
IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

75

Multimedia Game Based Fitness Function

Optimization in Evolutionary Search Process

Dharm Singh

College of Technology and
Engineering, MPUAT

Udaipur, India

Thaker Chirag S

Research Scholar, Faculty of
Engg.

SGVU, Jaipur

ABSTRACT

At the leading edge of Artificial Intelligence, machine learning

game applications use a combination of various algorithms and

different types of information. Searching the large space of

solutions in depth leads to better solution. In checker board

game next move of disc is important to defeat the opponent.

Different selection strategy can be employed to select best next

move. In this paper, we present comparative performance of

roulette wheel selection and tournament selection method. The

focus of this paper is to incorporate systematic game playing

approach by analyzing game of checkers. Expert game players

reveal three major playing strategies to make game winning

moves. The game moves are divided into three stages opening

game, middle stage and endgame. An evolutionary program

plays game of checkers with an intention to build resilient

middle stage and a set of predefined rules are incorporated to

make calculated moves in an endgame. The paper is organized

into the sections of Introduction, Introduction to Checkers,

Game Complexity and Genetic Algorithm. The last three

sections are Implementation, Result Analysis, Conclusion and

references.

Keywords-Checkers,Evolutionary Algorithm, Genetic

Algorithm, Fitness, Roulette Wheel Selection

1. INTRODUCTION
Game playing is the one of the research area of Artificial

Intelligence from its foundation. Games require refined

intelligence in a well-defined problem where success is easily

measured. Games have therefore proven to be important field

for studying problem solving techniques. Many games have

many possibilities for a human to understand before making any

valid-sharp move at any given stage. Since past few decades of

research area of computers games, many powerful learning

methods have evolved to use knowledge and search to make

game playing decision on the board. The old techniques of

artificial intelligence work well with games and to large extents

such techniques were developed, tested and improvised for such

games [1],[2]. Any board game in general and Game of

Checkers in particular will definitely use the AI research

through its collected results. This paper present a more human

like approach to game playing by using genetic approach. While

developing game, the most important part is to make a move like

a human player through collected results. Fitness function is

used to decide which the best move. Various selection

methodologies can be employed to select best parents to

generate best offspring based on fitness value. Two methods

were tested Roulette Wheel and Tournament Selection method.

Checkers game can be solved using brute-force approach and

another approach is using optimizing through genetic algorithm.

The game learning domain and programs for making move are

primarily an optimization problem. The game playing programs

have two major areas for the consideration:

 Decision complexity, the difficulty of making correct

move decisions,

 Space complexity, the size of the search space[3]

2. INTRODUCTION TO CHECKERS
There are many versions played worldwide. Checkers is a game

for two players. It is played on an 8x8 checkered board, with a

dark square in each player's lower left corner. (Figure-1) Pieces

move only on dark squares which are numbered. Numbers are

used to record the moves, for example, if Red moves from

square 9 to square 13, then it is recorded as: 9-13 Each player

controls its own army of pieces (men). The player who controls

Red pieces moves first. The pieces (also known as 'men') are

arranged as shown on the left. The goal in the checkers game is

either to capture all of the opponent's pieces or to blockade

them. If neither player can accomplish the above, the game is a

draw.

Shah Sanjay M

 Research Scholar, Faculty of Engg.

SGVU, Jaipur

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

76

Fig.1. Checkers Initial Board

2.1 History of The Game
Checkers, as it is known in Great Britain, has ancient roots. It is

thought that the earliest form of checkers was a game discovered

and in an archeological dig at Ur in Iraq. Carbon dating makes it

appear that this game was played around 3000 B.C. However,

the game used a slightly different board, a different number of

pieces and no one is quite certain of the exact rules.In ancient

Egypt a game called Alquerque, which had a 5X5 board was a

common and much played game. Historians have traced it as far

back as 1400 B.C. It was a game of such popularity that it was

played all over the western world for thousands of years.Around

1100 a Frenchman got the idea of playing the game on a chess

board. This meant expanding the number of pieces to 12 on a

side. It was then called "Fierges" or "Ferses". It was soon found

that making jumps mandatory made the game more challenging.

The French called this version "Jeu Force". The older version

was considered more of a social game for women and was called

"Le Jeu Plaisant De Dames". Now the rules for checkers were

set and the game was exported to England and America. In

Great Britain the game was called "Draughts". Books were

written on the game in Spain as early as the mid-1500s and in

England a mathematician name William Payne wrote his own

treatise on Draughts in 1756. [4]

2.2 Types Of Checkers
There are more than 150 variants found worldwide. Some of

them are

2.2.1 International Draughts
In the International draughts variety of checkers, the game is

played on a 10x10 board with 20 checkers pieces being given to

each player. In this variant, kings are allowed to move across

several squares just as long as the squares are open. This rule is

also commonly known as "flying kings". If any player has the

option to take more than one path to jump and capture his or her

opponent's checkers pieces, he or she must take the option that

will result in the capture of the most checkers pieces. If any

checkers piece lands in the king’s row during a jump, it must

proceed with another capture backward if the option is available.

