
International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

28

Botnet-A Network Threat

Sonal P.Patil Swatantra Kumar

 Student, M. Tech 2nd year, Software Engineer, OSS Cube Solutions,

TIT, Bhopal Pvt. Ltd., Mumbai

ABSTRACT

Botnet are network threats that generally occur from cyber

attacks, which results in serious threats to our network assets

and organization‟s properties. Botnets are collections of

compromised computers (Bots) which are remotely controlled

by its originator (BotMaster) under a common Command-and-

Control (C&C) infrastructure. Among the various forms of

malware, botnets are emerging as the most serious threat

against cyber-security as they provide a distributed platform

for several illegal activities such as launching distributed

denial of service attacks against critical targets, malware

dissemination, phishing, and click fraud. The most important

characteristic of botnets is the use of command and control

channels through which they can be updated and directed. The

target of the botnet attacks on the integrity and resources of

users might be multifarious; including the teenagers

evidencing their hacking skills to organized criminal

syndicates, disabling the infrastructure and causing financial

damage to organizations and governments. In this context, it

is crucial to know in what ways the system could be targeted.

The major advantage of this classification is to identify the

problem and find the specific ways of defense and recovery.

This paper aims to provide a concise overview of major

existing types of Botnets on the basis of attacking techniques.

General Terms
Botnets are emerging as the most significant threat facing

online ecosystems and computing assets. Malicious botnets

are distributed computing platforms predominantly used for

illegal activities such as launching Distributed Denial of

Service (DDoS) attacks, sending spam, trojan and phishing

emails, illegally distributing pirated media and software, force

distribution, stealing information and computing resource,

ebussiness extortion, performing click fraud, and identity

theft. The high light value of botnets is the ability to provide

anonymity through the use of a multi-tier command and

control (C&C) architecture. Moreover, the individual bots are

not physically owned by the botmaster, and may be located in

several locations spanning the globe. Differences in time

zones, languages, and laws make it difficult to track malicious

botnet activities across international boundaries. This

characteristic makes botnet an attractive tool for

cybercriminals, and in fact poses a great threat against cyber

security.

Keywords

Botnet, Bots, Botnet Detection.

1. INTRODUCTION
Botnet is a network of compromised computers called

“Bots” under the remote control of a human operator called

“Botmaster”. The term “Bot” is derived from the word

“Robot”; and similar to robots, bots are designed to perform

some predefined functions in automated way. In other words,

the individual bots are software programs that run on a host

computer allowing the botmaster to control host actions

remotely. And here the term net

Botnets are one of the most dangerous species of

network-based attack today because they involve the use of

very large, coordinated groups of hosts for both brute-force

and subtle attacks. A collection of bots, when controlled by a

single command and control infrastructure, form what is

called a botnet. Botnets obfuscate the attacking host by

providing a level of indirection, the attack host is separated

from its victim by the layer of zombie hosts, and the attack

itself is separated from the assembly of the botnet by an

arbitrary amount of time. The technological advancements are

pushing the human life towards ease and trouble

simultaneously. Emerging information technologies have

made access to information so easy that was never before. But

on the other hand, it has worsened the security level.

BOTNETS are proving to be the most recent and disastrous

threat to the field of information technology. The

understanding of a layman about Botnets is that it is a network

facilitating the malicious attacks on the user machines but

technically speaking “Botnets are a collection of computers on

which ,a software, „bot‟, is automatically installed without

user intervention and are remotely controlled via command

and control server”. Despite of the fact that this network can

be implied both for nefarious and beneficial purposes, its

extensive deployment in the criminal and destructive purposes

has made the title „botnets‟ tantamount to malware. An active

Botnet initializes its attack by first exploiting vulnerabilities in

the user computers. It then downloads the malicious binary

and executes it locally. This program logs on to the Command

and Control Server (C & C) and notifies its Host, commonly

known as „Botmaster‟ or „Botherder‟, that the computer is

now converted to a „Bot‟. It can now be used to forward its

affect to other computers by repeating the same procedure.

The major difference between botnets and other security

threats is that a botmaster communicates regularly with the

bots either via centralized communication channel or

decentralized network. These bots perform any type of

destruction on receiving the commands from the botmaster.

