
International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

7

Space Optimization of Counting Sort

Aishwarya Kaul
Department of Computer
Science and Engineering

Bharati Vidyapeeth’s
College of Engineering

Guru Gobind Singh Indraprastha University
 New Delhi, India

ABSTRACT
Optimization of sorting algorithms is an ongoing research and

delivers faster and less space consuming algorithms. The

Counting sort algorithm is an integer sorting algorithm and is

a very simple and effective way to sort numbers based on

their key value. It uses three arrays for computation but in a

large input set it can consume a significant amount of

memory. This paper puts forward a method to reduce the

amount of space required to perform the computation. It

reduces the number of arrays or memory required for

computation by using just two arrays instead of three, i.e. the

input and the count array, removing the need of the third

output array.

General Terms
Algorithm; Space Complexity; Optimization

Keywords
algorithms; counting sort; design; optimization; performance;

sorting

1. INTRODUCTION
A sorting algorithm is any technique to that arranges a set of

inputs in an orderly fashion. The basic aim of all sorting

algorithms is of course, to sort the input set in the required

manner but, efficiency is also an important factor. In today’s

world where all aspects of technology are being optimized to

give faster results and occupy less memory to entertain more

data, it is very important to optimize the algorithms used, that

is to sort the input in the fastest and most efficient possible

way. The speed of computation or amount of space used by an

algorithm during a single computation is referred to by the

word “Complexity” or time complexity and space complexity

respectively. The complexity of an algorithm is denoted by

asymptotic notations such as the big oh O (), theta Ɵ () and

omega Ω () notation.

Definitions:

1. f(n) = O(g(n)), if there exist constant c > 0 and N such

that f(n) <= cg(n) for all n>= N

2. f(n) = Ω(g(n)), if there exist constant c and N such that

f(n) >= cg(n) for all n >= N

3. f(n) = Ɵ(g(n)), if f(n) = O(g(n)) and g(n) = O(f(n)) [1]

Big oh gives the worst case complexity or the upper bound on

the complexity of an algorithm. Omega gives the best case or

lower bound whereas theta denotes the average performance

of an algorithm or the average case complexity. Nowadays,

apart from performance analysis, an energy consumption

parameter is also being introduced. It shows that the better

performing algorithms also tend to consume more energy.

Paper [2] shows more energy savings may be achieved with

proper selection of task granularity.

Counting Sort is a non-comparative integer sorting algorithm

that means it is used for sorting an integer input set. It can be

extended to sorting negative numbers as well. Integer sort is a

class of sorting algorithms wherein, the largest element is

polynomially bounded in the number of elements to be sorted.

[3] It is especially useful and efficient where the number of

elements to be sorted is a bounded number. It sorts a string

of integer inputs on the basis of their key value. The key value

can be any digit of the number, the unit’s place, the ten’s

place et al. It uses an input array of size n, a count array of

size k and an output array of size n, where n is the number of

inputs and k the number of different key values possible,

which is in most cases 0 to 9, a total of 10. [4] Counting sort

is an effective way to sorting integers. It can be used as a

subroutine with other algorithms such as Radix sort that are

capable of handling larger data sets in a better manner. On its

own, it is a very powerful algorithm for GPUs [5] and can be

modified for parallel computing. The following is a table of

complexities of the most commonly used sorting algorithms

[6]

Table 1. Complexities of Popular Algorithms

Algorithm Time Complexity Space Used

Bubble sort O(n2) One array

Selection sort O(n2) One array

Insertion sort O(n2) One array

Quick sort O(nlogn) One array

Counting sort O(n+k) Three arrays

The table shows the complexities of various popular sorting

algorithms. We can see that the time complexity of counting

sort is linear and the sort is efficient. When n is approximately

equivalent to k that is the input set is not very large and is

almost equal to the number of different possible key values,

the time complexity becomes O(n). But this sorting algorithm

uses a considerable amount of space. It uses three arrays

whereas mostly, others use one. Apart from Counting Sort,

Quicksort is a very good option since it works the best among

the others, in the average case. Many combinations such as

Quicksort combined with insertion sort have shown to give

faster results. [7] Many attempts have been made and are

continued to be made to reduce the complexity of these

sorting algorithms including counting sort thereby making

them more efficient. Significant attempts in improving the

time complexity have been made, especially for integer

sorting algorithms of which Counting Sort is an important

example. Paper [8] shows an integer sorting algorithm that

sorts a sequence of integers in O(1) time, on a reconfigurable

mesh of size n*n. An attempt has been made through this

International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

8

paper to reduce the space complexity of Counting Sort as

explained in detail in further sections.

