ABSTRACT

The acronym MEMS is used almost universally to refer to all devices that are produced by micro fabrication or micromachining except integrated circuit (IC). Micro machining is any process that deposits, etches, or defines materials with minimum features measured in micrometers or less. Micro-switches are essentially micro-cantilevers that are fixed at both ends. They are mainly used in MEMS applications such as filters and switches. The main stiffness of a fixed-fixed constant rectangular cross-section is the one relating to z-translation (bending about the y-axis) and is formulated at the midpoint of the switch. The work presented in this paper involves design and simulation of MEMS switches. The devices consist of different dimensions micro-switches varying length from 300um to 500um with three different widths (20um to 40um). The work focuses on the realization of electrostatic low actuation switches with main emphasis on the pull-in voltage and RF response.

General Terms
MEMS, Micro-machining, Micro-switches, Design

Keywords
RF MEMS, MUMPS, MEMSCAP, FEM.

1. INTRODUCTION

Micro-Electro-Mechanical-Systems (MEMS) technology offers several advantages for systems design. These advantages include the reducing the losses and providing a better linearity when compared with semiconductor based devices. The advantages that are offered by MEMS designs have been implemented in circuit tuning elements (capacitors, inductors), resonators, filters, microphones and switches. RF MEMS switches have experienced increased use for telecommunication application in the last ten years due to their high performance compared to other microelectronic switches [1]. A design of the DC contact RF MEMS switch is presented in this paper. The design was optimized in the terms of activation mechanism, which included switch beam thickness, beam gap and materials. The pull-in voltage, contact and resonance frequency were analyzed with commercial CAD finite element analysis software such as CoventorWare [15]. The optimized design was micro-fabricated by PolyMUMPS process [17].

Micro-switches are designed with regard to their switching speed and pull-down voltage. The switches are required to fulfill the requirements of high speed and moderate pull-down voltage for switching. Nowadays, these are becoming increasingly popular in RF applications due to their attractive advantages such as high isolation and low insertion loss [3].

Micromachining is the underlying foundation of MEMS fabrication, and a keyfactor for MEMS processes. In general, micromachining is such a process that selectively etches away parts of the silicon (or other substrate) wafer or adds new structural layers to form the mechanical and electromechanical devices [4]. The motivation for micromachiningthe MEMS devices is that it allows miniaturization and parallel processing, which leads to inexpensive fabrication in large quantities. This coupled with thin film deposition and etching techniques is used to create complex MEMS structures.

The structures were fabricated through the Multi-User MEMS Processing Service (MUMPS) provided by MEMSCAP. CoventorWare is used to simulate and analyze the behavior of the device.
2. MICRO-SWITCH STRUCTURE

2.1 Schematic and Activation Mechanism

The micro-switches are required to fulfill the requirements of high speed and a moderate pull-in voltage for the switching, as switching speed increases with actuation voltage. In this work, the fixed-fixed beam shunt switches are designed and simulated. Highly doped silicon substrate constitutes the bottom electrode. When a DC bias voltage is applied between the top and bottom electrodes, the developed electrostatic force attracts the beam towards the fixed ground plane [9]. As both ends of the beam are fixed, unlike the parallel plate actuator, a higher charge concentration occurs in the middle region of the beam compared to the regions near to the fixed ends. Consequently, the beam experiences a higher force in the middle region compared to the fixed ends as shown in the following Figure 1. At static equilibrium, the electrostatic attraction force is counterbalanced by the elastic restoring force [13]. During operation, if the electrostatic force due to an increased drive voltage overcomes the elastic restoring force, the equilibrium is lost and the beam collapses on the fixed ground plane due to the ‘pull-in’ phenomenon. The name ‘bridge’ shall be used interchangeably for the fixed-fixed beam.

![Figure 1- Electrostatically deflected fixed-fixed beam](image)

When the voltage is applied between a fixed-fixed beam and the pulldown electrode, an electrostatic force is induced on the beam [5]. The electrostatic force applied to the beam is found by considering the power delivered to a time-dependent capacitance and is given by

$$F_e = \frac{1}{2} \epsilon_0 \frac{dC}{dg} \frac{1}{2} \epsilon_0 W w V^2 = \frac{1}{2} \epsilon_0 W w V^2 (1)$$

where V is the voltage applied between the beam and electrode. Ww is the electrode area.

The electrostatic force is approximated as being distributed evenly across the beam section above the electrode. Equating the applied electrostatic force with the mechanical restoring force due to the stiffness of the beam ($F = Kx$),

$$\frac{1}{2} \epsilon_0 W w V^2 = k (g_0 g)$$

where g_0 is the zero-bias bridge height. At $(2/3g_0)$, the increase in the electrostatic force is greater than the increase in the restoring force, resulting in the beam position becoming unstable and collapse of the beam to the down-state position. The pull-down (also called pull-in) voltage is found to be

$$V_p = V(2g_0/3) = \sqrt{\frac{2k}{\epsilon_0 W w}} g_0^2 = \sqrt{\frac{l k}{27\epsilon_0 A}} g_0^2$$ (3)

As shown in Eq. (3), the pull-down voltage depends on the spring constant of beam structure, and, beam gap g_0 and electrode area A. To reduce the actuation voltage, the key is beam structure of low spring constant k. The pull-in voltage was investigated in terms of beam thickness, gap and beam materials.

