm and behave in an

unpredictable manner.

(6) (6) Lamport’s concept of logical clock is used in

distributed system that we are considering.

2.3.2 Algorithm
When a process (say) Pi sends a message (any request) to the

coordinator and does not receive a response within a fixed

timeout period, it assumes that the coordinator has somehow

failed. Process Pi refers to its process status table, to see who is

process having the second highest priority number. It then

initiates an election, by sending an ELECTION message to the

process (say) Pj, having priority just below the failed

coordinator; i.e. process with the second highest priority

number.

2.3.2.1 Case 1
When Pj receives an election message (from Pi), in reply, Pj

sends a response message OK to the sender, informing that it is

alive and ready to be the new coordinator. Therefore, Pj will

send a message

COORDINATOR to all other live processes (having priority less

than Pj) in the system. Hence, Pi starts its execution from the

point where it was stopped.

Number of messages in this case = 2 + (n-1)

2.3.2.2 Case 2
If Pi does not receive any response to its election message,

within a fixed timeout period; it assumes that process Pj also has

somehow failed. Therefore, process Pi sends the election

message to the process (say, Pk) having the priority just below

the process Pj. This process continues, until Pi receives any

confirmation message OK from any of the process having higher

priority than Pi. It may be the case that, eventually Pi has to take

the charge of the coordinator. In that case, Pi will send the

COORDINATOR message to all other processes having lower

priority than Pi.

2.3.2.3 Case 3
Consider process Pm recovers from its failed state. Immediately,

it sends a REQUEST message to any of its live neighbors. The

purpose of the REQUEST message is to get the process status

table from its neighbor. So, as soon as any of Pm’s live

neighbors receives a REQUEST message, it sends a copy of the

current process status table to Pm. After receiving the process

status table, Pm checks whether its own priority number is less

than the process having the highest priority (i.e. current

coordinator’s priority) or not.

Number of messages in this case = 2

2.3.2.3.1 Case1
If the current coordinator’s priority is higher than Pm’s priority,

in that case, Pm will send its priority number and an UPDATE

messages to all other processes in the system, to tell them to

update Pm’s status (from CRASHED to NORMAL) in their

own process status table.

Number of messages in this case = (n-1)

2.3.2.3.2 Case 2
If Pm’s priority is higher than the current coordinator’s priority;

then Pm will be the new coordinator and update the process

status table and sends the COORDIANTOR message to all other

processes in the system, and takes over the coordinator’s job

from the currently active coordinator.

Number of messages in this case = (n-1)

So the efficiency of the algorithm in any case is O (n)

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

87

3. COMPARISON
In Bully algorithm, when the process having the lowest priority

number detects the coordinator’s failure and initiates an election,

in a system of n processes, altogether (n-2) elections are

performed. All the processes except the active process with the

highest priority number and the coordinator process that has just

failed perform elections. So in the worst case, the bully

algorithm requires O(n2) messages. When the process having the

priority number just below the failed coordinator detects failure

of coordinator, it immediately elects itself as the coordinator and

sends n-2 coordinator messages. So in the best case, it has O(n)

messages.

During recovery, a failed process must initiate an election in

recovery. So once again, Bully algorithm requires O(n2)

messages in the worst case, and (n-1) messages in the best case.

In ring algorithm, on the contrary, irrespective of which process

detects the failure of coordinator and initiates an election, an

election always requires 2(n-1) messages. (n-1) messages

needed for one round rotation of the ELECTION message, and

another (n-1) messages for the COORDINATOR message. The

algorithm proposed by Sandipan Basu has O(n) message

efficiency.

During recovery, a failed process does not initiate an election on

recovery, but just searches for the current coordinator. So ring

algorithm only requires n/2 messages on average during

recovery.

In the algorithm proposed by Sandipan Basu, the number of

ELECTION messages made when the coordinator fails is 2 in

the worst case. And it requires (n-1) coordinator messages. In

the best case, it requires only (n-2) coordinator messages as

there is no need to make any ELECTION message.

During recovery, in the best and the worst case, a failed process

requires 2 ELECTION message are required to know the current

coordinator and (n-1) messages to send its own priority to other

nodes. So in all, 2 + (n-1) messages are requires. Thus it requires

O(n) messages.

Another approach for an effective election is as follows:

With a distributed system of n nodes, the approach assumes that

all the nodes have unique id and each node in the system knows

the id of the all other nodes. Also that all the nodes in the system

are properly synchronized in time. When a node say n1

discovers the coordinator failure of node C, it sends a broadcast

message to all the other nodes with three parameters:

(C failed, n1 new Coordinator, TS1)

declaring that the coordinator C has failed, and now n1 is the

new coordinator, along with the timestamp TS1. It may happen

that another node n2 also discovers the coordinator failure and

sends a broadcast message with timestamp TS2. The nodes

receiving the two messages checks the two timestamp, and

considers the node as new coordinator which has less timestamp

or in other words, which discovered the coordinator crash

earlier.

So in all (n-1) Coordinator messages are required in any case,

and during recovery, a failed node sends an inquiry message to

any neighboring node to know the current coordinator which

requires two messages and (n-1) messages to let the other nodes

know that it is alive again.

4. CONCLUSION
The paper makes an analysis of the three algorithms discussed

and efficiency in terms of number of messages exchanged in

each case. Also it presents an effective approach to perform

election when a coordinator node has crashed.

5. ACKNOWLEDGMENTS
Our special thanks to Prof. Sanjay Shah who has contributed

largely towards development of this paper.

6. REFERENCES
[1] Sinha P.K, Distributed Operating Systems Concepts and

Design, Prentice-Hall of India private Limited, 2008.

[2] Tanenbaum A.S Distributed Operating System, Pearson

Education, 2007.

[3] Garcia – Molina “Elections in a distributed computing

system”, IEEE transactions on computers, vol C-31, No

1,pp 48-59., 1982.

[4] Fredrickson and Lynch, Fredrickson, and Lynch, “Electing

a Leader in a synchronous Ring”, journal of the ACM, Vol

34, pp 98-115, 1987.

[5] An Efficient Approach of Election Algorithm in

Distributed Systems” - Sandipan Basu / Indian Journal of

Computer Science and Engineering (IJCSE), Vol 20, No 1,

2010

