
International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011 
Proceedings published in International Journal of Computer Applications® (IJCA) 

 
 

12 

Analysis and Predictability of Page Replacement 

Techniques towards Optimized Performance  

Debabrata Swain 
Dept. of CSE 

SPCOE 
Pune, India 

 
 

Bancha Nidhi Dash 
Dept. of CSE 

GITA 
Bhubaneswar, India 

 

 

Debendra O  
Shamkuwar 
Dept. of CSE 

SPCOE 
Pune, India 

 

Debabala Swain 
Dept. of CSE 

CUTM 
Bhubaneswar, India

ABSTRACT 
Caching is a fundamental technique commonly employed to 

hide the latency gap between memory and the CPU by 

exploiting locality in memory accesses. On today’s 

architectures a cache miss may cost several hundred CPU 

cycles [1]. In a two-level memory hierarchy, a cache performs 

faster than auxiliary storage, but is more expensive. Cost 

concerns thus usually limit cache size to a fraction of the 

auxiliary memory’s size.This paper represents a comparative 

predictability about some of the traditional and new 

replacement techniques in contrast with OPTIMAL 

replacement technique.  

General Terms 

Computer Architecture, Performance Evaluation of Computer 

Systems  

Keywords 
Memory Management, Cache Performance, Replacement Policy, 

Hit Ratio Analysis. 

1. INTRODUCTION 
Page replacement is an important component of a modern 

operating system. When a page containing a desired datum or 

instruction is searched in translation look aside buffers or 

page tables and found missing from main memory, a page 

fault is said to occur. As the size of main memory is limited 

and is much smaller than the size of permanent storage, the 

role of page replacement is to identify the best page to evict 

from main memory as a result of a page fault and replace it by 

the a new page from disk that contains the requested datum or 

instruction. The problem is very similar to the block 

replacement in cache memories except that the page 

replacement is more critical as page transfers from disk to 

memory are orders of magnitudes slower than block transfers 

from main memory to the cache memory [25].Many page 

replacement algorithms are derived and tested. Some of them 

include First-In-First-Out (FIFO), Least Recently Used 

(LRU), Least Recently Used with K references (LRU-K), 

Random, Clock with Adaptive Replacement (CAR), Adaptive 

Replacement Cache (ARC) and at last the most efficient 

rather impractical Optimal algorithm. Good replacement can 

reduce the page fault cost resulting in higher performance, 

since the more page faults the operating system encounters, 

the more resources are wasted on paging in/out instead of 

doing useful work, resulting ultimately in serious thrashing 

problems. 

 In this paper, we present the relative competitive analysis for 

a large class of replacement policies, including LRU-K, FIFO, 

RANDOM, ARC, CAR and OPTIMAL. Relative competitive 

ratios bound the performance of one policy relative to the 

performance of another policy. These performance relations 

allow us to use cache-performance predictions. 

 

2. BACKGROUND 
Caching is a mature technique that has been widely applied in 

many computer science areas, Operating Systems and 

Databases are two most important ones. Currently, the World 

Wide Web is becoming another popular application area of 

caching. Caches are very fast but small memories that store a 

subset of the main memory’s contents to bridge the 

performance difference between main memory and the 

processor. To reduce traffic and management overhead, the 

main memory is logically partitioned into a memory blocks B 

of size b bytes. Memory blocks are cached as a whole in 

cache lines of equal size. When accessing a memory block 

one has to determine whether the memory block is stored in 

the cache (cache hit) or not (cache miss). To enable an 

efficient look-up, each memory block can be stored in a small 

number of cache blocks. For this purpose, caches are 

partitioned into equally-sized cache sets. The size of a cache 

set is called the associativity k of the cache. Since the number 

of memory blocks that map to a set is usually far greater than 

the associativity of the cache, a so-called replacement policy 

must decide which memory block to replace upon a cache 

miss. To facilitate useful replacement decisions a number of 

status bits is maintained that store information about previous 

accesses. We only consider replacement policies that have 

independent status bits per cache set. Almost all known 

policies comply with this [1]. 

3. REPLACEMENT ALGORITHMS 
Let us briefly explain the fundamental and commonly used 

replacement policies under investigation in the course of the 

paper: 

 

The LRU (Least Recently Used) algorithm is based on the 

observation that pages that have been heavily used in the last 

few instructions will probably be heavily used again in the 

next few. Conversely, pages that have not been used for ages 

will probably remain unused for a long time. This idea 

suggests a realizable algorithm: when a page fault occurs, 

throw out the page that has been unused for the longest time. 

