
International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

12

Algorithm for XML Compression using DTD and Stack

G. M. Tere
Department of Computer Science,

Shivaji University, Kolhapur,
Maharashtra – 416004, India

B. T. Jadhav
Department of Electronics and Computer Science,

Y.C. Institute of Science,
Satara, Maharashtra – 415001, India

ABSTRACT

Worldwide standard for data definition is XML. For

developing SOA based applications XML is extensively used.

SOA based applications contains many different applications

which are integrated to each other. For solving the problem of

interoperability XML documents are used. XML is widely

used for a variety of tasks, including configuration files,

protocols, and web services. XML has problem with

processing. It is verbose nature. Simple messages can be quite

large, containing very small information. In XML documents

lots of information are duplicated, which take more

computing resources and thus performance of web services

decreases. Lots of research is going on regarding how to

process XML, so that web services’ performance can increase.

We present an algorithm for compressing XML documents

using Document Type Definition (DTD) specifications. Our

algorithm is based on lossless compression technique. The

model used for compression and decompression is generated

automatically from the DTD, and is used in conjunction with

an arithmetic encoder to produce a compressed XML

document. Our compression technique is on-line, that is, it can

compress the document as it is being read. We have

implemented the compressor generator, and we have

mentioned the results of our experiments performed with

XML documents created from Oracle database. The average

compression is better than that of XMLPPM and XMill. The

processor, XPrFAST, is able to compress large documents

where XMLPPM failed to work as it ran out of memory. The

technique we have proposed is simple and effective and we

have compared it with XMLPPM and XMill.

General Terms

Software Engineering, XML Processing, SOA

Keywords

Arithmetic coding, compression ratio, DTD, DFA,

XMLPrFAST.

1. INTRODUCTION
XML has been standardized by W3C. It is world wide

standard for data definition and description. Thus whenever

there is need of data exchange between different applications

developed using different platforms. XML is widely used in

developing web services which are required for loose

coupling of different applications. Considering the importance

of XML there is need to process XML documents efficiently.

Main problem of XML is that of verbose nature. It is easy for

human to understand the XML documents as they are plain

text files, but it is challenging for computer to process them.

We need to present necessary information using less data.

Large document size means that the amount of information

that has to be transmitted, processed, stored, and queried is

often larger than that of other data formats [1]. If to present

same information more data is required then we neeed to

compress the data, so that communication between

applications will not demand more bandwidth. XML

document’s structure is specified by DTD. The purpose of

DTD (Document Type Definition) is to define the legal

building blocks of an XML document. We have studied

different models for the compression of XML documents.

As data in business applications is growing, we need to

exchange and process large XML documents, and therefore

theres is need of efficiently compressing XML documents.

The syntax directed translation scheme converts the DTD into

a set of Deterministic Finite Automata (DFA) one for each

element in the DTD [2]. Each transition is labeled by an

element, and the action associated with a transition is a call to

a simulator for the DFA for the element labeling that

transition. Every element that has some attributes or character

data has an associated container. The scheme we describe

automatically groups all data for the same element into a

single container which is compressed incrementally using a

single model for compressor[20]. We have performed

experiments with XML documents containing data from

Oracle databases [13]. We then compared performance of our

tool with that of two well known XML-aware compression

schemes, XMill[12] and XMLPPM [6]. For experiments we

have used OE schema of Oracle 11g [13] and DBLP [7] and

UniProt [20] database. The XML documents are stored in the

Oracle XML DB Repository after validation against the

registered XML schema purchaseorder.xsd. The purchase

order XML documents are located in the Oracle XML DB

Repository folder

$ORACLE_HOME/rdbms/demo/order_entry/2002/month,

where month is Jan, Feb, Mar, and so on. For dealing with

XML data in Oracle we have to use SYS.XMLTYPE.The tool

XMLPPM could not compress UniProt database as it ran out

of memory. The average compression ratio of our scheme is

better than that of XMLPPM and significantly better than that

of XMill. There is no best tool available for compressing

XML documents. Our tool took more time and memory sd

compared with XMill. This is because of drawback of a

scheme based on arithmetic coding, which has to perform

lengthy table updating operations after reading every symbol.

However XMill cannot perform on-line compression as can

XMLPPM and our tool XPrFAST (XML Processor with

Finite Automata and Stack). Online compression is useful for

http://www.techabulary.com/x/xml/

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

13

processing large XML documents. Section 2 describes related

work. Section 3 describes arithmetic coding. In section 4 the

structure of XML documents and DTD is discussed. In section

5 we have presented and analyzed the experimental results

obtained with different compression tools like ith those of

XMill and XMLPPM and that of a general purpose

compressor bzip2[2].

2. RELATED WORK
Data and information are not synonymous terms! Data is the

means by which information is conveyed. Data compression

aims to reduce the amount of data required to represent a

given quantity of information while preserving as much

information as possible. Cameron has used Context Free

Grammars, CFG, for compressing files [4]. Given estimates

for derivation step probabilities, he has shown how to

construct practical encoding systems for compression of

programs whose syntax is defined by a CFG. The models are,

however, fairly complex in their operation. For the scheme to

be effective, these probabilities have to be learned on sample

text. Syntax based schemes have also been used for machine

code compression [16][17][18]. With a DTD, each of XML

files can carry a description of its own format. With a DTD,

independent groups of people can agree to use a standard

DTD for interchanging data. Application can use a standard

DTD to verify that the data received from the outside world is

valid. The XML-specific compression schemes that we are

aware of are XMLZIP[24], Xmill and XMLPPM. The last two

have tried to take advantage of the structure in XML data by

either transforming the file after parsing, breaking up the tree

into components [12] or injecting hierarchical element

structure symbols into a model that multiplexes several

models based on the syntactic structure of XML [6]. They do

not require the DTD to compress the document, and even if it

is available it is not used. XMLZIP parses XML data and

creates the underlying tree. It then breaks up the tree into

many components, the root component at depth d and a

component for each of the sub trees at depth d.

3. ARITHMETIC CODING AND

 FINITE AUTOMATA

3.1 Arithmetic Coding
Arithmetic coding does not replace every input symbol with a

specific code [15]. Instead it processes a stream of input

symbols and replaces it with a single floating point output

number. The longer (and more complex) the message, the

more bits are needed in the output number. The output from

an arithmetic coding process is a single number less than 1

and greater than or equal to 0. This single number can be

uniquely decoded to create the exact stream of symbols that

went into its construction. In order to construct the output

number, the symbols being encoded need to have a set of

probabilities assigned to them. Initially the range of the

message is the interval [0, 1). As each symbol is processed,

the range is narrowed to that portion of it allocated to the

symbol. As the number of symbols in the message increases,

the interval used to represent it becomes smaller. Smaller

intervals require more information units (i.e., bits) to be

represented.

3.2 Finite Automata
A deterministic finite state automaton (DFA) is a simple

language recognition device. It can be seen as a machine

working to give an indication about strings which are given in

input or it can be given a mathematical definition.

Strings are fed into the device by means of an input tape,

which is divided into squares, each one holding one symbol.

The main part of the machine itself is a black box which is, at

any specified moment, in one of a finite number of distinct

internal states, among which we distinguish an initial state and

some final states. This black box, called the finite control, can

sense what symbol is written at any position of the input tape

by means of a movable reading head. Initially, the reading

head is placed at the leftmost square of the tape and the finite

control is set in a designated initial state.

In a finite context scheme, the probabilities of each symbol

are calculated based on the context the symbol appears in. In

its traditional setting, the context is just the symbols that have

been previously encountered. The order of the model refers to

the number of previous symbols that make up the context. In

an adaptive order k model, both the compressor and the

decompresser start with the same model. The compressor

encodes a symbol using the existing model and then updates

the model to account for the new symbol. Typically a model is

a set of frequency tables one for each context. After seeing a

symbol the frequency counts in the tables are updated. The

frequency counts are used to approximate the probabilities

and the scheme is adaptive because this is being done as the

symbols are being scanned. The decompresser similarly

decodes a symbol using the existing model and then updates

the model. Since there are potentially qk possibilities for level

k contexts where q is the size of the symbol space, update can

be a costly process, and the tables consume a large amount of

space. This causes arithmetic coding to be somewhat slower

than dictionary based schemes like the Ziv-Lempel[24]

scheme.