These botmasters send the commands, control all the bots, and

then can attack a victim as a unit. Botnets are developing at a

very fast rate making it difficult to detect and recover from

their side effects. However, some of their types extensively

deployed can be classified to provide for their remedy. This

report mainly deals with three major types of botnets: IRC

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

29

botnets, peer-to-peer and HTTP botnets and suggests some

techniques to identify and detect them. Section 1 gives an

introduction of botnets. Section 2 reviews their history and

topologies. Section 3 is all about their lifecycle, Botnet

Command and Control, Botnet Topologies according to the

Command-and-Control(C&C) channel and Botnet life cycle.

Three major types of botnets and their detection scenarios are

considered in Section 3.1.1, 3.1.2 and 3.1.3 respectively.

Section 3.2 proposed botnet detection framework &

components; Section 4 proposes some of expected advances

in this particular field as future work. Section 5 is dedicated to

the overall conclusion of our study.

2. TYPESET TEXT

2.1 HISTORY OF MALICIOUS BOTS
Before the evolution of Botnets; the major sources of malware

were viruses, worms, Trojan Horses that used to affect only a

single machine. With the evolution of Botnets; the concept of

destruction was enhanced from a single machine to a network

as a whole. The history of undertaking botnets for destruction

roughly dates back to 1990. Prior to this, botnets were the

major sources of maintaining control of the IRC channels.

Their mischievous applications mainly took advantage of the

centralized control of IRC for command and control. But

centralized control structure was relatively easy to discover

and track. Due to insecure nature of IRC botnets; they

completely changed their structure form centralized to a peer-

to-peer nature, which is a decentralized control structure. This

ultimately makes it much harder to spy the communication

among the bots and to track their origin. The most recent

improvement is again the implementation of centralized C&C

in HTTP botnets; but here the distinguishing feature is that the

Botnets periodically connect and disconnect with the bot

master. This further aggravates the problem of detection [7].

2.2 COMMAND AND CONTROL CHANNEL
The backbone of botnet is command and control channel;

which is responsible for setting up the botnet, controlling the

activities of the bots, issuing commands, and ultimately

reaching the goals [2]. The command and control channel is

stable during the operation of botnets i.e. once a botnet is

established; the command and control channel remain the

same throughout its operation. But on the other hand, once a

C&C channel is detected; then the whole botnet is exposed.

2.3 BOTNET TOPOLOGIES
According to the Command-and-Control(C&C) channel, we

categorized Botnet topologies into two different models, the

Centralized model and the Decentralized model [1].

A. Centralized model

The oldest type of topology is the centralized

model. In this model, one central point is responsible for

exchanging commands and data between the BotMaster and

Bots. Many well-known Bots, such as AgoBot, SDBot, Zotob

and RBot used this model. In this model, BotMaster chooses a

host (usually high bandwidth computer) to be the central point

(Command-and-Control) server of all the Bots. The C&C

server runs certain network services such as IRC or HTTP.

The main advantage of this model is small message latency

which cause BotMaster easily arranges Botnet and launch

attacks. Since all connections happen through the C&C server,

therefore, the C&C is a critical point in this model. In other

words, C&C server is the weak point in this model. If

somebody manages to discover and eliminates the C&C

server, the entire Botnet will be worthless and ineffective.

Thus, it becomes the main drawback of this model.

Since IRC and HTTP are two common protocols

that C&C server uses for communication, we consider Botnets

in this model based on IRC and HTTP. Figure 1 shows the

basic communication architecture for a Centralized model.

Fig 1: Command and control architecture of a Centralized

model

1) Botnet based on IRC: The IRC is a form of real-time

Internet text messaging or synchronous conferencing [8]. The

protocol is based on the Client-Server model, which can be

used on many computers in distributed networks. Some

advantages which made IRC protocol widely being used in

remote communication for Botnets are: (1) Low latency

communication; (2) Anonymous real-time communication;

(3) Ability of Group (many-to-many) and Private (one-to-one)

communication; (4) simple to setup and (5) simple

commands. The basic commands are connect to servers, join

channels and post messages in the channels; (6) Very

flexibility in communication. Therefore IRC protocol is still

the most popular protocol being used in Botnet

communication.

In this model, BotMaster‟s can command their Bots

as a whole or command a few of the Bots selectively using

one-to-one communication. The C&C server runs IRC service

that is the same with other standard IRC service. BotMaster

usually creates a designated channel on the C&C servers

where all the Bots will connect, awaiting commands in the

channel which will instruct each connected Bot to do the

BotMaster‟s command.