If the move does not end with the checker in the king row, it will

not be crowned even though it has passed through that row.

2.2.2 Canadian Checkers
This variety of checkers is played on a 12x12 board with 30

checkers pieces given to each player. However, the rules are the

same as those of International draughts.

2.2.3 Brazilian Checkers
This type of checkers is played on an 8x8 board. Again the rules

are just the same as International draughts.

2.2.4 Italian Checkers
This checkers type is played on an 8x8 board, with the main

difference from British-American checkers being that regular

checkers pieces are not allowed to capture kings.

2.2.5 Chinese checkers
Although it shares a similar name, Chinese checkers is not

actually a checkers variety, and is played on a star-shaped board

with marbles or pegs. [5]

3. GAME COMPLEXITY
The game of checkers has roughly 500 billion- billion possible

positions (5 × 1020). The task is very daunting to solve the

game, determining the finishing result in a game with no error

made by either of the player. Since last three decades, almost

incessantly, dozens of computers have been working on solving

Game of Checkers, applying state-of-the-art soft computing

based techniques to improve the learning process [6]. Game of

Checkers represents the most computationally challenging game

to be solved to date. Evolutionary Learning challenges in Game

of Checkers are:

 The space to be searched is huge. It is estimated that there

are up to 5X1020 possible positions that can be searched.

So any search algorithm based method which is based on

exhaustive search for the problem space is infeasible.

 The search space volume is not smooth and straight

forward. An evaluation function’s parameters which is

feature construction based are highly inter-dependent. In

some cases increasing the values of optimization parameters

will result in a worse performance, but many a times the

controlled set of evolutionary parameter is also increases

performance, then an improved overall performance would

be obtained.

 The problem is not well understood by researchers. Even

though all top performing programs parameters are hand

tuned by their program designers, finding the best value for

each parameter is mostly based on operational genetic

alternatives [7][8].

3.1 Moves in checkers game
Starting with Red, the players take turns moving one of their

own pieces. A 'piece' means either a 'man'--an ordinary single

checker or a 'king' who is what a man becomes if it reaches the

last rank (see kings). A man may move one square diagonally

only forward--that is, toward the opponent--onto an empty

square. Thus, on the diagram on the right-hand side, the red

pieces can move 12-16, 11-16 or 11-15. Similarly, the white

pieces can move 24-20, 24-19 or 23-19. (Figure -2).

Fig.2. Moves in checkers game

3.2 Captures ('Jumps')
Checkers rules state that captures or 'jumps' are mandatory. If a

square diagonally in front of a man is occupied by an opponent's

piece, and if the square beyond that piece in the same direction

is empty, the man may 'jump' over the opponent's piece and land

on the empty square.

http://www.playjava.com/checkers_rules.html#The Kings

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

77

Fig.3. Capture in checkers

The opponent's piece is captured and removed from the board.

Thus, on the diagram on the right-hand side red can 'jump' 14-

21, leaving square (where white man used to stand) 17 empty.

Similarly, if it were white turn to move, the white man could

'jump' over its red counterpart 17-10, leaving square 14

empty.(Figure-3) If in the course of single or multiple jumps the

man reaches the last rank, becoming a king, the turn shifts to the

opponent. No further 'continuation' jump is possible.

3.2.1 The kings
When a single piece reaches the last rank of the board by reason

of a move, or as the completion of a 'jump', it becomes a king;

and that completes the move, or 'jump' A king can move in any

direction and 'jump' in any direction one or more pieces, as the

limits of the board permit. The king can only jump diagonally

over one adjacent piece at a time, in any of the four diagonal

directions. Multiple jumps are possible.

4. GENETIC ALGORITHM
There are many different variants of Genetic Algorithms, but

in the basics, these algorithms share the same philosophy. In a

population of individuals, the strong ones survive longer than

the weak ones: survival of the fittest. This causes a rise in the

overall fitness of the population. Based on the fitness value of

the individuals, the weak ones are terminated. The strong ones

are chosen to reproduce themselves by using recombination

and/or mutation on them. Recombination is an action that is

applied to two or more of the selected candidates (called

parents). It will result in one or more new candidates (children).

Mutation is applied to one candidate and results in one new

candidate. Execution of these two operators leads to a set of new

candidates that compete with the old ones for a place in the next

generation. When this process is repeated, the average fitness of

the population will increase until a maximum has been reached.

There are two elements that are important in an evolutionary

algorithm.

- The variation operators (recombination and mutation) that

create diversity. Different techniques can be used for both of

them.

-The selection process of which individuals will be

terminated, and which will be parents for the next generation.

Evolution is a process of adaptation. The fitness function that is

used for evaluating the individuals tells us something about the

requirements that are needed to survive in the environment. To

obtain a higher fitness value, the population needs to adapt

increasingly more to the environment. Before different methods

and operators are explained, the basic algorithm is discussed.

for each candidate in the population do Initialize candidate with

random solution Evaluate each individual end for repeat

 EVALUATE population;

 RECOMBINE pairs of parents;

 MUTATE the resulting children;

 REINSERT new candidates;

 TERMINATE the non-parents;

Algorithm: The evolutionary Process

First, the population needs to be initialized with random

candidates. Next, the loop is entered in which the best

candidates are selected as parents. After that, the variation

operators are applied. First, pairs of parents are recombined.

This is a stochastic process. The pieces of the candidates that are

recombined are determined randomly. Next, mutation is applied.

The parts that are mutated are chosen randomly. The next step in

the loop is reinserting the new candidates (the children). Finally,

the individuals that were not parents are terminated.

4.1 Fitness Function
Fitness function is the important parameter of the genetic

algorithm that defines the fitness of each chromosome where the

values of genetic parameters are adapted as the genetic evolution

progresses. At ever generation, fitness value of each

chromosome is calculated using fitness function. If fitness

function of two chromosomes is equal, then the mutation rate is

increased, in order to help the genetic evolution get out of issues

like local, maxima or local minima whichever is applicable.

Once there is an improvement in the overall fitness, the original

mutation rate is restored to continue evolution as normal. If the

evolution stabilizes, but the fitness does not seem to be

improving for several generations and the search does not find

any error, new set of initial population is generated using the

initial default parameter values and a new randomly generated

seed. [9][10]

 The static board evaluation function is essentially a weighted-

sum of features score based on the various properties of the

board. The board features considered when evaluating a terminal

board are the usual properties through important by human

players such as: number of pieces, mobility count, center-

control, advancement of pieces, etc. [11] Thus evaluated score

for a board may be viewed as simple linear polynomial, usually

represented as follows:

Fitness Scores = (A1 x B1) + (A2 x B2) + ……+ (An x Bn)

Where Fitness Scores is called the static evaluation of a game

board configuration The Ai’s are features that play important

roles in game-playing strategies The Bi’s are weights that

indicated the relative importance of the features. Evaluating

Scores, different fitness of the each chromosome is found in the

checker game.

4.2 Selection
Based on the value of the fitness function, a weighted roultte

function [Code-1] selects the next best possible move

chromosome that will create a new generation and be genetic

parents for the next generations. It also allows for some parent

with low fitness to go to the next generation; this way

chromosome with previously good performance but weak

results weak results after the latest genetic modifications, can be

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

78

maintained in order to possible regain or improve their fitness

value.[12][13][14]

Code-1: Function of weighted roulette selection

Random r= new Random();

 Double rouletteWheelPointer =

r.nextInt()*Totalfitness;

Int totFitness=0;

 for (idx=0; idx<POP_SIZE &&

rouletteWheelPointer >0; ++idx) {

roulettePointer-=

Arrays.binarySearch(pi,poplation[idx]);

 }

 return population[idx-1];

Code-2: Function of tournament Selection

Random m_rand=new Random();

String selectedparents[]=new

String[TOTAL_CROSSOVERELEMENTS];

int i=0;

while(i< TOTAL_CROSSOVERELEMENTS)

{

int first_random = m_rand.nextInt(POP_SIZE);

int second_random=m_rand.nextInt(POP_SIZE);

if(first_random > second_random)

selectedparents[i++]=parents[first_random];

else

selectedparents[i++]=parents[second_random];

 }

 return selectedparents;

5. IMPLEMENTATION
The population size was set to 100. The initial values are

selected randomly from the 1024 pool size. Fitness proportional

selection was employed through the evolution function. Each

game is played and the values of the fitness are forwarded to the

next generation. The crossover and survivor rate is 89% and

11% for all generations respectively. Mutation was kept as low

as 0.1%. The experiment lasted for 5 generations.

6. RESULT ANALYSIS
Figure – 4 show the initial generation when it is populated

randomly. The graph shows both are almost equal fitness value

for the population

Fig.4. Fitness values of chromosome first generation

Figure-5 shows the initial fitness values of the chromosomes in

the population in increasing order.

Fig.5. Fitness values of chromosome of fifth generation

When both the selection method applied, the fitness of next

generation is observed as shown in figure-5. Each generation is

generated using mutation and crossover operator using roulette

selection method and tournament selection method. It seems that

the roulette wheel selection method has improved in next

generation while the tournament selection method has very few

fit chromosomes in the next population.

As the population generated by the roulette wheel selection

method has stronger fitness values which leads to better move of

disc in the board positions which will lead to win the game

while the population generated by the tournament selection

method has less fit population which may lead to loss of the

game.

7. CONCLUSION
The move of disc in the checker game is highly depends on the

fitness function. The analysis of the fitness values is driving

force of the move optimization. The evolutionary process of

selection-crossover-mutation for the fitness function using

genetic algorithm gives some rearrangement of the fitness values

to produce excellent moves against the opponent. Comparative

result analysis for fitness value using roulette wheel selection

method and tournament selection clearly shows that former

method has generated very fit population compare to tournament

selection method as shown in figure 5. So roulette method leads

to proper move of the disc on the board against the opponent.

IP Multimedia Communications

A Special Issue from IJCA - www.ijcaonline.org

79

Genetic algorithm provides excellent path to explore the search

space through the fitness value.

8. REFERENCES
[1] Hong, J.-H. and Cho, S.-B. (2004). Evolution of emergent

behaviors for shooting game characters in robocode. In

Evolutionary Computation, 2004. CEC2004. Congress on

Evolutionary Computation, volume 1, pages 634–638,

Piscataway, NJ. IEEE.

[2] J. Clune. Heuristic evaluation functions for general game

playing. In Proc. of AAAI, 1134–1139, 2007.

[3] S.M.Shah, C.S.Thaker and Dr. Dharm Singh ” Performance

Improvement in Game Playing using Evolutionary

Computation by Large Search Space Exploration ” at

International Conference on ETNCC 2011 at MPUAT,

Udaipur on 22-24 April 2011 Xplore Digital Object

Identifier:10.1109/ETNCC.2011.5958504)

[4] http://www.indepthinfo.com/checkers/history.shtml

[5] http://www.checkerslounge.com/varieties.html

[6] Osman, D. Mańdziuk, J.: Comparison of Tdleaf(λ) and

Td(λ) Learning In Game Playing Domain PAL, N. R., ET

AL, eds: 11th int conf. on neural inf. Proc (ICONP 2004),

Calcutta, India. Volume 3316 of INCX, SPRINGER (2004)

549 {554

[7] Osman, D., Ma¶ndziuk, J.: TD-GAC: Machine Learning

experiment with give-away checkers. In Drami¶nski, M.,

Grzegorzewski, P., Trojanowski, K., Zadro_zny, S., eds.:

Issues in Intelligent Systems. Models and Techniques. Exit

(2005) 131{145

[8] Pollack, J.B., Blair, A.D., Land, M.: Coevolution of a

backgammon player. In Langton, C.G., Shimokara, K.,

eds.: Proceedings of the Fifth Arti¯cial Life Conference,

MIT Press (1997) 92{98

[9] Play java dot com is available at

http://www.playjava.com/checkers_game_online.html

[10] Shah, S.M.; Thaker, C.S.; Singh, D.; Multimedia based

fitness function optimization through evolutionary game

learning ,Emerging Trends in Networks and Computer

Communications (ETNCC), 2011 International Conference

on Publication Year: 2011 , Page(s): 164 - 168

[11] G. Kendall and G. Whitwell. An evolutionary approach for

the tuning of a chess evaluation function using population

dynamics. In Proceedings of the 2001 Congress on

Evolutionary Computation, pages 995–1002. IEEE Press,

World Trade Center, Seoul, Korea, 2001.

[12] Chisholm, K.J.; Bradbeer, P.V.G.; Machine learning using

a genetic algorithm to optimize a draughts program board

evaluation function Evolutionary Computation, 1997. IEEE

International Conference on Publication Year: 1997,

Page(s): 715 – 720

[13] Adriana Elena Chis, Vane a Chiprianov and Daniel Cernea

3C Checkers Expert System A Comparative Study of

Search Depth and Expert Knowledge Infuence on Neural

Network Performance, January 2007.

http://www.cernea.net/wp-

content/uploads/2010/03/3C_article.pdf

[14] Goldberg, D.E.: Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-Wesley Pub.

Co. (1989)

[15] S. Y. Chong, D. C. Ku, H. S. Lim, M. K. Tan, and J. D.

White, “Evolved neural networks learning Othello

strategies,” in Proc. Congr. Evol.Comput., vol. 3, 2003, pp.

2222–2229.

[16] R. Fortman, Basic Checkers

(http://home.clara.net/davey/basicche.html, 2007).

[17] Seo, Y.G., Cho, S.B., Yao, X.: Exploiting coalition in co-

evolutionary learning. In:Proceedings of the 2000 Congress

on Evolutionary Computation. Volume 2., IEEE Press

(2000) 1268{1275