2. LITERATURE REVIEW
Counting Sort is a very efficient sporting algorithm with

linear running time, especially efficient with a small input

data set. Many attempts have been made to make it more

efficient. Counting sort proves to be an efficient algorithm for

GPU implementation and much advancement has been made

in this field. A modification of integer sort algorithm does not

require synchronisation in the last step, hence provides

superior performance. [9] A variant of Counting Sort,

occurrence sort is especially beneficial as it removes duplicate

values and speeds up the computation. Implementations have

been performed in Obsidian, a programming language for

GPU Programming. Results of paper [5] have many

improvements over Library Thrust where Library Thrust is a

C++ Library and has similar goals as Obsidian. The process in

Obsidian includes creating a histogram and then performing

reconstruction. The results implementing counting sort are

considerably faster than Library Thrust implementation

except in some cases, reason being the fact that number of

threads in reconstruction step is proportional to the range.

Resultantly, for smaller ranges the execution becomes more

and more sequential. The Occurrence Sort implementation is

twice as fast as Library Thrust and sometimes even four times

as fast, a clear optimization. Comparing the two sorting

algorithms, that is occurrence and counting sort in Obsidian

implementation, occurrence sort was mostly twice as fast as

counting sort. Hence there lies a huge scope for optimizing

counting sort. Counting sort is a good and competitive

algorithm for sorting keys. It relies on indexing and not

comparison as already stated and uses the intermediate count

array for pointing a particular input number to its final

position in the output array. Hence here as well, it uses three

arrays for sorting. Paper [10] shows, integer sort in the form

of counting sort implemented on four processors. In the

experiments, exponential distribution shows that the sort had

to run for at least three seconds before coming to a stop. In

these experiments, memory size is important and is seen that

it can affect the runtime distributions of jobs. The integer sort

on elvis, completed 30% sooner than on caesar. An important

notable fact determined was that the amount of memory had

more influence on the runtime rather than the speed of the

processor. Hence, here too, it shows that the memory

occupied by an algorithm is of high importance towards

efficiency. Introduction of parallelism proves to be an

optimizer of algorithm performance, as shown in [11], in

which a parallel RAM model is used that allows concurrent

reads and writes. In the integer sort used here, the integer keys

are restricted to at most polynomial magnitude. The

algorithm costs logarithmic time and the product of the time

and processor bounds are bounded by a linear function of the

size of the input, unlike previous algorithms that required at

least a linear number of processors to achieve a logarithmic

time bound. Paper [12] is an attempt to reduce the complexity

of counting sort wherein their proposed method, reduces

complexity of counting sort to O (n). In this method it uses

three arrays as usual, that is the input array [1....n], output

array [1....n] and the temporary array instead of the count

array that stored the intermediate calculations. It reduces the

complexity by not making comparisons. Paper [13] explains

counting sort as one of the most efficient algorithms known

today. It divides the sequential algorithm into two steps that is

namely Distribution and Output. The Distribution step places

each element of the input array into its respective bucket or

place i the count array. The Output step involves traversing

the count array in increasing order of key value for placing

elements in increasing order in the output array which is

subsequently displayed. Hence here the original counting sort

using three arrays is described. Here they have implemented a

parallel algorithm for integer sorting for multi-core

processors. A variant of Counting Sort namely P-Counting

Sort has been used. It distributed code blocks over processors

and algorithms such as LoopBSort distribute loop iterations

over processors. The time complexity for a parallel sorting

algorithm is given by T (N, Kmax, p) = O (N/p + p.Kmax).