2) Botnet based on HTTP: The HTTP protocol is another

popular protocol used by Botnets. Since IRC protocol within

Botnets became well-known, more internet security

researchers gave attention to monitoring IRC traffic to detect

Botnet. Consequently, attackers started to use HTTP protocol

as a Command-and-Control communication channel to make

Botnets become more difficult to detect. The main advantage

of using the HTTP protocol is hiding Botnets traffics in

normal web traffics, so it can easily bypasses firewalls with

port-based filtering mechanisms and avoid IDS detection.

There are some known Bots using the HTTP protocol, such as

Bobax, ClickBot [8] and Rustock. Guet al pointed out that the

HTTP protocol is in a “pull” style and the IRC is in a ”push”

style.

B. Decentralized Model
Due to major disadvantage of Centralized model –

Central Command-and-Control(C&C) attackers started to

build alternative Botnet communication system that is much

harder to discover and to destroy. Hence, they decided to find

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

30

a model in which the communication system does not heavily

depending on few selected servers and even discovering and

destroying a number of Bots. As a result, attackers exploit the

idea of Peer-to-Peer (P2P) communication as a Command-

and-Control(C&C) pattern which is more resilient to failure in

the network. The P2P based C&C model will be used

dramatically in Botnets in the near future, and definitely

Botnets that use P2P based C&C model impose much bigger

challenge for defense of networks. Since P2P based

communication is more robust than Centralized C&C

communication, more Botnets will move to use P2P protocol

for their communication.

In P2P model, as shown in Figure 2, there is no Centralized

point for communication. Each Bot keeps some connections

to the other Bots of the Botnet. Bots act as both Clients and

servers. A new Bot must know some addresses of the Botnet

to connect there. If Bots in the Botnet are taken offline, the

Botnet can still continue to operate under the control of

BotMaster. P2P Botnets aim at removing or hiding the central

point of failure which is the main weakness and vulnerability

of Centralized model

Fig 2: Example of Peer-to-peer Botnet Architecture

3. BOTNET LIFE CYCLE
A typical botnet can be created and maintained in five phases

including: initial infection, secondary injection, connection,

malicious command and control, update and maintenance.

This life-cycle is depicted in Fig. 3

A typical botnet can be created and maintained in five phases

including: initial infection, secondary injection, connection,

malicious command and control, update and maintenance.

This life-cycle is depicted in Fig 3.

During the initial infection phase, the attacker, scans a target

subnet for known vulnerability, and infects victim machines

through different exploitation methods. After initial infection,

in secondary injection phase, the infected hosts execute a

script known as shell-code. The shell-code fetches the image

of the actual bot binary from the specific location via FTP,

HTTP, or P2P. The bot binary installs itself on the target

machine. Once the bot program is installed, the victim

computer turns to a “Zombie” and runs the malicious code.

The bot application starts automatically each time the zombie

is rebooted. In connection phase, the bot program establishes

a command and control (C&C) channel, and connects the

zombie to the command and control (C&C) server. Upon the

establishment of C&C channel, the zombie becomes a part of

attacker‟s botnet army. After connection phase, the actual

botnet command and control activities will be started. The

botmaster uses the C&C channel to disseminate commands to

his bot army.

Bot programs receive and execute commands sent

by BotMaster. The C&C channel enables the botmaster to

remotely control the action of large number of bots to conduct

various illicit activities. Last phase is to maintain bots lively

and updated. In this phase, bots are commanded to download

an updated binary [4].Bot controllers may need to update their

botnets for several reasons. For instance, they may need to

update the bot binary to evade detection techniques, or they

may intend to add new functionality to their bot army.

Moreover, sometimes the updated binary move the bots to a

different C&C server. This process is called server migration

and it is very useful for botmasters to keep their botnet alive.

BotMaster try to keep their botnets invisible and portable by

using Dynamic DNS (DDNS) which is a resolution service

that facilitates frequent updates and changes in server

locations. In case authorities disrupt a C&C server at a certain

IP address, the botmaster can easily set up another C&C

server instance with the same name at a different IP address.

IP address changes in C&C servers propagate almost

immediately to bots due short time-to-live (TTL) values for

the domain names set by DDNS providers. Consequently,

bots will migrate to the new C&C server location and

will stay alive.