4. REPRESENTATION OF XML

 DOCUMENTS USING FINITE

 AUTOMATA
XML documents contain element tags which include start tags

like <name> and end tags like </name>. Elements can nest

other elements and therefore a tree structure can be associated

with an XML document. Elements can also contain plain text,

comments and special processing instructions for XML

processors. In addition, opening element tags can have

attributes with values such as gender in <person

gender=‘‘male’’>. Detailed specifications are given in [23].

XML documents have to conform to a specified syntax

usually in the form of a DTD. Usually XML documents are

parsed to ensure that only valid data reaches an application.

Most XML parsing libraries use either the SAX interface 286

or the DOM (Document Object Model) interface. SAX is an

event based interface suitable for search tools and algorithms

that need one pass. SAX parser is work differently with

DOM parser, it either load any XML document into memory

or create any object representation of the XML document.

Instead, the SAX parser use callback function.

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

14

The DOM model on the other hand is suitable for algorithms

that have to make multiple passes. Since XML documents are

stored as plain text files one possibility is to use standard

compression tools like bzip2. Cheney[6] has performed a

study of the compression using such general purpose tools and

observed that each general purpose compressor performs

poorly on at least one document. Since XML documents are

governed by a rather restrictive set of rules the obvious way to

go, is to try to use the rules to predict what symbols to expect.

Further if the rules are already known a-priori then the

compressor which is tuned to take advantage of the rules can

be generated directly from the rules themselves. This is what

we achieve in our scheme XPrFAST. The scheme proposed in

this paper assumes that the DTD describing the data is known

to both the sender and the receiver. Typically, an element of a

DTD consists of distinct beginning and ending tags enclosing

regular expressions over other elements. Elements can also

contain plain text, comments and special instructions for

XML processors. Opening element tags can have attributes

with values.

Example 1. Consider a DTD defined as follows:

<!DOCTYPE Diary[
<!ELEMENT Diary (person*)>
<!ELEMENT person ((name | (firstName,
 lastName)),
 email, contactno, desig?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT contactno (#PCDATA)>
<!ELEMENT desig (#PCDATA)>
]>

PCDATA means parsed character data. Think of character

data as the text found between the start tag and the end tag of

an XML element. PCDATA is text that WILL be parsed by a

parser. The text will be examined by the parser for entities and

markup. Tags inside the text will be treated as markup and

entities will be expanded. However, parsed character data

should not contain any &, <, or > characters; these need to be

represented by the & < and > entities, respectively.

Below is an instance of an XML document conforming to this

DTD.

<Diary>
<person>
<firstName>Neeta</firstName>
<lastName>Singh</lastName>
<email>neeta_singh@yahoo.co.in</email>
</person>
<person>
<name>Milind Joshi</name>
<email>milind.joshi@gmail.com</email>
<desig>Programmer</desig>
<contactno>09930335566</contactno>
</person>
</Diary>

The strings following each element declaration are just regular

expressions over element names and therefore each of them

can be associated with a DFA.

Fig. 1 DFA for the right hand side of the production for nn in
Example 1

The DFA for the right hand side of the rule for element

card is shown in Fig. 1. There are two kinds of states in this

automaton, those having a single output transition and those

with multiple output transitions. Symbols that label single

output transitions need not be encoded as their probability is

1. Thus encoding of symbols by the arithmetic compressor

needs to be performed only at states with more than one

outgoing transition. An arithmetic encoding procedure is

called at each such state for each element. As we observed in

Section 3, the arithmetic encoder maintains tables of

frequencies which it updates each time it encodes a symbol.

