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ABSTRACT 

The evolution of satellite image technology is enabling the 

manipulation of a greater range of data contained in 

increasing types of satellite images. Efficient and effective 

utilization of transmission bandwidth and storage capacity 

have been a core area of research for remote sensing images. 

Hence image compression is required for multi-band satellite 

imagery. In addition, image quality is also an important factor 

after compression and reconstruction. 

The wavelet transform is anticipated to provide economical  

and informative mathematical representation of many objects 

of interest. 

In the proposed system, Kekres wavelet transform is used for 

compression of multispectral satellite image based on 

compressive sampling method.  

The compressed image performance is analyzed using 

Compression Ratio (CR), Peak Signal to Noise Ratio 

(PSNR),Mean Square Error. 

General Terms 

Image compression, multispectral image,, kekres wavelete 

transform(KWT) 

Keywords 

Compressive sensing, Incoherence,measurement matrix. 
Compression Ratio (CR),Mean Square Error (MSE) ,Peak 

Signal to Noise Ratio (PSNR) 

1. INTRODUCTION 
Remote sensing multispectral images are of interest for a large 

number of applications, like meteorology, geology, earth 

resource management, pollution monitoring ,and military 

surveillance. Often they are composed by only a few spectral 

bands, but some sensors provide up to some hundreds of 

bands, in which case the images are also called hyperspectral, 

so as to cover in great detail a wide spectral window and 

provide more valuable information about the land covers of 

the region under investigation. The “hyper” in hyperspectral 
means “over” as in “too many” and refers to the large number 

of measured wavelength bands. Hyperspectral images are 

spectrally 

overdetermined, which means that they provide ample 

spectral information to identify 

and distinguish spectrally unique materials. Hyperspectral 

imagery provides the potential for more accurate and detailed 

information extraction than possible with any other type of 

remotely sensed data. Whatever the case, such images occupy 

hundreds or thousands of Mbytes each, giving rise to serious 

problems for their archival, and   especially for their 

transmission from the satellite to the earth  station. As an 

example, a single multispectral image acquired by the 

Thematic Mapper (TM) sensor carried on board of the  

2. COMPRESSED SENSING   
Compressed sensing or compressive sampling (CS) is a 

simple and efficient signal acquisition technique that collects 

a few measurements about the signal of interest and later uses 

optimization techniques for reconstructing the original signal 

from what appears to be an incomplete set of measurements 

[1]. Accordingly, CS can be seen as a technique for sensing 

and compressing data simultaneously (thus the name). The CS 

technique relies on two fundamental principles : 

 a) sparse representation of the signal of interest in some basis, 

which is called the representation basis. Sparsity expresses the 

idea that the “information rate” of a continuous time signal 

may be much smaller than suggested by its bandwidth, or that 

a discrete-time signal depends on a number of degrees of 

freedom which is comparably much smaller than its (finite) 

length. More precisely, CS exploits the fact that many natural 

signals are sparse or compressible in the sense that they have 

concise representations when expressed in the proper basis Ψ. 

b) Incoherence between the sensing matrix and the 

representation basis. Incoherence extends the duality between 

time and frequency and expresses the idea that objects having 

a sparse  representation in Ψ  must be spread out in the 

domain in which they are acquired, just as a Dirac or a spike 

in the time domain is spread out in the frequency domain. Put 

differently, incoherence says that unlike the signal of interest, 

the sampling/sensing waveforms have an extremely dense 

representation in Ψ. 

2.1 Limits of the Shannon-Nyquist sampling 

The Shannon/Nyquist sampling theorem specifies that to 

avoid losing information when capturing a signal, one must 

sample at least two times faster than the signal bandwidth. In 

many applications, including digital image and video cameras, 

the Nyquist rate is so high that too many samples result, 

making compression a necessity prior to storage or 

transmission. In other applications, including imaging systems 

(medical scanners and radars) and high-speed analog- to-

digital converters, increasing the sampling rate is very 

expensive. 

2.2 Compressible signals 

Consider a real-valued, finite-length, one-dimensional, 

discrete-time signal x, which can be viewed as an N × 1 

column vector in with elements x[n], n = 1, 2, . . . , N. (We 

treat an image or higher-dimensional data by vectorizing it 
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into a long one-dimensional vector.) Any signal in  can be 

represented in terms of a basis of N × 1 vectors    

.For simplicity, assume that the basis is orthonormal. Using 

the N×N basis matrix   = [ ] with 

the vectors I  as columns, a signal x can be expressed as 

     or  

    x=Ψ  S                              (1) 

where s is the N×1 column vector of weighting coefficients 

 =  = x and  denotes transposition. 

Clearly, x and s are equivalent representations of the signal, 

with x in the time or space domain and s in the  domain.  