Here N is the size of the input array, p is the number of

processors and Kmax is the key range. P-Counting Sort

enables sorting on multi-core processors by using domain

decomposition of input data, this was it gives a good parallel

sort time. Other variants such as padding sort give an even

better parallel sorting time. The results in this paper show that

the speed up of Padding sort is 1.4 to 4 times more that the

speedup of P-Counting Sort. Apart from the above stated, a

hybrid counting sort is an efficient way for accelerating a

particle-in-cell. [14] Counting sort proves to be a very

efficient algorithm for usage in many fields hence, like other

algorithms, it is important to optimize it that is by reducing

the memory it consumes and for faster execution.There are

many attempts at reducing time complexity and optimizing

Counting Sort as it is a very efficient sorting algorithm ad its

variants can be applied to various fields and uses. In this

paper, a space optimization technique has been introduced,

such that instead of three arrays only two have been used,

removing the need to use the output array.

3. COUNTING SORT
Counting Sort is a non-comparative, stable integer sorting

algorithm that sorts the input numbers on the basis of their

keys, that is any one particular digit say one’s, ten’s et al and

it maintains the order of input in the case where two numbers

have the same key value. It uses the following the arrays.

Table 2. Arrays used in Counting Sort

Array Size

Input N

Count K

Output N

Here N is the number of elements in the input array and K is

the number of key values possible, ideally 10 that is 0 to 9.

Counting Sort works in the following way:

 Inputs the numbers

 Extracts the desired key value from each input

number

 Counts the frequency of occurrence of each key i in

the ith position of the count array(intermediate

array)

 Calculates the exact position of the key (in turn the

number itself in the output array)

 Displays the hence sorted output array

The basic mechanism of counting sort is to count the

frequency of occurrences of each key and then performing a

prefix sum. It has three steps, constructing a histogram of key

frequencies, calculating the start position of each index and

then displaying the sorted array. [4][15]

International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

9

3.1. Pseudocode
The example I will be taking for demonstrating the sorting

algorithm is an array of first 500 prime numbers, so since they

are already sorted in ascending order , the following code is

for un-sorting them, where in[] is the input array:

A[500],n500, i0,k0,jn-1

do

{if(i%2==0)

 A[k]in[i]

 k++

else

 A[j]in[i]

 j--

i++

} while (i<n && j>=n/2)

The following is the sorting code (according to increasing

order of unit’s place), in [] is the input array, count[] the

intermediate count array and out[] the output array:

int key (int x)//function for extracting key value from each

input number, here the unit’s place

 return (x%10)

for i 0 n

 xin[i]

 count [key(x)]count[key(x)]+1

for i0k-1

 oc count [i]

 count [i]  nc

 ncnc+ oc

for i0n

 xin[i]

 out[count[key(x)]] x

 count[key(x)] count[key(x)]+1

3.2.Example
For instance let the input array be first 500 prime numbers:

1 2 3 3571 3581

After un-sorting the already sorted array, such that it is ready

for application of sorting algorithm, the array looks like:

1 3 7 5 2

And we want to sort the array in increasing order according to

their unit’s digit hence the key will be the unit’s digit

The count array will look like:

0 125 1 123 0 1 0 127 0 125

After all calculations according to the algorithm, finally, the

output array sorted in increasing order of the elements’ unit’s

place will be:

1 11 31 3539 3559

3.3.Complexity
The counting sort algorithm has a time complexity of O (n +

k). The initialisation of the input and output array of size n

takes n loops and count array takes a maximum of k+1, hence

complexity becomes O (n + k). If n and k are comparable

then the sorting becomes highly efficient and the complexity

becomes O (n).The space it requires are three arrays, two of

size n and one of size k.

4. PROPOSED SPACE OPTIMIZATION
The optimization used here is in terms of space. Instead of

using three arrays, that is the input, count and output array,

only two arrays have been used.

Table 3. Arrays used in Proposed Space Optimized

Counting Sort

Array Size

Input N

Count K

Here Input is used as an input array as well as the final array

used for display, swapping is done in such a way as to arrange

the numbers in the desired order in the input array itself. Size

N is the number of elements of input as usual. The count array

is used as it is for intermediate calculations.

4.1.Flow Chart

4.2.Pseudocode
Again, first the code for un-sorting the array of prime

numbers:

A[500],i0,k0,j499

do

{ if(i%2==0)

 A[k]in[i]

 k++

else

 A[j]in[i]

International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

10

 j--

i++

} while(i<499 && j>=250)

The following is the proposed code, in [] is the input array

and count[] the intermediate array

int key (int x)

 return (x%10)

for i0 n

 xin[i]

 count [key(x)] count [key(x)]+1

for i0 k-1

 oc count [i]

 count [i]  nc

 nc nc+ oc//position calculated

 i0

while i<=n-2

 xin[i]

 pos count [key(x)]

 temp in[i];

 in [i]in[pos]

 in [pos]temp

 xin[i]

 if i ==count[key(x)]

 ii+1

 count [key(x)] count [key(x)]+1

4.3.Example
We take the same example, input array:

1 2 3 3571 3581

After applying the un-sorting code:

1 3 7 5 2

And we want to sort the array in increasing order according to

their unit’s digit hence the key will be the unit’s digit

The count array will look like:

0 125 1 123 0 1 0 127 0 125

After calculating the positions, the count array is:

0 0 125 126 249 249 250 250 377 377

The space optimized algorithm does not use an output array it

uses the input and the count array itself, by performing

multiple swaps in the input array taking queue from the count

array.

So, according to the algorithm, input array/ final array

containing sorted elements:

1 11 31 3539 3559

Hence the above is the sorted array (sorted on the basis of

their unit’s digit) without using an extra output array.

4.4.Complexity and Mathematical Analysis
As depicted in Table1 of this paper, counting sort has a linear

time complexity and is one of the most efficient sorting

algorithms today. The proposed space optimized counting sort

algorithm reduces the number of arrays used without

hampering the time complexity of the algorithm. Time

complexity remains the same O (n + k) since no subroutines

have been called within the modified code.

Number of iterations for Input array initialisation: n

Number of iterations for Count array computation: k+1

The new proposed code runs from 0 to n-2 = n-1 times.

So the total time complexity = O (n + k + 1 +n - 1) = O (n +

k)

The space optimization comes by using only two arrays

instead of three, thereby reducing the amount of memory

required for computation. It uses only size n bits for input and

k+1 bits for count array as opposed to extra n bits of memory

for the output array. Hence, the total memory/space required

by the algorithm is reduced.

Chart 1. Comparison of Space Utilization

By using the proposed algorithm, 33.34% of previously used

memory is saved.

Table 4. Comparison of Arrays

Algorithm Number of Arrays used

Original Counting Sort 2

Proposed Counting Sort 3

Hence, the proposed algorithm proves to be more space

efficient.

5. CONCLUSION
Counting Sort is an extremely useful and efficient sorting

algorithm. It is used in many diverse fields such GPUs,

particle accelerators and many other areas. Due to its

importance, numerous attempts have been made to improve

its time complexity and the space it uses for execution. The

newest optimization is in the energy it takes to execute the

algorithms. It has been shown that better performing

algorithms consume more energy. Researchers have tried to

optimize the algorithm in terms of all the above stated

parameters. It is very necessary to optimize the algorithms

that we use today. Faster and less space consuming

procedures are indispensable for increased efficiency. The

algorithm given through this paper uses lesser number of

arrays than usual, for Counting Sort thereby reducing the

memory required to run the algorithm and at the same time,

making it more space efficient. As shown in paper [10],

decreased space consumption can also affect run-time; hence

the proposed algorithm that uses 33.34% less space than used

0

0.5

1

1.5

2

2.5

3

3.5

Original
Counting Sort

Proposed
Counting Sort

Y axis- NUMBER

OF ARRAYS

X axis-

ALGORITHM

International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

11

by the original counting sort can prove to be highly efficient

especially in large data sets.

6. REFERENCES
[1] Comparison of Bucket Sort and RADIX Sort, Panu

Horsmalahti panu.horsmalahti@tut.fi, June 18, 2012

[2] Energy consumption analysis of parallel sorting

algorithms running on multicore systems, Zecena et al

[3] Integer sorting algorithms for coarse-grained parallel

machines, AlSabti, K., Ranka, S.

[4] http://video.mit.edu/watch/introduction-to-algorithms-

lecture-7-counting-sort-radix-sort-lower-bounds-for-

sorting-14155/

[5] Counting and Occurrence Sort for GPUs using an

Embedded Language, Josef Svenningsson, Bo Joel

Svensson, Mary Sheeran, Dept of Computer Science and

Engineering Chalmers University of Technology,

{josefs, joels, ms}@chalmers.se

[6] T. H. Cormen, C. E. Leiserson, R.L Rivest, and C. Stein.

Introduction to Algorithms". MIT Press, 3nd edition

edition

[7] Curtis R. Cook and Do Jin Kim. \Best sorting algorithm

for nearly sorted lists". Commun. ACM, 23(11):620-624,

November 1980

[8] Integer sorting in O(1) time on an n*n reconfigurable

mesh, Olariu, S., Schwing, J.L., Zhang, J., Computers

and Communications, 1992. Conference Proceedings,

Eleventh Annual International Phoenix Conference

[9] Design and implementation of an efficient integer count

sort in CUDA GPUs, Vasileios Kolonias, Artemios G

Voyiatzis, George Goulas, Efthymios Housos,

Concurrency and Computation: Practice and Experience

[10] The Relative Performance of Various Mapping

Algorithms is Independent of Sizable Variances in Run-

time Predictions, Robert Armstrong, Hensgen, Debra,

Taylor Kidd

[11] An optimal parallel algorithm for integer sorting, Reif,

J.H., Foundations of Computer Science, 1985., 26th

Annual Symposium

[12] Paper on “Implementation of the technique of Space

minimization for Counting Sort algorithm” by Sanjeev

Kumar Sharma ,Professor and Dean, JP Institute of

Engineering & Technology, Meerut, dean.ar@jpiet.com

and Prem Sagar Sharma Research Scholar,

Premsagar1987@rediffmaomil.c at Conference on

Advances in Communication and Control Systems 2013

(CAC2S 2013)

[13] Parallel Algorithm for Integer Sorting with Multicore

Processors, by S. Stoichev and S. Marinova

[14] Accelerating a Particle-In-Cell Simulation using a

Hybrid Counting Sort, K. J. Bowers, Electrical

Engineering and Computer Science Department

University of California at Berkeley

[15] Analysis of Algorithms I: Counting and Radix Sort, Xi

Chen, Columbia University

IJCATM : www.ijcaonline.org

mailto:panu.horsmalahti@tut.fi
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.AlSabti,%20K..QT.&searchWithin=p_Author_Ids:37371738700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ranka,%20S..QT.&searchWithin=p_Author_Ids:37283782300&newsearch=true
http://video.mit.edu/watch/introduction-to-algorithms-lecture-7-counting-sort-radix-sort-lower-bounds-for-sorting-14155/
http://video.mit.edu/watch/introduction-to-algorithms-lecture-7-counting-sort-radix-sort-lower-bounds-for-sorting-14155/
http://video.mit.edu/watch/introduction-to-algorithms-lecture-7-counting-sort-radix-sort-lower-bounds-for-sorting-14155/
mailto:ms%7d@chalmers.se
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=200594&queryText%3Dinteger+sorting+algorithms
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=200594&queryText%3Dinteger+sorting+algorithms
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Olariu,%20S..QT.&searchWithin=p_Author_Ids:37280886800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schwing,%20J.L..QT.&searchWithin=p_Author_Ids:37295677500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang,%20J..QT.&searchWithin=p_Author_Ids:37293689600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=644
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=644
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=644
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1776/full
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1776/full
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Reif,%20J.H..QT.&searchWithin=p_Author_Ids:37341740900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Reif,%20J.H..QT.&searchWithin=p_Author_Ids:37341740900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Reif,%20J.H..QT.&searchWithin=p_Author_Ids:37341740900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4568115
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4568115
mailto:dean.ar@jpiet.com
mailto:Premsagar1987@rediffmail.com