LRU is used in the INTEL PENTIUM I and the MIPS 

24K/34K. 

 

The algorithm LRU has many disadvantages [8, 11]:  

1. On every hit to a cache page it must be moved to the most 

recently used (MRU) position. In an asynchronous computing 

environment where multiple threads may be trying to move 

pages to the MRU position, the MRU position is protected by 



International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011 
Proceedings published in International Journal of Computer Applications® (IJCA) 

 
 

13 

a lock to ensure consistency and correctness. This lock 

typically leads to a great amount of contention, since all cache 

hits are serialized behind this lock. Such contention is often 

unacceptable in high performance and high throughput 

environments such as virtual memory, databases, file systems, 

and storage controllers.  

2. In a virtual memory setting, the overhead of moving a page 

to the MRU position–on every page hit–is unacceptable [24].  

3. While LRU captures the “recency” features of a workload, 

it does not capture and exploit the “frequency” features of a 

workload [23, p. 282]. More generally, if some pages are 

often requested, but the temporal distance between 

consecutive requests is larger than the cache size, then LRU 

cannot take advantage of such pages with “long-term utility”.  

4. LRU can be easily polluted by a scan, that is, by a sequence 

of one-time use only page requests leading to lower 

performance.  

 

LRU-K (Least Recently Used with K references): The basic 

idea of LRU-K is to keep track of the times of the last K 

references to popular database pages, using this information to 

statistically y estimate the interarrival times of references on a 

page by page basis [26]. 

 

The LRU-K algorithm is based on the following data 

structures: l HIST(p) denotes the history control block of page 

p; it contains the times of the K most recent references to page 

p, discounting correlated references: HIST(p,l) denotes the 

time of last reference, HIST(p,2) the time of the second to the 

last reference, etc.l LAST(p) denotes the time of the most 

recent reference to page p, regardless of whether this is a 

correlated reference or not. These two data structures are 

maintained for all pages with a Backward K-distance that is 

smaller than the Retained Information Period. An 

asynchronous demon process should purge history control 

blocks that are no longer justified under the retained 

information criterion. [6, 26] 

Random Replacement (RR): It is used to randomly select a 

candidate item and discard it to make space when necessary. 

This algorithm does not require keeping any information 

about the access history. For its simplicity, it has been used in 

ARM processors [27]. It admits efficient stochastic 

simulation. 

Random replacement algorithm replaces a random page in 

memory. This eliminates the overhead cost of tracking page 

references. Usually it fares better than FIFO, and for looping 

memory references it is better than LRU, although generally 

LRU performs better in practice. OS/390 uses global LRU 

approximation and falls back to random replacement when 

LRU performance degenerates, and the Intel i860 processor 

used a random replacement policy. 

LFU (Least Frequently Used) is a frequency-based policy, in 

which the page with low frequency will be replaced first. It 

works badly because different parts of memory have different 

time–variant patterns. The LFU policy has several drawbacks: 

it requires logarithmic implementation complexity in cache 

size, pays almost no attention to recent history, and does not 

adapt well to changing access patterns since it accumulates 

stale pages with high frequency counts that may no longer be 

useful [1-8].  

 

In FIFO (First-In-First-Out) the operating system maintains a 

list of all pages currently in memory, with the page at the head 

of the list the oldest one and the page at the tail the most 

recent arrival. On a page fault, the page at the head is removed 

and the new page added to the tail of the list may be a good 

example which has very simple implementation, but gets into 

problem when the size of physical memory is big. The 

problem with FIFO is that it ignores the usage pattern of the 

program [1]. FIFO is used in the INTEL XSCALE, ARM9 

and ARM11. 

 

ARC (Adaptive Replacement Cache) combines the LRU and 

LFU solutions and dynamically adjusts between them. ARC 

like LRU is easy to implement and has low over-head on 

systems [9].LRU captures only recency and not frequency, 

and can be easily “polluted” by a scan. A scan is a sequence 

of one-time use only page requests, and leads to lower 

performance.  