Each element which has a #PCDATA attribute will result in a

call to an arithmetic encoder which uses a common model for

all instances of that element attribute and encodes them using

the same set of frequency tables. A typical sequence of

actions is then as follows: Enter the start state of a DFA

representing the right side of a rule; if there is only one edge

out of the state then do nothing; if that element has a

#PCDATA attribute then encode the string of symbols using

the frequency tables associated with that element; if there is

more than one edge encode the element labeling the edge

taken, using an arithmetic encoder for that state, and transit to

the the start state of the DFA for that element; the decoder

mimics the action of the encoder generating symbols that are

certain and using the arithmetic decoder for symbols that are

not. XPrFAST uses a single container for the character data

associated with each element though this has the capability to

use the context (i.e. the path along which it reached this

element). The reason is best illustrated by the example below:

Example 2. Consider the element below

<!ELEMENT Project (date, date, ...)>
<!ELEMENT Employee (date, ...)>
<!ELEMENT date (#PCDATA)>

The date in Employee is the joining date. The first and second

date in Project is the starting and ending dates respectively of

the project. XPrFAST uses a single model for date and the

reason is clear. Experimentation indicates that having

different models for date in this case is counter-productive as

different models for essentially the same kind of data

consume an inordinate amount of memory with little or no

gain in compression ratio.

contactno

lastname

first name

2

5 desig

email

name

1
3

4

6

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

15

4.1 Compression and Decompression

 Using XPrFAST
A state of the compressor is a pair (element, state) where

element represents the current element whose DFA XPrFAST

is traversing and state of the DFA where it currently is. We

have used the work done by Hariharan and Priti [25], but we

have done experiments with different data. Assume that the

current state of the Encoder is (i, j). When an open tag is

encountered for element k in the document, the current state

pair of the encoder is stored on the calling stack and the DFA

for the element k is entered. The current state of the encoder

now becomes (k, 0). When the end tag is encountered for

element k, the stack is popped and the new state of the

encoder becomes (i, j + 1). As mentioned earlier, tags are not

encoded if the number of output transitions is equal to 1. For

example, for the case below we need not encode the tag D but

we have to encode B and C.

<!ELEMENT A ((B | C), D)>

Every state has an arithmetic model which it uses to encode

the next state. Note that this is different from the model used

to encode character data, which is handled as described

below.

Consider the element below.

<!ELEMENT A ((#PCDATA A|B)*)>

There are two transitions from the start state of the DFA for

element A. One of them invokes the arithmetic model for

CDATA which is common for all PCDATA associated with

any instance of element A in the document. The other

transition invokes the DFA for element B after pushing the

current state in the stack. We have used the algorithm

developed by Hariharan and Priti [25] for designing our

compression tool XPrFAST.

void Encoder(){
ExitLoop = false;
//StateStruct is a pair of int(ElementIndex, StateIndex)
//ElementIndex represents the automaton
//StateIndex is the state in the above automaton
StateStruct CurrState(0, 0);
while(ExitLoop == false)
{
 Type = GetNextType(FilePointer, ElementIndex);
 switch(Type)
 {
 case OPENTAG:
 //Encode ElementIndex in CurrState context
 EncodeOpenTag(CurrState, ElementIndex);
 Stack.push(CurrState);
 CurrState = StateStruct(ElementIndex, 0);
 break;

 case CLOSETAG:
 //Encode CLOSETAG in CurrState context
 EncodeCloseTag(CurrState);
 if(Stack.empty() == true)
 {
 ExitLoop = true;
 }
 else
 {
 CurrState = Stack.pop();
 //Make state transition in CurrState.ElementIndex
 //automaton and get the next state

 CurrState.StateIndex =
 MakeStateTransition(CurrState,
 ElementIndex);
 }
 break;

 case PCDATA:
 //Encode Pcdata in Currstate context
 EncodePcdata(CurrState);
 CurrState.StateIndex =
 MakeStateTransition(CurrState, PCDATA);
 break;
 }
 }
}

Fig. 2 Algorithm for compressing XML documents [25]

void Decoder()
{
ExitLoop = false;
StateStruct CurrState(0, 0);
while(ExitLoop == false)
{
 //Decode the type in CurrState context
 Type = DecodeNextType(FilePointer, CurrState,
 ElementIndex);
 switch(Type)
 {
 case OPENTAG:
 //Write open tag of the Element of ElementIndex
 WriteOpenTag(ElementIndex);
 Stack.push(CurrState);
 CurrState = StateStruct(ElementIndex, 0);
 break;

 case CLOSETAG:
 //Write close tag of the Element of ElementIndex
 WriteCloseTag(ElementIndex);
 if(Stack.empty() == true)
 {
 ExitLoop = true;
 }
 else
 {
 CurrState = Stack.pop();
 CurrState.StateIndex =
 MakeStateTransition(CurrState,
 ElementIndex);
 }
 break;

 case PCDATA:
 DecodePcdata(CurrState);
 CurrState.StateIndex =
 MakeStateTransition(CurrState, PCDATA);
 break;
 }
 }
}

Fig. 3 Algorithm for decompressing XML documents [25]

5. EXPERIMENTAL RESULTS
We have examined the performance of three tools XMill,

XMLPPM and XPrFAST on five large XML documents. The

experiments were done on DELL laptop Core2 Duo, Intel

Pentium IV 2 GHz with 4 GB RAM , Windows XP was OS.

The sizes of these documents are displayed in Table 1. We

define the Compression Ratio as the ratio of the size of the

compressed document to the size of the original document

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

16

expressed as a percentage. The compression ratios for all three

schemes are shown in Fig. 3 along with that of a general

purpose compressor bzip2. The compression ratios of

XPrFAST and XMLPPM are considerably better than that of

XMill for all but one of the documents. XMLPPM, however,

ran out of memory for two documents. It also takes

significantly longer than XPrFAST whereas XMill is more

efficient in terms of space and time. The disadvantage of

XMill is that it cannot perform on-line compression.

Therefore it is not suitable for compressing large XML data.

We expect that our scheme will do well wherever the markup

content is high as tags whose probability of occurrence is 1

are not included in the compressed stream. Fig. 3 also shows

the compression ratios for tags alone. XPrFAST compresses

tags more efficiently than in other schemes. Time required in

sec for compressing different XML documents by different

XML compression tools is shoen in Table III and in Fig. 4.

TABLE I

SIZES OF XML DOCUMENTS THAT WERE COMPRESSED

Name Size in MB

OE 542

Dblp 253

Uniprot 1070

TABLE II

COMPRESSION RATIO OF DIFFERENT XML DOCUMENTS BY DIFFERENT

COMPRESSING TOOLS

Compression ratio for different XML

documents

XML doc XPrfAS

T XMLPPM Xmill bzip2

OE

18.50% 16.53%

30.45

%

23.72

%

dblp

10.00% 10.00%

14.80

%

11.60

%

uniprot 7.50% 8.00% 8.80%

Fig. 3. Compression ratio of different XML documents for different

compressing tools

TABLE III

TIME IN SEC REQUIRED BY DIFFERENT COMPRESSION TOOLS FOR

COMPRESSING DIFFERENT XML DOCUMENTS

Time measured by different

Compression tools in sec

XML doc XPrfAST XMLPPM Xmill

OE 206 513 33

Dblp 324 1766 45

uniprot 1252 112

Fig. 4. Time in sec required by different compression tools for

compressing different XML documents

XPrFAST does not need a SAX parser as do XMill and

XMLPPM as some form of parsing is already embedded in its

action. XMLPPM ran out of memory for uniprot.xml and

mich.xml. Running times are shown for only XML-aware

schemes.

We have presented a scheme for the compression of XML

documents where the underlying arithmetic model for the

compression of tags is a finite state automaton generated

directly from the DTD of the document. The model is

automatically switched on transiting from one automaton to

another storing enough information on the stack so that return

to the right state is possible; this ensures that the correct

model is always used for compression. On return, the stack is

used to recover the state from which a transition was made.

Our technique directly generates the compressor fromthe

DTD in the appropriate format with no user interaction except

the input of the DTD. Our experiments on different databases

indicate that the scheme is better on the average than

XMLPPM in terms of compression ratio, much faster in terms

of running time and more economical in terms of memory

usage. XMLPPM ran out of memory for UniProt data. The

tool XMill runs much faster and with limited memory, but its

average performance is considerably poor to that of XPrFAST

as shown in Fig. 3 and Fig. 4.

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

17

The dynamic space requirements for the compressor are

dominated by the size of the tables for the arithmetic

compressor which grow exponentially with the size of the

context. Also updating these tables after each symbol is

processed makes the compression rather slow in comparison

with dictionary based schemes.

6. ACKNOWLEDGMENTS
We wish to thank teachers of Department of Computer

Science, Shivaji University, Kolhapur and Principal of Thakur

College of Science and Commerce for motivating us for this

research work.

7. REFERENCES
[1] Arion, A., Bonifati, A., Costa, G., D’Aguanno, S.,

Manolescu, I., Pugliese, A.: Efficient query evaluation

over compressed XML data. In: EDBT. (2004) 200–218

[2] Backhouse, R.C.: Syntax of Programming Languages -

Theory and Practice. Prentice Hall International, London

(1979)

[3] Bzip2: (http://www.bzip.org)

[4] Cameron, R.D.: Source encoding using syntactic

information source models. IEEE Transactions on

Information Theory 34 (1988) 843–850

[5] Cleary, J.G., Teahan, W.J.: Unbounded length contexts

for PPM. The Computer Journal 40 (1997) 67–75

[6] Cheney, J.: Compressing XML with Multiplexed

Hierarchical PPM Models. In: Proceedings of the Data

Compression Conference, IEEE Computer Society

(2001) 163–172

[7] DBLP: (http://www.informatik.uni-trier.de/∼ley/db)

[8] Ernst, J., Evans, W.S., Fraser, C.W., Lucco, S.,

Proebsting, T.A.: Code compression. In: PLDI. (1997)

358–365

[9] Franz, M.: Adaptive compression of syntax trees and

iterative dynamic code optimization: Two basic

technologies for mobile object systems. In: Mobile

Object Systems: Towards the Programmable Internet.

Springer-Verlag: Heidelberg, Germany (1997) 263–276

[10] Franz, M., Kistler, T.: Slim binaries. Commun. ACM 40

(1997) 87–94

[11] Fraser, C.W.: Automatic inference of models for

statistical code compression. In: PLDI. (1999) 242–246

[12] Liefke, H., Suciu, D.: XMILL: An efficient compressor

for XML data. In: SIGMOD Conference. (2000) 153–

164

[13] Roza Leyderman, Oracle Database Sample Schemas, 11g

Release 1 (11.1), B28328-03, Oracle, 2008.

[14] Min, J.K., Park, M.J., Chung, C.W.: XPRESS: A

queriable compression for XML data. In: SIGMOD

Conference. (2003) 122–133

[15] Nelson, M.: Arithmetic coding and statistical modeling.

[16] http://dogma.net/markn/articles/arith/part1.htm. Dr.

Dobbs Journal (1991)

[17] Thierry Violleau, Java Technology and XML-Part One,

March 2001,

http://java.sun.com/developer/technicalArticles/xml/Java

TechandXML/

[18] Thierry Violleau, Java Technology and XML-Part Two,

March 2002,

http://java.sun.com/developer/technicalArticles/xml/Java

TechandXML_part2/

[19] Tolani, P.M., Haritsa, J.R.: XGRIND: A query-friendly

XML compressor. In: ICDE. (2002) 225–234

[20] UniProt: (http://www.ebi.uniprot.org)

[21] Witten, I. H., Neal, R.M., Cleary, J.G.: Arithmetic

coding for data compression. Commun. ACM 30 (1987)

520–540

[22] XML: W3C recommendation.

http://www.w3.org/TR/REC-xml (2004)

[23] XMLZip, http://www.xmls.com

[24] Ziv, J., Lempel, A.: A universal algorithm for sequential

data compression. IEEE Transactions on Information

Theory 23 (1977) 337–343

[25] Hariharan Subramanian and Priti Shankar, Compressing

XML Documents Using Recursive Finite State

Automata, CIAA 2005, LNCS 3845, pp. 282–293, 2006,

Springer-Verlag Berlin Heidelberg 2006