Fig 3: Botnet Life-cycle

The success of any process mainly lies in how well the

sequence of steps is organized. The major reason of dramatic

success and spread of botnets is their well organized and

planned formation, generation and propagation. The lifecycle

of a botnet from its birth to disastrous spread undergoes the

following phases [2]:

1. Bot-herder configures initial bot parameters.

2. Registers a DDNS.

3. Register a static IP.

4. Bot-herder starts infecting victim machines either directly

through network or indirectly through user interaction.

5. Bots spread.

6. Bot joins the Botnet through C&C server.

7. Bots are used for some activity (DDoS, Identity Theft etc.)

8. Bots are updated through their Bot operator which issues

update commands.

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

31

3.1 TYPES OF BOTNETS
There is a variety of botnets causing the mass

destruction. As already discussed in section II, the three major

categories that we have considered in our study depend on the

type of command and control they are based on [2]. They are

as follows:

• IRC botnets

• P2P botnets

• HTTP botnets

Now we will consider each one of them to briefly view their

operation and detection mechanism.

3.1.1 IRC

The IRC (Internet Relay Chat) protocol was initially

designed for real-time Internet text messaging. The building

ground of IRC is TCP/IP protocol. It works by making a

central location and then all the required users (clients)

connect to that central location; and that central location is

called server; while anything except server is called client.

Clients are distinguished from each other by their nickname;

which is a string composed of 9 characters. Any server must

know the real name of the host the client is running on, the

username of the host the client is running on, the user name of

client on that host, and the corresponding server.

As IRC came into extensive use several variations in the

protocol and structure were adopted. Automated clients called

bots emerged as a new concept and the success was obvious.

They served as a permanent point of contact for information

exchange. With their popularity, their deployment in several

unexpected tasks increased manifold. One of these was the

emergence of botnets for nefarious purposes.

 This emergence grew into a massive network that allow its

operators to use it for running games, file distribution, or use

it for user misbehavior. [2] the most vulnerable feature of an

IRC is its server. The IRC channel operator is connected to

this server. If the server is crashed due to some reason, then

the connection of this operator would automatically die and

another member from the same channel would automatically

be assigned the server status. This behavior proved to be

disastrous, and allowed any user to snatch the server‟s honor,

and therefore use the channel according to its own will.

The IRC bot is an assembly of programmed codes that behave

as a client in an IRC channel. But unlike the traditional clients

providing interactive access, it performs self-propelled

functions.

The key feature of pioneer legitimate IRC bots

called botnets; was to allow secure assignment of privileges

between bots, sharing of user/ban lists and to control floods.

This allowed the IRC operators to utilize the congregated

power of many modules of bots together.

IRC Detection Techniques

A lot of techniques have been proposed for IRC

Botnet detection. The basis of all these techniques is hounding

of packets either at network layer or application layer.

In the mechanism of detection is suggested on the

network layer level. Here the hierarchy between routers and

the IRC server is explored in bottom-up manner i.e. the

tracking initiates from the victim and follows the path of

infecting routers till the origin (bot-herder).

The author has proposed a frame work in which

sniffs the network traffic, filters it on the basis of application

layer protocol, and then segregates them into either righteous

or saboteur IRC traffic just by contemplating the IRC chat

contents. The separating foundation between a normal human

and botnet conversation is that the human language is

alternating while the Botnet conversation is repeating.

It presents a pipelined approach which accomplishes

the detection procedure in a number of steps. First it separates

the black and white list traffic based on the DNS queries; this

separated traffic is classified according to applications i.e.

extract chat-like traffic. Next pair wise correlation of the

traffic flows is done to identify similar traffic considering it to

be originating from same botnet.

The study of these IRC detection techniques reveals

that choice of the suitable detection technique depends on the

required scenario. If the solution has to be managed at the

network layer, serves as the best option; while on application

layer and serve the purpose. Regardless of their applications,

each technique has its respective shortcomings which leave a

large room for further suggestions and research.

3.1.2 P2P BOTNETS

Preliminary botnet architecture was based upon

centralized architecture but that was much prone to detection;

as the entire botnet can be apprehended just by tracking down

a single central command [1].Botnet was referred to a cluster

of computer infected by the computer virus, each of which is

so called as “bot”. Real hackers behind the bots took

advantage of such communication to command and control

the bots to send spam mails, steal valuable ID and password

of on-line game or cause DDoS. With technologies evolves,

Botnet also developed various structures such as IRC, HTTP

and P2P, etc. The P2P botnet, a new type originating from

botnet, operated as in Figure 1 by imitating Peer-to-Peer (P2P)

technologically. First, the P2P botnet imitated P2P applying

multiple main control to avoid single point failure.

