
International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

22

Secured and Authenticated Sharing of Software Program

MADHAVI

GANGURDE

 Department of Information
Technology,

Vidyavardhini’s College of
Engineering &

Technology, Mumbai
University

Mumbai India

 UMASHANKAR

PRASAD

Department of Information
Technology,

Vidyavardhini’s College of
Engineering &

Technology, Mumbai
University

Mumbai India

PRASHANT

PRAJAPATI

Department of Information
Technology,

Vidyavardhini’s College of
Engineering &

Technology, Mumbai
University

Mumbai India

RANVIR KUMAR

Department of Information
Technology,

Vidyavardhini’s College of
Engineering &

Technology, Mumbai
University

Mumbai India

ABSTRACT

A new method for software program protection by

information sharing & authentication technique is proposed.

In this scheme we will share a secret source program among a

group of participants. Each of them holds a camouflage

programs to hide a share. Each camouflage program will hold

a secret source program, thus resulting in stego-program. Each

stego-program will still be compiled and executed to perform

its original functionality. The security will be further

enhanced by encrypting source program with secret key which

not only can prevent the secret program from being recovered

illegally but also can authenticate the stego -program provided

by each participant. The secret program will only be

recovered when all the participant supplies correct stego-

program and correct key. During the recovery process we can

check the stego-program have been tempered or not

incidentally/ intentionally.

This scheme can be applied to software programs for

copyright protection, secret hiding in software program for

covert channel, etc.

General Terms

Secured And Authenticated Sharing .

Keywords

Authentication, information sharing, invisible ASCII control

codes, program sharing, secret program, security protection,

software program.

1. INTRODUCTION
Information hiding is a promising approach to covert

communication because it yields a steganographic effect

which enhances communication security. So far, data hiding

in computer programs is mainly for copyright protection.

Also, the source program is seldom used as the cover media.

However, embedding message in software programs in source

form has not been studied yet. In this project, a new covert

communication method by embedding messages in source

programs is proposed.

Software programs written in various computer languages are

important resources of intellectual properties. They need

protection from being tampered with. One technique of

information protection is information sharing. When applied

to software programs, this technique means that a secret

program is, via a certain sharing scheme, transformed into

several copies, called shares. Each share is individually

different from the original secret program in appearance,

content, and/or function. The secret program cannot be

recovered unless the shares are collected and manipulated

with a reverse sharing scheme. Such a technique of program

sharing may be regarded as one way of secret keeping, which

is necessary in many software-developing organizations.

To provide perfect security to share the software program is

the main aim of our project.

Security will be provided in two ways that is why the name is

“Secured and authenticated Sharing of software program”.

This is a new method for software program protection by

information sharing and authentication techniques using

invisible ASCII control codes.

A scheme for sharing a secret source program written in any

language among a group of participants, each holding a

camouflage program to hide a share, is first proposed for safe

keeping of the secret program. The secret program, after being

exclusive-ORed with all the camouflage programs, is divided

into shares. Each share is encoded next into a sequence of

special ASCII control codes which are invisible. These

invisible codes then are hidden in the camouflage program,

resulting in a stego-program for a participant to keep. Each

stego-program can still be compiled and executed to perform

the original function of the camouflage program. A secret

program recovery scheme is also proposed. To enhance

security under the assumption that the sharing and recovery

algorithms are known to the public, three security measures

via the use of a secret random key are also proposed, which

not only can prevent the secret program from being recovered

illegally without providing the secret key, but also can

authenticate the stego-program provided by each participant,

during the recovery process, by checking whether the share

or the camouflage program content in the stego-program have

been tampered with incidentally or intentionally.

2. DETAIL PROBLEM EXPLANATION

2.1 Problem Definition
For the purpose of program sharing among several

participants, after a given secret source program is

transformed into shares, each share is transformed further into

a string of the above-mentioned invisible ASCII control

codes, which is then embedded into a corresponding

camouflage source program held by a participant. And for the

purpose of security protection, authentication signals, after

generated, are transformed as well into invisible ASCII

control codes before being embedded. These two data

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

23

transformations are based on a binary-to-ASCII mapping

proposed in this study, which is described as a table 1 as

shown.