 

ARC overcomes these two downfalls by using four doubly 

linked lists. Lists T1 and T2 are what is actually in the cache 

at any given time, while B1 and B2 act as a second level. B1 

and B2 contain the pages that have been thrown out of T1 and 

T2 respectively. The total number of pages therefore needed 

to implement these lists is 2*C, where C is the number of 

pages in the cache. T2 and B2 contain only pages that have 

been used more than once. The lists both use LRU 

replacement, in which the page removed from T2 is placed 

into B2. T1 and B1 work similarly together, except where 

there is a hit in T1 or B1 the page is moved to T2. The part 

that makes this policy very adaptive is the sizes of the lists 

change. List T1 size and T2 size always add up to the total 

number of pages in the cache. However, if there is a hit in B1, 

also known as a Phantom Hit (i.e. not real hit in cache), it 

increases the size of T1 by one and decreases the size of T2 

by one. In the other direction, a hit in B2 (Phantom Hit) will 

increase the size of T2 by one and decrease the size of T1 by 

one. This allows the cache to adapt to have either more 

recency or more frequency depending on the workload [9].  

The CAR (Clock with Adaptive Replacement) combines the 

LRU and LFU solutions and dynamically adjusts between 

them. CAR like LRU is easy to implement and has low over-

head on system.CAR only overcomes the first downfall, the 

second still has a presence. CAR uses two clocks instead of 

lists; a clock is a circular buffer. The two circular buffers are 

similar in nature to T1 and T2, and it contains a B1 and B2 as 

well. The main difference is that each page in T1 and T2 

contains a reference bit. When a hit occurs this reference bit is 

set on. T1 and T2 still vary in size the same way they do in 

ARC (i.e. Phantom Hits cause these changes). When the cache 

is full the corresponding clock begins reading around itself 

(i.e. the buffer) and replaces the first page whose reference bit 

is zero. It also sets the reference bits back to zero if they are 

currently set to one. The clock will continue to travel around 

until it finds a page with reference bit equal to zero to replace 

[11]. 

http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/Cache_algorithms#cite_note-4
http://en.wikipedia.org/wiki/OS/390
http://en.wikipedia.org/wiki/Intel_i860


International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011 
Proceedings published in International Journal of Computer Applications® (IJCA) 

 
 

14 

The OPTIMAL page replacement algorithm is easy to 

describe. When memory is full, you always evict a page that 

will be unreferenced for the longest time [28]. This scheme, of 

course, is possible to implement only in the second identical 

run, by recording page usage on the first run. But generally 

the operating system does not know which pages will be used, 

especially in applications receiving external input. The 

content and the exact time of the input may greatly change the 

order and timing in which the pages are accessed. But 

nevertheless it gives us a reference point for comparing 

practical page replacement algorithms. This algorithm is often 

called OPT or MIN. 

Table-1 Qualitative Analysis of different Cache Techniques 

ALGORITHM PERFORMANCE 

CHARACTERISTICS 

OVERHEAD 

COST 

LRU, LRU-K Easy to Implement High 

LFU Easy to Implement High 

FIFO May throw important 

pages 

Low 

RANDOM Efficient for stochastic 

simulations 

Low 

CAR Complex Fair 

ARC Complex Low 

OPTIMAL Not implementable, can 

be used as a benchmark 

Low 

4. PERFORMANCE ANALYSIS 
To evaluate our replacement algorithm experimentally, we 

simulated our policy and compared it with other policies like 

LRU-K, FIFO, RANDOM, ARC and CAR and finally 

OPTIMAL. The simulator program was designed to run some 

real time programs and implement different replacement 

policies with different cache sizes. The obtained hit ratio 

depends on the replacement algorithm, cache size and the 

locality of reference for cache requests. Modular design of 

simulator program allows easy simulation and optimization of 

the new algorithm. 

4.1   Input traces  
Our address trace is simply a list of thousands of memory 

addresses produced by a real program running on a processor. 

Generally address traces would include both instruction fetch 

and data fetch (load and store), but we are simulating only a 

data cache, so these traces only have data addresses. The 

mapping scheme is considered and set to set associative 

mapping. According to traces that have been used, we 

considered 8 cache sizes and ran the simulation program to 

test the performance of different replacement policies like 

LRU-K, FIFO, RANDOM, ARC and CAR and finally 

OPTIMAL. 

 

The simulator program is designed to run some traces of load 

instructions executed for some real programs and implement 

different replacement policies with different cache sizes. The 

obtained hit ratio depends on the replacement algorithm, 

cache size and the locality of reference for cache requests.  