The signal x is K-sparse if it is a linear combination of only K 

basis vectors; that is, only K of the  coefficients in (1) are 

nonzero and (N − K) are zero. The case of interest is when K 

N. The signal x is compressible if the representation (1) has 

just a few large coefficients and many small coefficients. 

2.3 Transform coding and its inefficiencies 

The fact that compressible signals are well approximated by 

K-sparse representations forms the foundation of transform 

coding [2]. In data acquisition systems (for example, digital 

cameras) transform coding plays a central role: the full N-

sample signal x is acquired; the complete set of transform 

coefficients {si} is computed via s = x; the K largest 

coefficients are located and the (N − K) smallest coefficients 

are discarded; and the K values and locations of the largest 

coefficients are encoded.  

Unfortunately, this sample-then-compress framework suffers 

from three inherent inefficiencies. First, the initial number of 

samples N may be large even if the desired K is small. 

Second, the set of all N transform coefficients { } must be 

computed even though all but K of them will be discarded. 

Third, the locations of the large coefficients must be encoded, 

thus introducing an overhead 

2.3 A basic model for compressive sampling 

A basic model [3] for compressive sampling is shown in 

Figure 1. The N-dimensional signal x is assumed to be K-

sparse with respect to some orthogonal matrix V. The 

“sampling” of x is represented as a linear transformation by a 

matrix   Ψ yielding a sample vector y = Ψ x. Let the size of Ψ  

be M-by-N, so y has M elements; we call each element of y a 

measurement of x. A decoder must recover the signal x from y 

knowing V and Ψ, but not necessarily the sparsity pattern of 

the unknown signal u. 

 Since u is K-sparse, x must belong to one of  subspaces 

in . Similarly, y must belong to one of subspaces in 

For almost all  ΦS with M ≥ K+1 an exhaustive search 

through the subspaces can determine which subspace x 

belongs to and thereby recover the signal’s sparsity pattern 

and values. Therefore, in principle, a K sparse signal can be 

recovered from as few as M = K + 1 random samples. 

 

 

Figure.1 Basic compressive sampling model 

3 KEKRE’S TRANSFORM 

Kekre’s transform matrix [ 4] [5] can be of any size NxN, 

which need not to be an integer power of 2. All upper 

diagonal and diagonal elements of Kekre’s transform matrix 

are 1, while the lower diagonal part except the elements just 

below diagonal is zero. Generalized NxN Kekre’s transform 

matrix can be given as, 

 

 

The formula for generating element Kxy  of Kekre’s  tansform 

matrix 

 

 

Kekre’s Wavelet transform is derived from Kekre’s transform. 

From NxN Kekre’s transform matrix, we can generate 

Kekre’s Wavelet transform matrices of size 

(2N)x(2N), (3N)x(3N),……, (N2)x(N2). For example, from 

5x5  Kekre’s transform matrix, we can generate Kekre’s 

Wavelet transform matrices of size 10x10, 15x15, 20x20 and  

25x25. In general MxM Kekre’s Wavelet transform matrix 

can be generated from NxN Kekre’s transform matrix, such 

that M = N * P where P is any integer between 2 and N that is, 

2 ≤ P ≤ N. Consider the Kekre’s transform matrix of size NxN 

shown in Figure 

3.1 Properties of kekre’s transform 

A. Orthogonal 

The transform matrix K is said to be orthogonal if the 

following condition is satisfied. 

     [ K][K]T=[D]  

 

where, D is the diagonal matrix. 
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Kekre’s Transform matrix satisfies this property and hence is 

orthogonal. The diagonal matrix values of Kekre’s transform 

matrix of size NxN can be computed as 

D(x,y)  

=

 

 

B. Asymmetric 

In linear algebra symmetric matrix is square matrix, which is 

equal to it’s transpose. As the Kekre’s transform matrix is 

upper triangular matrix, it is asymmetric. 

C. Non Involutional 

An involutionary function is a function that is it’s own 

inverse. So involutionar transform is a transform which is 

inverse transform of itself. Kekre’s transform is non 

involutional transform. 

D. Transform on Vector 

The transform of a vector q is given by 

Q = [K] q 

And inverse is given by 

q = [K]T [D]-1 Q  

4 PROPOSED SYSTEM 
In this proposed system,Compressive sampling method is 

used for compression.We first build a dictionary of coherence 

of measurement of Kekres wavelet; haar and Db4;Db8 

wavelet.Secondly we compare the coherence of three wavelet 

and finally compression of image 

4.1 Dictionary of Coherence of measurement 

In the proposed system , the compressive sampling method 

two parameters are of the most important ,sparsity and the 

coherence between between two basis. 

The measurement matrix Phi (Φ) and the wavelet basis psi(Ψ) 

from which theta(θ)is extracted must be sufficiently 

incoherence.  

The sparse matrix is obtain as S= [KWT* ]  [x] 

where the x  can be viewed as an N×N  multispectral image. 

 In our system, we compute the incoherence of sparsity basis 

with the kekres wavelet transform (KWT) ,Haar wavelet 

,Daubechies wavelet.    

The phi (Φ) is the random matrix of N=145, Psi is basis of the 

kekres wavelet transform(KWT) ,Haar wavelet ,Daubechies 

wavelet(Db4 ,Db8) .Each iteration is consist of  1000 run and 

in each run it count how many time the mutual coherence of  

the different wavelet with the sparsity basis.the Table 5.1 

summerised the comparison of count of different wavelet with 

sparsity basis. 

From which it is found that KWT is having high mutual 

incoherence than that of the haar ,Db4 and Db8 

So from this we come to know that the KWT is highly 

incoherence with the randam matrix.The graph in figure 5.1 is 

showing the comparision for the eight iteration.  

Table 1. Comparison  of Incoherence of different wavelet 

Iteration DB4 DB8 Haar KWT 

1 301 300 289 1000 

2 333 271 281 1000 

3 297 288 318 1000 

4 315 301 285 1000 

5 334 286 284 1000 

6 295 293 301 1000 

7 307 300 292 1000 

8 329 300 279 1000 

 

Figure2. Comparison  of Incoherence of different wavelet 

 
The mutual coherence(µ) of measurement matrix Phi(Φ) and 

the wavelet basis psi(Ψ) is calculated  

as µ(Φ ,Ψ)=  

it is found that ,the mutual coherence of  KWT in 1000 runs is 

less than haar,Db4,Db8.that is KWT is highly incoherence 

than these wavelet.the value of mutual coherence is given in 

the table below. Also it is representade graphically in figure 

5.2. 

Because of the high incoherence of KWT it can be used as a 

bases matrix for  compressive sampling for the multispectral 

satellite image compression. 
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Table 2. Incoherence (µ) of different wavelet 

transform 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3 Incoherence (µ) of different wavelet transform 

Compresion of multispectral satellite image 

This scene was gathered by AVIRIS sensor over the Indian 

Pines test site in North Western Indiana and consists of 145 X 

145 pixels and 224 spectral reflectance bands in the 

wavelength range 0.4 -2.5 X 10^(-6) meters.[6][7] This scene 

is subset of a larger one. 

Steps for compression 

Step 1: load the multispectral satellite image (X) and read 

bands of image and select test band 

Step 2: Generate the Kekres Wavelet transform (KWT) from 

Kekres transform. 

Step 3: Generate the bases matrix X1 as 

X1=ww*sparse(X)*ww' where ww is KWT and ww’is its 

inverse transform 

Step 4: Generate random measurement matrix of different 

values say M 

Step 5: Take the product of measurement matrix and wavelet 

bases matrix this is forward transform 

Step 6: Apply inverse matrix and obtain reconstructed image.  

Step 7: Calculate the image quality parameter such as MSE, 

PSNR .CR 

original image

 

Figure 4. original satellite image ,test band 

recovered image

 

Figure 5. reconstructed satellite image ,test band  

Following table shows the result of compression for different  

values of M 

Table 5. Image quality parameter for different values of M 

 

 

Figure 5.  Image quality parameter for different values of 

M 

CONCLUSION: 

In this paper , we used the concept of compressive sampling 

for the compression of multispectral satellite image. The 

kekres wavelet matrix is having the high incoherence with the 

bases matrix than the haar, Db4, Db8 wavelet. The image 

Iteration DB4 DB8 Haar KWT 

1 4.2671 4.1508 4.4699 1.139 

2 4.4591 4.4591 4.4599 1.201 

3 4.2836 3.9583 4.0685 0.8558 

4 4.2613 4.2613 4.2613 0.9943 

5 4.4323 3.9907 3.7312 0.9583 

6 4.1783 4.2474 4.6904 0.9511 

7 4.4386 3.8896 4.5411 0.9804 

8 3.9507 4.226 4.4963 0.8607 

M psnr mse error x Cr 

77 2.0962 4.0129 8.4372 0.531 

88 3.5659 2.8608 6.0149 0.6069 

99 4.9439 2.083 4.3795 0.6828 
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quality parameter such as MSE PSNR are calculated Such as 

for M=99.PSNR=4.9439MSE=2.083. 

The limitation of our method is that since the data size is very 

large, the required computation time is not optimal and there 

is a constraint on memory.   

Future research can be directed at reducing time for 

compression by using parallel processing. 
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