TABLE 1. Invesible Ascii Code Mapping

Bit pair Corresponding invisible ASCII code

00 1C

01 1D

10 1E

11 1F

Specially, after the share and the authentication signal data are

transformed into binary strings, the bit pairs 00, 01, 10, and 11

in the strings are encoded into the hexadecimal ASCII control

codes 1C, 1D, 1E, and 1F, respectively. To promote security,

a secret random key is also used in generating the

authentication signal and in protecting the generated shares.

2.2 Problem Objectives
As our project name is “secured and authenticated sharing of

software program”, we will provide two way security for

sharing software program. To enhance security under the

assumption that the sharing and recovery algorithms are

known to the public, three security measures via the use of a

secret random key are also proposed ,which has two features

1) Security: The secret program can„t be recovered

illegally without providing the secret key.

2) Authentication: It can also authenticate the stego-

program provided by each participant, during the

recovery process, by checking whether the share or

the camouflage program content in the stego-

program have been tampered with incidentally or

intentionally.

2.3 Scope Of Paper
The idea behind creating this application to provide the safety

for sharing of intellectual properties ie. software programs.

Traditional methods for encryption are ill-suited for

simultaneously achieving high levels of confidentiality and

reliability. This is because when storing the secret key, one

must choose between keeping a single copy of the key in one

location for maximum secrecy, or keeping multiple copies of

the key in different locations for greater reliability. Increasing

reliability of the key by storing multiple copies lowers

confidentiality by creating additional attack vectors, there are

more opportunities for a copy to fall into the wrong hands.

Secret sharing schemes address this problem, and allow

arbitrarily high levels of confidentiality and reliability to be

achieved.

TABLE 2

Dec Hex Char Description

28 1C FS file separator

29 1D GS group separator

30 1E RS record separator

31 1F US unit separator

3. DATA HIDING BY INVISIBLE ASCII

CODES
ASCII codes, expressed as hexadecimal numbers, were

designed to represent 8-bit characters for information

interchange. It is found in this study that some ASCII codes,

when embedded in certain locations in programs, become

invisible in the source code editors and Builder under certain

Windows OS environments. This phenomenon may be

utilized for data hiding.

Two types of invisible codes are identified, one appearing as

nothing like being non-existing, and the other as spaces just

like the ASCII space code 20. We call the former null code

and the latter spacing code. Inserting invisible codes into a

program do not change its function. In type-1 environment

four null codes, 1C, 1D, 1E, 1F, were found, which are

invisible when inserted between two characters in a comment

in a program. One spacing code A0, has been found, which

appears as a space when inserted between two words in a

comment. Also found as a spacing code is the tab-control

code 09, which in default appears as four spaces when

inserted before the end of a program line, i.e., before the code

pair, 0D0A, for carriage return and line feed. The codes, A0

and 09, will be called between-word and line-end spacing

codes, respectively. For the other three environment types,

invisible codes also exist and are listed in Table 1 except that

type-2 environment has no null code.

We can conduct data hiding using invisible codes in three

ways as follows.

3.1 Alternative Space Coding
Whenever a space represented by 20 appears between two

words in a comment, it may be replaced by a between-word

spacing code, like A0 for type-1 environment, without causing

visual difference in a source code editor. When there are 2n−1

between-word spacing codes C1, C2, ..., C2n−1, by regarding

20 as C0 we may embed n bits b1, b2, ..., bn as follows.

if b1b2....bn = m, replace 20 by Cm

Which we call alternative space coding.

For the first two environments in Table 1, 1-bit alternative

space coding is applicable. And for the latter two, there are 14

and 23 spacing codes, respectively and so 3-bit and 4-bit

alternative space coding are applicable, respectively.

3.2 Line-End Space Coding
We may place multiple line-end spacing codes before each

program line end without causing visual difference in a source

code editor because such codes appear just like background

spaces in the window of the editor. Since the code 20 may be

used as well to create spaces, when there are 2n−1 line-end

spacing codes C1, ... , C2n−1, by regarding 20 as C0 we may

embed n bits b1, b2, ..., bn as follows.

if b0b1...bn = m, embed Cm before the line end

Which we will call line-end space coding.

For the first two environments, there is only one line-end

spacing code 09, so 1-bit line-end coding is applicable. For

the latter two, since there are three such codes 09, 0B, and 0C,

2-bit coding can be implemented.

Line-end space coding may be repeated unlimited times

before the each line end to increase the data hiding rate. But to

avoid creating long lines which reduce the steganographic

effect, we require that each processed program line should not

appear to be longer than the longest original program line.

3.3 Null Space Coding
Except for type-2 environment, there are four null codes, 1C,

1D, 1E, 1F. Let them be represented by C0 through C3,

respectively. We can embed a bit pair b0b1 as follows.

if b0b1 = m, insert Cm between two characters in a comment

Which we call null space coding.

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

24

Null space coding may be applied repetitively unlimited times

as well. In practice, we embed message bits evenly into all

between-character spaces among the comments so that the

times will be limited.

4. PROGRAM SHARING SCHEME
A Overview of algorithm is proposed for sharing of secret

program is described as follows, in which the used symbols

are in Table 3:

 Creating shares. Apply exclusive-OR operations to

the contents of the secret program, all the

camouflage programs, and the secret key Y , and

divide the resulting string into N segments as

shares, with the one for the k-th participant to keep

being Ek.

 Generating authentication signals. For each

camouflage program Pk, use the random key value

Y to compute two modulo-Y values from the binary

values of the contents of Pk and Ek, respectively,

and concatenate them as the authentication signal

Ak for Pk.

 Encoding and hiding shares and authentication

signals. Encode Ek and Ak respectively into

invisible ASCII control codes by the invisible

character coding table (Table 1) and hide them

evenly at the right sides of all the characters of the

comments of camouflage program Pk, resulting in a

stego-program for the k-th participant to keep.

Algorithm 1. Program sharing and authentication.

Input.

1) A secret program Ps of length ls ,

2) N pre-selected camouflage programs P1, P2, . . . , PN

of lengths l1, l2, . . . , lN , Respectively , and

3) A secret key Y which is a random binary number

with length lY (in the unit of bit).

Output.
N stego-programs, P`1, P`2, . . . , P`N, in each of which a share

and an authentication signal are hidden.

STEPS.

Stage 1. Creating shares from the secret program.

1) Create N + 2 character strings, all of the length ls of

Ps, from the secret program and the camouflage

programs in the following way

a) Scan the characters (including letters ,spaces,

and ASCII codes) in the secret program Ps line

by line, and concatenate them into a character

string Ss.

b) Do the same to each camouflage program Pk , k

= 1, 2, . . . ,N, to create a character string Sk of

length ls (not lk)either by discarding the extra

characters in Pk if lk > ls or by repeating the

characters of Pk at the end of Sk if lk < ls, when

lk ≠ ls.

c) Repeat the key Y and concatenate them until

the length of the expanded key Y` in the unit of

character (8 bits for a character) is equal to ls,

the length of SS

2) Compute the new string E = Ss S1 S2 ….. SN

Y`.

3) Divide E into N equal length segments

E1,E2,……,EN as shares.

Stage 2. Generating authentication signals from the

contents of the shares and the Camouflage programs.

1) Generate an authentication signal Ak for each

camouflage program Pk, k =1, 2…..N, using the data

of Sk and Ek in the following way.

a) Regarding Sk as a sequence of 8-bit integers

with each character in Sk being composed of 8

bits, compute the sum of the integers, take the

modulo-Y value of the sum as ASk , transform

ASk into a binary number, and adjust its length

to be lY , the length of the key Y , by padding

leading 0's if necessary.

b) Do the same to Ek to obtain a binary number

AEk with length lY , too.

c) Concatenate ASk and AEk to form a new binary

number Ak with length 2lY as the

authentication signal of Pk.

Stage 3. Encoding and hiding the share data and

authentication signals.