A simpler expression for resonance frequency can be written as a function of spring constant and mass of the beam.

$$f_{res} = 1/2\pi (K/m^{1/4})$$ (4)

The relation in Eq.(4) shows that the resonance frequency increases as a function of increasing spring constant and of decreasing with cantilever mass.

The resonance frequency f_o for a micro-switch can be given as

$$f_o = 1.028 \frac{l l^3}{(E/p)^{1/4}}$$ (5)

Where p is the mass density.

2.2 Fabrication

In the present work, micro-switches were fabricated using the three layers polysilicon surface micro-machining PolyMUMPS process. In this process polysilicon is used as a structural layer and silicon dioxide is used as a sacrificial layer. The sacrificial layer is etched out by dry etching process using hydrogen fluoride, which results to release the array of cantilever beams. A layer of gold was deposited above the top polysilicon layer, which acts as the top electrode for characterization.

In this work, we have used Scanning Electron Microscope (SEM) to visualize the fabricated devices, that whether they are perfectly released or not. Following Figure 2 shows the SEM(Scanning electron microscopy) photograph of the fabricated micro-switches. From following figure, it is clear that the micro-switch beam is released successfully.
3. SIMULATED RESULTS

CoventorWare is one of the most versatile MEMS simulation tool in the market at present. It allows for user to perform a wide variety of simulations on any MEMS structure and can provide significantly accurate results using Finite Element Method (FEM). It supports both system-level and physical designs approaches. The system-level MEMS designs can be used to generate 2-D layout for physical level verification. The physical approach starts with 2-D layout and involves 3-D models, generating a mesh and simulating. The 3-D model for micro-switch is shown in figure 3.

![Figure 3- 3D solid model of micro-switch](image)

All of the simulations are performed using the MemElectro Solver, Mechanical Solver and CoSolve EM solver. Following are some simulated results:

3.1 Pull-in Analysis

The following Figure 4, shows the deflection profile of various different dimensional micro-switches. It is cleared from the analysis that maximum deflection occurs at the center of the switch whereas minimum deflection occurs at the anchors.

![Figure 4- SEM photograph of released micro-switch](image)

Pull-in voltages of different devices are summarized in Table 1. The shorter length switch has the higher pull-in voltage.
Table 1 - Pull-in voltage for different kind of micro-switches

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Pull-in voltage (volts)</th>
<th>Theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type D</td>
<td>219.6875</td>
<td>245.27</td>
</tr>
<tr>
<td>Type E</td>
<td>145.625</td>
<td>109.0</td>
</tr>
<tr>
<td>Type F</td>
<td>88.75</td>
<td>61.31</td>
</tr>
<tr>
<td>Type G</td>
<td>45.3125</td>
<td>27.25</td>
</tr>
<tr>
<td>Type H</td>
<td>99.375</td>
<td>61.31</td>
</tr>
<tr>
<td>Type I</td>
<td>105.3125</td>
<td>61.31</td>
</tr>
</tbody>
</table>

Figure 5 - Length vs Voltage

Figure 5 shows the curve for Length vs Pull-in voltage. From the Figures it has been directly cleared that as we increase the length pull-in voltage goes down.

The following Figure 6 shows the Displacement profile for lengths varying from 100μm to 300μm at constant width of 20μm. After the occurrence of pull-in voltage, the displacement increases constantly.
3.2. Resonance Frequency Analysis

Figure 7 shows the resonance frequency profile for different dimensional micro-switches. As the length of the fixed-fixed beam increases, the resonance frequency decreases. Table 2 shows the values of the resonance frequency for different dimensions.

Figure 6- Displacement Vs Voltage Curve for constant width =20μm.

Figure 7- 3D resonance frequency profile of different dimension switches from Type (D to G)
Table 2 - Resonance frequency for different kinds of micro-switches

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Resonance Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulated (MHz)</td>
</tr>
<tr>
<td>Type D</td>
<td>1.7</td>
</tr>
<tr>
<td>Type E</td>
<td>0.48</td>
</tr>
<tr>
<td>Type F</td>
<td>0.27</td>
</tr>
<tr>
<td>Type G</td>
<td>0.12</td>
</tr>
<tr>
<td>Type H</td>
<td>0.29</td>
</tr>
<tr>
<td>Type I</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Figure 8 shows the curve for Length vs Resonance Frequency. From the Figures it has been cleared that as we increase the length resonance frequency decreases.

MEMS based switches promise superior performance relative to conventional devices. Through its superior performance characteristics, the MEMS switches are developed in anumber of existing circuits, including switches, phase shifters and filters.

5. ACKNOWLEDGEMENT

This work was carried out in Bhabha Atomic Research Center under the guidance of Dr.Vivekanand Bhatt who has always been sincere and helpful in making me understanding the different systems of this paper.

6. REFERENCES

[19] www.mems.ece.ufl.edu

[20] http://titan.me.jhu.edu/