4.2    Simulation Results  
We executed simulation program for all 8 different cache 

sizes and compared it with LRU-K, FIFO, RANDOM, ARC, 

CAR and OPTIMAL algorithms which is taken as a 

benchmark and all other are predicted relative to this. As it is 

indicated in Table 2, we can see the accurate hit ratio of all 

tested policies. Hit Ration can be calculated as follows:       

        

 

 The average h it ratio of LRU-K is 61.22%, FIFO is 60.43, 

CAR is 62.42%, ARC is 70.13% and finally OPTIMAL is 

71.24.So in average the ARC policy works much parallel to 

OPTIMAL and better than all other algorithms. If we will 

consider the individual algorithm then the result shows that 

the maximum hit ratio is 75.42% from CAR is attained for 

the cache size of 210 and also the minimum hit ratio is 

40.24% at cache size 30 for CAR algorithm.  

Here we have simulated the LRU-K algorithm with last 100 

references (k=100) and it is concluded that it works much 

better than LRU algorithm. The result shows that when the 

cache size relatively increases then hit ratio grows linearly. It 

can be easily verified that both the hybrid algorithms CAR 

and ARC performs better than the primitive algorithms. Even 

if we consider the average hit ratio performance of the 

algorithms then it shows that OPTIMAL is having the AHR 

(Average Hit Ratio) of 71.25% and ARC is very much nearer 

to this with 70.13% .FIFO is having the lowest AHR of 

60.43%. It can be easily identified from figure-2. 

Table 2.  A Comparison between hit ratios of different algorithms for 8 different frame sizes. 

Cache 

Size 
FIFO LRU-K RANDOM CAR ARC OPTIMAL 

30 40.93 41.82 41.33 40.24 60.36 57.09 

60 49.26 48.86 50.05 49.65 69.18 66.2 

90 57.48 56.69 58.67 59.27 69.97 71.46 

120 62.14 64.62 66.5 66.2 71.75 74.43 

150 66.3 67.29 71.06 70.96 72.94 76.51 

180 72.84 73.84 74.03 75.22 73.14 76.51 

210 74.03 75.42 75.92 75.42 73.54 76.51 



International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011 
Proceedings published in International Journal of Computer Applications® (IJCA) 

 
 

15 

 

          

Figure 1: Performance Analysis of different 

techniques using Hit Ratio. 

 

5. CONCLUSION  
In this paper we have discussed various famous cache 

replacement policies like LRU-K, FIFO, RANDOM, ARC, 

CAR and OPTIMAL, then simulated and compared them to 

evaluate their efficiency. It makes easier to choose a specific 

policy for a specific set of memory reference. It also explains 

the variant characteristics of different algorithms, which helps 

us to characterize their behavior and development of new 

cache techniques in future development. 

 

We have developed the tool for data cache access still 

preparing for instruction cache. These algorithms can also be 

simulated with other benchmark traces with different 

applications and then the overall results can be analyzed. We 

also expect from the readers for the development of some new 

hybrid algorithms like CAR and ARC which can perform 

better than the traditional algorithms. 

6. REFERENCES 

 [1] Relative Competitive Analysis of Cache Replacement 

Policies _Jan Reineke Daniel Grund, LCTES’08, June 12–13, 

2008, Tucson, Arizona, USA. Copyrightc 2008 ACM  

[2]Q. Yang, H. H. Zhang and H. Zhang, “Taylor Series 

Prediction: A Cache Replacement Policy Based on Second-

Order Trend Analysis,” Proc. 34th Hawaii Conf. System 

Science, 2001. 

[3]S.Hosseini-khayat, “On Optimal Replacement of 

Nonuniform Cache Objects,” IEEE Trans. Computers, vol. 

49, no.8, Aug. 2000. 

[4] Debabala Swain, Bijay  K Paikray, Debabrata 

Swain,“AWRP: Adaptive Weight Ranking Policy for 

Improving Cache Performance”, Journal of Computing, vol-3, 

Issue-2, February 2011.  

[5]S. Irani, “Page Replacement with Multi-Size Pages and 

Applications to Web Caching,” Proc.29th Ann, ACM symp. 

Theory of Computing, pp. 701-710, 1997. [6] E. J. O’Neil, P. 

E. O’Neil, and G. Weikum, “an Optimality Proof of the LRU-

K page Replacement Algorithm.” J.ACM, vol. 46, no.1, pp. 

92-112, 1999. 

 [7] G. Glass and P. Cao, “Adaptive Page Replacement Based 

on Memory Reference Behavior", proc ACM SIGMETRICS 

Conf.Measuring and Modeling of Computer Systems, May 

1997, pp. 115-122 

[8] S. Jihang and X. Zhang, “LIRS: An Efficient Low Inter 

Reference Recency Set Replacement Policy to Improve 

Buffer Cache Performance,” Proc. ACM Sigmetrics Conf., 

ACM Pres, pp. 31-42, 2002. 

[9] N. Megiddo and D. S. Modha, “ARC: A Self-Tunning, 

Low Overhead Replacement Cache,”Proc.Usenix Conf. File 

and Storage Technologies (FAST 2003), Usenix, 2003, 

pp.115-130 

[10] Y. Zhou and J. F. Philbin, “The Multi-Queue 

Replacement Algorithm for Second for Second-Level Buffer 

Caches,” Proc. Usenix Ann. Tech conf. (Usenix 2001), 

Usenix, 2001, pp. 91-104. 

[11] Sorav Bansal and Dharmendra S. Modha, "CAR: Clock 

with Adaptive Replacement." USENIX File and Storage 

Technologies (FAST), March 31-April 2, 2004, San 

Francisco, CA. 

[12] Mohamed Zahran. “Cache Replacement Policy 

Revisited,” In Proceedings of the 6th Workshop on 

Duplicating Decon-structing, and Debugging, San Diego, CA, 

USA, June 2007. 

[13] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 

“A locally adaptive data compression scheme,” Comm. ACM, 

vol. 29, no. 4, pp. 320–330, 1986. 

[14] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, 

and C. S. Kim, “LRFU: A spectrum of policies that subsumes 

the least recently used and least frequently used policies,” 

IEEE Trans.Computers, vol. 50, no. 12, pp. 1352–1360, 2001. 

[15] S. A. Johnson, B. McNutt, and R. Reich, “The making of 

a standard benchmark for open system storage,” J. Comput. 

Resource Management, no. 101, pp. 26–32, Winter 2001. 



International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011 
Proceedings published in International Journal of Computer Applications® (IJCA) 

 
 

16 

[16] C. Aggarwal, J. L. Wolf, and P. S. Yu. “Caching on the 

WorldWideWeb,” In IEEE Transactions on Knowledge and 

Data Engineering, vol. 11, pp. 94-107, 1999. 

[17] Yannis Smaragdakis, Scott Kaplan, Paul Wilson, “The 

EELRU adaptive replacement algorithm”performance 

Evaluation, v.53 n.2, pp. 93-123, July 2003. 

[18] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, 

and C. S. Kim, “On the existence of a spectrum of policies 

that subsumes the least recently used (lru) and least frequently 

used (lfu) policies,” in Proc. ACM SIGMETRICS Conf., pp. 

134–143, 1999. 

[19] T. Johnson and D. Shasha, “2Q: A low overhead high 

performance buffer management replacement algorithm,” in 

Proc. VLDB Conf., pp. 297–306, 1994. 

[20] S. Albers, S. Arora, and S. Khanna, “Page replacement 

for general caching problems,” Proceedings of the 10th 

Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 

31–40, 1999. 

[21]A. S. Tanenbaum and A. S. Woodhull, Operating 

Systems: Design and Implementation. Prentice-Hall, 1997. 

[22] J. E. G. Coffman and P. J. Denning, Operating Systems 

Theory Englewood Cliffs, NJ: Prentice-Hall, 1973. 

[23]www.ecs.umass.edu/ece/koren/architecture, Computer 

Architecture Educational Tools.    

[24] Kaveh  Samiee, ”WRP: Weighting Replacement Policy 

to Improve Cache    Performance”, International Journal of 

Hybrid Information Technology,Vol.2,No.2, April, 2009. 

[25]Development of a Virtual Memory Simulator to Analyze 

the Goodness of Page Replacement Algorithms Fadi N. , 

Sibai, Maria Ma, David A. Lill 

[26] The LRU-K Page Replacement Algorithm For Database 

Disk Buffering Elizabeth J. O’Neil 1, Patrick E. O’Neill, 

Gerhard Weikum2 SIGMOD 15193 AVaahin~ton, DC,USA 

@1993ACM. 

[27]http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.set.cortexr/index.html 

[28] L. A. Belady, A study of replacement algorithms for a 

virtual-storage computer, IBM Systems Journal, Volume 5, 

Issue 2, pp. 78–101 (1966). 

 

 

 

 

 

 

 

 

http://www.ecs.umass.edu/ece/koren/architecture
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.cortexr/index.html