Fig 4: Diagram of P2P botnet Operation

Plus, it used encryption technology, making it impossible for

us to analyze communication contents and discover botnet

communication in the legal network flow. At present, internet

hackings can be detected by misuse detection and anomaly

detection. The misuse detection was the method of signature

comparison to judge rascal software only by in-depth

scanning the communication contents. It worked in detecting

unencrypted IRC bot, but not P2P botnet. Anomaly detection,

the other primary technology, was also seemed ineffective in

botnet, since it need resulted data to define normal and

abnormal behaviors, causing errors in false positive and false

negative judgment inevitably [8].

Comparing with misuse detection, anomaly

detection was better since it only judged characters of

communications in terms of behaviors and statistics without

reading encrypted communication contents, meaning that

even malice communication after being encrypted can also be

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

32

used. Since the method focused on the object‟s behavior

characters, using P2P botnets original characters to sort out its

natures statistically was an important task. The research

suggested the detection method on the basis of the following

three hypotheses: communication via P2P botnet imitated P2P

structure to set up numerous sessions; bot sessions kept on

transmitting data to maintain the malicious network works;

and botnet communication used data at minimum level as

much as possible to keep its privacy. In order to improve

accuracy of anomaly detection, not only the necessary data

under the experiment internet environment were collected, but

also data mining technology was used to make judgment more

accurately.

To overcome this drawback, a rather new

technology in the field of Botnets is peer-to-peer Botnets;

where a peer (host) can act as both client and server

alternatively. To enter the network a peer can connect to any

other peer of the network using its IP address that was already

present in its database. Finally when this peer is part of the

network; it continually updates its database by interacting

with other peers. Using this approach when any peer tries to

send commands to the botnet, it sends a library call to its

database to get the addresses of other bots; thus acting as

commander and controller of the P2P botnet. This

Commander and Controller now send orders that are to be

followed by the remaining peers of the network.

To track down a peer-to-peer network, initially the

simplest possible solution was for the hacker to enter the

botnet by pretending to be a new bot. This newly entered bot

will now be able to connect to any other peer of the network

and thus be able to track down its activities. The biggest

disadvantage of this approach is that the intruder can monitor

the activity and thus track down only a single peer; the entire

botnet activity can neither be monitored nor can be tracked

down immediately. The entire Botnet tracking is obviously a

time consuming operation [1].

3.1.3 HTTP BOTNETS

The most recent Botnet till date is HTTP botnet. It works by

exchanging web requests using port 80. It sets up its

communication with certain URL‟s using internet with an

HTTP message. This HTTP message contains unique

identifiers for the bots. The server under consideration will

reply to these HTTP messages with further investigation

commands (e.g. GET). This interrogating command

ultimately becomes the reason of downloading the infecting

malicious commands. Again it uses the centralized command

and control channel as IRC botnet uses but a few advantages

compared to IRC exists:

• Here the command and control server is web server as

compared to IRC botnets where IRC serves as the C&C.

• In IRC bot once connected to C&C doesn‟t disconnect but

here the bots regularly connects with the server after regular

intervals of time; which is set by the web server.

The traffic of the HTTP botnets flows with the

regular traffic. However, the bot packets are different from

normal packets making the detection procedure easy [7].

Discusses the most commonly deployed detection technique

for HTTP botnets. Here a degree of periodic repeatability

(DPR) is employed. This parameter represents the repeated

reconnection of bots with botmaster after regular interval that

is configured by the botmaster. The more number of times,

same client connects to the same server after same interval of

time, depicts greater probability of a client being a bot and

server being a botmaster.

More work on several other techniques is underway

to timely detect the modern HTTP botnet attacks.

3.2 PROPOSED BOTNET DETECTION

FRAMEWORK AND COMPONENTS
Our proposed framework is based on passively

monitoring network traffics. Consequently this model is not

provided for detecting botnet at the very moment when hosts

are infected with bots. This model is based on the definition of

P2P botnets that multiple bots within the same botnet will

perform similar communication patterns and malicious

activities. Figure 6 shows the architecture of our proposed

botnet detection system, which consist of 4 main components:

Filtering, Traffic Monitoring, Malicious Activity Detector and

Analyzer. