
International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

44

A Comparative Analysis on Modeling and Implementing

with MVC Architecture

Tamal Dey
Assistant Professor, Department of MCA

 PES Institute of Technology
100 Feet Ring Road, BSK- III Stage, Bangalore- 560085

ABSTRACT

A comparative study of a model, described based on the Model-
View-Controller architecture paradigm which is built over the
integration of the components and helps easy access of web
services. MVC approach eases the horizontal development and
maintenance of large scale distributed web applications in three
frameworks. First is Big Blob framework, in this all the processing
logics are part of GUI. Second is MVC architecture that easily
works in command line or web interface. Third is Modified MVC

Design. In implementation phase MVC architecture deals with
J2EE and JSP-Servlet environment for web and internet
programming. Also applying the MVC architecture with Multiple
Frameworks gives privilege to work with few new concepts like
Struts and spring components.

GENERAL TERMS

User Interfaces, Visualization and modeling.

KEYWORDS

GUI, COCA, GET, POST, HTTP, Struts, Spring, Model, View,
Controller etc.

1. INTRODUCTION
Web has the very complex issues these days. Since the desire of
the companies and organizations are increasing so the complexity

and the performance of the web programming matters. Complexity
with the different types of communication devices is increasing.
The business is demanding applications using the web and many
communication devices. So with the increase load of the data on
the internet we have to take care of the architecture issue [6].

Literature related to the topic is to identify Big Blog, MVC and
Modified MVC architectural structures merits and demerits and
make a set of comparison analysis for the architectural models in

terms of implementation of each aspect. Next implement the MVC
architecture with JSP-Servlet programming that helps to the
architecture with multiple framework.

2. RELATED WORK
Various frameworks have been mentioned in literatures which are

discussed below.

2.1 Big Blob Architecture
A common style of programming is to put all processing in the
GUI. One common structure is "big blob" use this structure. It is
useful for the absolutely simplest programs. This works

correctly as long as the "model", the logic, is so small that it isn't
worth putting into a separate class [2].

2.2 Model View Controller Architecture
Programming with graphical user interface (GUI) libraries
makes easier to implement the model-view-controller (MVC)
design. MVC was first introduced by Trygve Reenskaug, a

Smalltalk developer at the Xerox Palo Alto Research Center in
1979, and helps to decouple data access and business logic from
the manner in which it is displayed to the user [Figure 1]. More
precisely, MVC can be broken down into three elements:

2.2.1 Model
The model represents data and the rules that govern access to
and updates of this data. In enterprise software, a model often

serves as a software approximation of a real-world process [2].

2.2.2 View
The view renders the contents of a model. It specifies exactly
how the model data should be presented. When the model data

changes, the view must update its presentation as needed. This
can be achieved by using a push model, in which the view
registers itself with the model for change notifications, or a pull
model, in which the view is responsible for calling the model
when it needs to retrieve the most current data [2].

2.2.3 Controller
The controller translates the user's interactions with the view
into actions that the model will perform. In a stand-alone GUI
client, user interactions could be button clicks or menu
selections, whereas in an enterprise web application, they

appear as GET and POST HTTP requests. Depending on the

context, a controller may also select a new view -- for example,
a web page of results -- to present back to the user [2].

Fig 1: A Common MVC Implementation

2.3 Modified MVC Architecture
A more recent implementation of the MVC design places the

controller between the model and the view. This design is

common in the Apple Cocoa framework [Figure 2].

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

45

Fig 2: An MVC Design Placing the Controller between the

Model and the View

The Cocoa and Cocoa Touch frameworks that power Mac OS X

and iOS are tightly integrated into the Xcode development

experience. Cocoa’s high-level APIs make it easy to add

animation, networking, and the native platform appearance and

behavior to your application with only a few lines of code [6].

3. COMPARISION OF BIG-BLOB, MVC,

MODIFIED MVC ARCHITECTURE
The big blob architectural programs are harder to read, maintain,

and enhance. Paper can't really appreciate this when I start to build
bigger programs. This works correctly as long as the "model", the
logic, is so small that it isn't worth putting into a separate class.
However, mixing model with presentation usually makes the
program hard to read, and the inevitable growth of the program
leads to a mess. This fails the simple Interface Independence test in
web interface. Even changing model in any part also fails in this
type of implementation [2].

The Model-View-Controller (MVC) architecture is easier to
implement graphical user interface (GUI) libraries [2] because it
provides a true decoupling of each part [3]. So it is easier to change
the model part and view will notify the update the model does not
carry a reference to the view but instead uses an event-notification
model to notify interested parties of a change [Figure 3]. One of
the consequences of this powerful design is that the many views

can have the same underlying model. When a change in the data
model occurs, each view is notified by a property change event and
can update itself accordingly [3].

3.1 Solution with UI Model Architecture

Model View Controller structure can easily draw few possible
solutions to implement the architecture. Firstly separate the user

interface from the "model which makes huge improvement in
simplicity, enhancements and maintenance are much easier with
this structure [4]. Secondly model doesn't know about user
interface. Lastly, model represent itself in text or graphically with
the help of model class by override toString() method [5].

Fig 3: A Java SE Application Using MVC

The Modifying MVC architecture uses Cocoa Touch
frameworks that power Mac OS X and iOS are tightly integrated
into the Xcode development experience. Cocoa’s high-level
APIs make it easy to add animation, networking, and the native
platform appearance and behavior to your application with only
a few lines of code. In this Structure models encapsulate
application data, Views display and edit that data, and
Controllers mediate the logic between the two. By separating

responsibilities in this manner, you end up with an application
that is easier to design, implement, and maintain [3].

3.2 MVC architecture with JSP-Servlet environment
The MVC architecture was able to solve some of the problem of
web and internet programming but still there were a lot of things
missing from it. It was centred on the navigation of the JSP
pages so there was the scope of the further development in the
architecture point of view. During this process the next
development was the Model 2 architecture. This problem was
solved using the Servlet and JSP together. The Servlet handles
the Initial request and partially process the data. It set up the

beans then forward the result to the one of the JSP page. The
Servlet decide the one of the page to be displayed from the list of
pages [12].

Fig 4: MVC architecture with JSP-Servlet

In this model all Control and application logic were handled by
the Servlet. The Servlet was written in the java programming
language. So it was also easier to handle the programming part of
the Servlet. In this scenario the Servest becomes the power full
for the complete application and it has emerged as the center
point for the application. In the model architecture the Servlet

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

46

becomes the gatekeeper for the all common tasks. It provides the
common services like authentication, authorization, error control
and follow of the application. This architecture has solved the
most of the problems. But still there were many new issues
emerged while applying this architecture [11].

3.3 Applying architecture with Multiple Frameworks
Web and Internet is ever growing area and the demands
for the applications are growing. A single framework is not
capable to handle the architecture of the application. To meet the

currents requirement of the applications it’s necessary to design a
architecture to implement the frameworks [4]. Struts framework
have been designed and developed for the front end control of
the web applications [Figure 5]. It provides the various features
for the applications that interact to the users. It also follows the
MVC design features. Spring Framework is the designed to
handle the various tasks. The spring work for the desktop and
internet based applications also. It follows the principals of the

MVC. The simultaneous use of the Struts and spring frameworks
in the single application with the applying the MVC Design
principals so that can improve the performance of the
applications. Struts Framework consists of three major blocks,
Described in brief as follows [9].

Fig 5: Struts model architecture

First is The View Block which controls the presentation part of
the complete model. This contains following JSP files which you
write for your specific application set of JSP custom tag libraries
Resource files for internationalization [9].

Second Block is representing the Controller. This is for
navigation the complete application. This contains XML
configuration files; it contains the tags for the navigation of the
paths [9].

Third Block is the Model. This part does the work of the
Business Logic, Fetching and storing data to the database. This
contains following Java Beans Enterprise Java Beans Database.
Following figure shows the working of the components in the
struts framework [9].

Fig 6: Component in Struts architecture

3.3.1 MVC in Struts
The major three parts of the MVC are as follows in the spring
framework. Servlet controller (Controller Part) Java Server Pages
or any other presentation technology (View Part) Application
Business Logic: in the form of whatever suits the application
(Model Part) [7].

Struts are a framework that implements a powerful and flexible

controller based on the Service To Worker pattern. Struts’ main
advantages are: Integration flexibility: Struts’ architecture
provides flexibility for choosing the view and the model to be
used. The view is based on the plug-ins concept. A plug-in is a
dynamic mechanism by means of which a component or set of
components that implement certain functionality in our
application can be replaced by another ones, by simply
modifying the application’s configuration [Figure 7].

This model is implemented through JavaBeans, thus allowing its
integration with other frameworks. It is supported by a solid
community: Struts is a project from the Apache Software
Foundation which has been consolidated as one of the most
important organizations in the open source scope. In (Sing,
2002), SUN recommends using Struts as the framework for the
Web tier [14].

Fig 7: Struts’s class diagram

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

47

Struts are composed of three main components:

1. The ActionServlet (the model’s Front Controller), which is
responsible for the application configuration and for
receiving and analyzing the clients’ requests. This

component extracts from the configuration file (strut-
config.xml) the general configuration parameters, the set of
components that defines its behaviour (plug-ins) and the
properties of each request. After performing these tasks, it
delegates the control in the RequestProcessor.

2. The RequestProcessor (Request Dispatcher in the model),

that creates an instance of the action (Command pattern)

associated to the received request and executes it.

3. The Action (Command in the model). For eachoperation or

use case, the developer creates an action (object) that inherits
from the Action component. Each action is associated to a
request type in Struts’ configuration file.

3.3.2 Spring Components.

In the spring also follow the principals of the MVC. It has been
designed more for the desktop and internet based applications.
Spring consist of three core collaborating components [13].

1. Controller: Handles navigation logic and interacts with the
Service tier for business logic.

2. Model: The contract between the Controller and the View
Contains the data needed to render the View populated by the
Controller.

3. View: Renders the response to the request Pulls data from the
model. Core components in the spring MVC are as follows.

3.1 Dispatcher Servlet: Spring’s Front Controller
implementation.

It is the first controller which interacts to the requests that can

also say it is an implementation of the Servlet. It controls the
complete flow of the application.

3.2. Controller: User created component for handling requests
encapsulates navigation logic delegates to the service objects for
business logic.

3.3. View: Responsible for rendering output. Different views can
be selected for the different types of output bases on the results
and the viewing device, communication devices.

3.4. Model and View: It is the core part of the spring framework.
It implements the business logic of the application. It is
controlled by the controller. It stores the business logic and the
view associated with it. Whenever it is executed it wills the data
with the name of the view.

3.5. View Resolver: How the output is to be displayed depends
on the result received from Model and View. It is used to map
logical view names to actual view implementations. This part

identifies and implement what is the output media and how to
display it.

3.6. Handler Mapping: Strategy interface used by Dispatcher
Servlet for mapping incoming requests to individual Controllers.
It identifies the request and calls the respective handler to
provide the services.

The following figure shows how the model will work. In this the
dispatcher Servlet is the entry point for the application. The
Struts parts do its work and send the request to the dispatcher

Servlet [Figure 8]. The Servlet decides the handler. Then it will

call to the controller. Controller will execute the Model and
View [8].

Fig 8: Sequence flow of application in the spring framework

4. PROPOSED METHODOLOGY
This approach is based a combination of applying the two
frameworks struts and spring for application development
scenario. The sequence diagram for the combined application is
explained as above, which is the main driving force for the
application. This approach assumes that basic knowledge of web
applications is essential. A testing has been done for the above

concepts and found successful work. Major benefits of the above
architecture are as follows.

1. It will provide a very clean division between actions like
action forms, controllers, handlers, JavaBeans models, and
views.

2. Spring's MVC is very flexible. Unlike Struts, this forces your
Action and Form objects into concrete inheritance by using

advantage of both.

3. Spring MVC is entirely based on interfaces. Every part of the
Spring MVC framework is configurable.

4. It provides controllers, making it easy to handling of many
requests from User Interface.

5. JSP or any other technology can be used to display the view,
results to the user on the any of the output device.

6. Spring Controllers are configured via Inversion of Controls.
This makes them easy to test and integrated with other objects

managed by spring.

7. Spring MVC web tiers are typically easier to test as compared
to Struts web tiers, due to the avoidance of forced concrete
inheritance and explicit dependence of controllers on the
dispatcher Servlet.

8. Struts framework was designed for the web interface purpose
only. The spring framework was developed for the desktop and
internet applications. When both frameworks used as combined

it will provide the flexibility of implementation.

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

48

9. Struts framework was designed for the web interface purpose
only. The spring framework was developed for the desktop and

internet applications. When both frameworks used as combined
it will provide the flexibility of implementation.

5. IMPLEMENTATION

Different frameworks based on Model that facilitate the
development of J2EE applications. Some of these are integrated
with servers and tools specific of their corresponding J2EE

providers. There are also open source frameworks supported by
a solid community and widely spread in the last years. In order
to select the most appropriate framework for that purposes and
carried out a survey which focused on open source frameworks,
due to its can improve the performance of the Large Database
application in terms handling number of requests. Inexpensive
costs and the technological maturity reached by some of them. A
suitable framework must achieve the following two objectives:

first, it must adapt to our model’s specifications, and second it

must be a good framework – as described in the background.
After analyzing the most used, widely spread open source
frameworks in the Java community (Struts, Cocoon, Maverick,

SOFIA, Spring, WebWork, Tapestry, Turbina and JSF), it
observed that none of these completely satisfied the established
requirements. So it has been decided to use a different
framework for each of the model’s parts (the Model, the View
and the Controller): It chose Struts as the Controller, Cocoon for
the View and StrutsEJB for the Model. In the next point, It
describe each of these frameworks and how they fit into our
model.

Fig 9: Model architecture

The primary target of the proposed model is to simplify the
development of large applications based on the J2EE platform),
thus providing a well structured architectural design, which
allows for a complete decoupling of the system’s main elements
and synthesizes existing models, patterns and frameworks in the
best way [14].

In this model, the controller serves as the application’s entry
point. It is implemented using only two patterns: the Intercepting
Filter and the Service To Worker.

The Intercepting Filter is used in our model to implement the
requests pre-processor; this system initially manages the entry
requests from clients in the presentation layer. There are different
types of requests, each one needing a particular processing
scheme. Therefore, when a request arrives to the application, it

should pass through a set of verifications before reaching the
main processing phase – called the Front Controller –
authentication, session validation, client IP address checking,
request authorization, data codification, auditory or browser type
used. The Intercepting Filter pattern is a flexible and highly
decoupled way to intercept a request, applying a set of filters,
thus rejecting or allowing the request to arrive to the initial
process.

This initial process plays the controller’s role: it analyzes each
request to identify the operation to perform, thus invoking the
business logic associated to each particular request and
controlling the flow to the following view. In the proposed

model [Figure: 9], our controller is designed following the
Service To Worker pattern, which combines a set of smaller
patterns that provide a complete and flexible solution to fulfil
the requirements for an MVC controller while allowing the
separation between actions – the model –, the view and the
controller.

The Front Controller pattern describes a central point that
manages the requests. In order to reach a greater flexibility and
independence between the view and the model, the Front
Controller assumes only the request analysis task, delegating in
the Request Dispatcher the selection of the view and the action to
perform. After the analysis phase, the Request Dispatcher will be
in charge to select the command that encapsulates the operation
to perform. Once this command has generated the result, the

Request Dispatcher will select the next view to be shown to the
user. Delegating these tasks in the Request Dispatcher gives our
model a greater flexibility since it can introduce new views or
models in the scenario by altering the component’s behaviour.

The Command pattern represents each request by means of an
object, therefore providing a very simple way to introduce new
operations. In our model, the Command pattern is responsible for
encapsulating the request information, parameters and the current

state into a command object that contains the business logic. This
command is then sent through the network to the model, where it
is finally executed (EJB Command). By using this approach, it
achieves a complete decoupling between the controller and the
model, which represents the business data and implements the

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

49

rules to operate them. Following the same approach, in the model
shown in [Figure 9], here introduce the business layer as a set of
patterns that completely disconnect the controller and the view
from the model, thus achieving MVC paradigm’s objective. On
the other hand, it defines another set of patterns in order to

integrate our model with inherited systems or other business
models.
In the first case it applys the Business Delegate, Session Facade
and EJB Command patterns. The EJB Command pattern is a
special case of the Command pattern where the business logic is
encapsulated into a serializable object created by a remote client
– the controller’s Command – and sent through the network to
the EJB container where it will be executed – by invoking its

execute method. This scheme provides the advantages of the
Command pattern in an environment where the business logic is
distributed, therefore allowing the execution of business rules
without overloading the application by a massive usage of EJBs.
For the second case, this has defined two patterns to ease the
integration between the business model and the inherited systems
or other business models. The Data Object Access pattern
supplies a mechanism to abstract and encapsulate access to the

data sources, therefore achieving warehouse independency. It
also achieves a clear separation between the business logic and
the data logic, increasing the applications’ maintenance
capabilities. The Service Activator pattern describes a way to
access other business models and services in an asynchronous
manner. When a message is received, The view is responsible for
showing the data output by the MVC model. One of our models’
goals is to decouple the presentation from the controller and the

model, and to achieve this the model’s output is first produced in
XML format, for its later transformation by XSLT sheets into the
final presentation shown to the client. XML/XSLT is an elegant
way to separate the data from the presentation and to free it from
any particular technology.

6. CONCLUSION
This paper identifies the primary difference between modified
MVC design and more traditional version of MVC which is
notifications of state changes in model objects communicating to
the view through the controller. Hence, the controller mediates
the flow of data between model and view objects in both
directions. View objects use the controller to translate user
actions into property updates on the model. In addition, changes
in model state are communicated to view objects through an

application's controller objects. Multiple framework architecture
works better as compare to any single framework architecture
with the effective of the multiple frameworks for the
development of the large scale applications.

7. FUTURE RESEARCH

Open technologies are the best to attract the academic and research
scholar to work. J2EE is the vast field now a day, its open
technologies also. Architecture is never fixed its goes on changing
with the change in the technology. There are many frameworks
available to work with J2EE technologies, Single frame is never
sufficient to provide the complete solution with all essential
features of the application. There is a lot of scope to work further
with many other frameworks to implement and enhance the MVC

architecture.

8. ACKNOWLEDGMENT

My sincere thanks to Ms. Neelam Bawane, Assistant Professor,
Department of MCA, PES Institute of Technology for contribute

her innovative ideas and support towards development of the
paper.

9. REFERENCES
[1] Apple Mac OS X as on 13th September 2011

http://developer.apple.com/technologies/mac/cocoa.html

[2] Java Notes as on 7th September 2011
http://leepoint.net/notes-java/index.html

[3] Java SE Application Design with MVC, Article by
Robert Eckstein, March 2007

[4] Pattern Oriented Software Architecture- Vol. I by Frank

Buschmann, Regine Munie, Hans Rohnert, Peter
Sommerlad, Michal Stal - John Wiley & sons
Publication, 2006

[5] Practical Object-Oriented Design with UML 2nd Edition
by Mark Priestley, 2003

[6] Praveen Gupta et. al. / (IJCSE) International Journal on
Computer Science and Engineering Vol. 02, No. 04,
2010, 1047-1051

[7] Erxiang Chen; Minghui Liu, "Research and Design on
Library Management System Based on Struts and Hibernate
Framework", in WASE International Conference on
Information Engineering ICIE 09, 2009, Vol. 2, PP. 310-
313

[8] Juanjuan Yan; Bo Chen; Xiu-e Gao, "Le Wang; Research of
Structure Integration Based on Struts and Hibernate", in
2009 WRI World Congress on Computer Science and

Information Engineering, 2009, vol. 7, PP. 530-534.

[9] Yonglei Tao: "Component- vs. application-level MVC
architecture", in Frontiers in Education 2002 FIE 2002. 32nd
Annual, 2002, Vol 1, PP. T2G-7 - T2G-10

[10] Meiyu Fang, "Design and Implement of a Web Examination
System Using Struts and EJB", Seventh International
Conference on in Web-based Learning 2008, 2008, pp. 25-
28

[11] Shu-qiang Huang, Huan-ming Zhang,” Research on

Improved MVC Design Pattern Based on Struts and XSL”,
in Information Science and Engineering ISISE 08
International Symposium on, 2008, vol. 1 PP. 451 – 455.

[12] Wojciechowski, J.; Sakowicz, B.; Dura, K.; Napieralski,
A.,"MVC model, struts framework and file upload issues in
web applications based on J2EE platform", in Proceedings
of the International Conference on Modern Problems of
Radio Engineering, Telecommunications and Computer

Science 2004, PP 342-345.

[13] Wang Ning; Li Liming; Wang Yanzhang; Wang Yi-bing;
Wang Jing, "Research on the Web Information System
Development Platform Based on MVC Design Pattern",in
IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, 2008 , Vol
3,pp. 203-206

[14] Decoupling MVC: J2EE design pattern integration by

Francisco macia-perez, virgilio gilart-iglesias, diego
marcos-jorquera, juan manuel garcia-chamizo.