1) For each camouflage program Pk, k =1, 2, . . . ,N,

perform the following tasks.

a) Concatenate the share Ek and the authentication

signal Ak as a binary string Fk.

b) Encode every bit pair of Fk into an in-visible

ASCII control code according to the invisible

coding table (Table 1), resulting in a code

string F`k

c) Count the number m of characters in all the

comments of Pk.

d) Divide F`k evenly into m segments, and hide

them in order into Pk, with each segment

hidden to the right of a character in the

comments of Pk

2) Take the final camouflage programs P`1, P`2 …. ,

P`N as the output stego-programs.

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

25

Table 3: Symbolic notation

N the number of participants in the secret program sharing activity;

Y the input secret random key;

Pk a camouflage program for the k − th participant to keep where k = 1, 2, . . . ,N

Ek a share which is embedded in Pk;

Ps a secret program;

Ak the generated authentication signal for Pk;

P‟k a stego-program which is the result of embedding Ek in Pk;

Ss the character string of Ps;

S1,S2,…..,SN the character string of P1, P2, . . . , PN respectively;

ls the length of Ss (in the unit of ASCII character);

l1, l2, ….., lN the length of S1, S2, . . . , SN respectively (in the unit of ASCII character);

lY the length of Y (in the unit of bit).

5. PROGRAM RECOVERY SCHEME
A overview of the proposed process for recovering the secret

source program is described as follows, for which it is

assumed that the stego-program brought to the recovery

activity by participant k is denoted as P‟k. Also, the original

key with value Y used in Algorithm 1 is provided.

 Extracting hidden shares and authentication

signals. Scan the comments of each stego-program

P`k to collect the invisible ASCII control codes

hidden in them and concatenate the codes as a

character string, decode the string into a binary one

by the invisible character coding table (Table 1),

and divide the string into two parts, the share data

Ek and the authentication signal Ak. Also, remove

the hidden codes from P`k to get the original

camouflage program Pk.

 Authenticating the shares and the camouflage

programs. Use the authentication signal Ak as well

as the key Y to check the correctness of the contents

of the extracted share data Ek and the camouflage

program Pk by decomposing Ak into two signals and

matching them with the modulo-Y values of the

binary values of Pk and Ek, respectively. Issue

warning messages if either or both authentications

fail.

 Checking correctness of shares and camouflage

programs. Checking whether the content of Actual

Share is tempered intentionally or accidentally by

Matching the value of Aek‟ and Aek. Also Checking

for camouflage program is tempered by Matching

the value of Apk‟ and Apk. If both check are

successful then we proceed for Recovery.

 Recovering the secret program. Apply exclusive-

OR operations to the extracted share data E1 through

EN, the same secret key Y as that used in Algorithm

1 , and the camouflage programs P1 through PN to

reconstruct the secret program Ps.

Algorithm 2. Authentication of the stego-programs and

recovery of the secret program.

Input.

N stego-programs P`1, P`2, …. , P`N provided by the N

participants and the secret key Y with length lY used in secret

program sharing .

Output.

The secret program Ps hidden is in the N stego-programs if the

shares and the camouflage programs in the stego-programs are

authenticated to be correct.

STEPS.

Stage 1. Extracting hidden shares and authentication

signals.

1) For each stego-program P`k, k = 1, 2, . . . ,N,

perform the following tasks to get the contents of

the camouflage programs and the authentication

signals.

a) Scan the comments in P`k line by line ,and

collect the invisible ASCII codes located to the

right of the comment characters as a character

string F`k

b) Remove all the collected characters of F`k from

P`k, resulting in a program Pk with length

lk.,which presumably is the original camouflage

program

c) Decode the characters in F`k using the invisible

character coding table (Table 1) into a

sequence of bit pairs, denoted as Fk.

d) Regarding Fk as a binary string, divide it into

two segments Ek and Ak with the length of the

latter being fixed to be 2lY , which presumably

are the hidden share and the authentication

signal ,respectively.

e) Divide Ak into two equal-lengthed binary

numbers ASk and AEk .

Stage 2. Authenticating share data and camouflage

programs.

1) Concatenate all Ek, k =1, 2, . . . , N, in order,

resulting in a string E with length lE which

presumably equals ls, the length of the secret

program to be recovered.

2) For each k =1, 2, . . . , N, perform the following

authentication operations.

a) Create a character string Sk of length lE from

the characters in Pk either by discarding extra

characters in Pk if lk >lE or by repeating the

characters of Pk at the end of Sk if lk < lE, when

lk ≠lE.

b) Regarding Sk as a sequence of 8-bit integers

with each character in Sk composed of 8 bits,

compute the sum of the integers, take the

modulo-Y value of the sum as A`Sk, transform

A`Sk into a binary number, and adjust its length

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

26

to be lY , the length of the key Y , by padding

leading 0's if necessary.

c) Do the same to Ek, resulting in a binary number

A`Ek

d) Compare A`Sk with the previously extracted

ASk , if mismatching, issue the message “The

camouflage program is not genuine," and stop

the algorithm.

e) Compare A`Ek with the previously extracted

AEk , if mismatching, issue the message “The

share data have been changed," and stop the

algorithm.

Stage 3. Recovering the secret program.

1) Repeat the key Y and concatenate them until the

length of the expanded key Y` in the unit of

character is equal to ls, the length of Ss,

2) Compute Ss = E S1 S2 . . SN Y` ,and regard

it as a character string.

3) Use the ASCII codes 0D and 0A (“ carriage return"

and “line feed") in Ss as separators, break Ss into

program lines to reconstruct the original secret

program Ps as output.

6. CONCLUSION
For the purpose of protecting software programs, new

techniques for sharing secret source programs and

authentication of resulting stego-programs using four special

ASCII control codes invisible in all Editor of Microsoft

windows and Some linux editor have been proposed.

The proposed sharing scheme divides the result of exclusive-

ORing the contents of the secret program and a group of

camouflage programs into shares, each of which is then

encoded into a sequence of invisible ASCII control codes

before being embedded into the comments of the

corresponding camouflage program. The resulting stego-

programs are kept by the participants of the sharing process.

The original function of each camouflage program is not

destroyed in the corresponding stego-program. The sharing of

the secret program and the invisibility of the special ASCII

codes as share data provides two-fold security protection of

the secret-program.

In the secret program recovery process, the reversibility

property of the exclusive-OR operation is adopted to recover

the secret program using the share data extracted from the

stego-programs. To enhance security of keeping the

camouflage programs, a secret random key is adopted to

verify, during the recovery process, possible incidental or

intentional tampering with the hidden share and the

camouflage program content in each stego-program. The key

is also utilized to prevent unauthorized recovery of the secret

program by illegal collection of all the stego-programs and

unauthorized execution of the proposed algorithms.

Below is Figure of Example .

7. ACKNOWLEDGMENTS
This work was supported by our college Prof. Madhavi

Gangurde and all staff, Department Of Information

Technology, Vidyavardhini‟s College of Engineering &

Technology, Vasai (West) 401202, University of Mumbai.

8. REFERENCES
[1] S. Lee, and W. H. Tsai, “Data hiding in emails and

applications by unused ASCII control codes,"

Proceedings of 2007 National Computer Symposium,

vol. 4, pp. 414-422, Taichung, Taiwan, Dec. 2007.

[2] S. Lee, and W. H. Tsai, “Covert Communication with

Authentication via Software Programs Using Invisible

ASCII Codes"

[3] A. Shamir, “How to share a secret," Communications of

the Association for Computing Machinery, vol. 22, no.

11, pp. 612-613, 1979.

[4] S. Lee, and W. H. Tsai, “Security Protection of Software

Programs by Information Sharing and Authentication

Techniques Using Invisible ASCII Control Codes,"

International Journal of Network Security, Vol.10, No.1,

PP.1–10, Jan. 2010.

[5] The IEEE website. [Online]. Available:

http://www.ieee.org/

(a) A source program with four invisible ASCII control codes inserted in the comment “test a file.”

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

27

(b) The program seen in the window of the text editor UltraEdit with the four ASCII control codes visible between the letters “s”

and “t” of the word “test” in the comment.

Figure 1: Illustration of invisible ASCII control codes in a comment of a source program.

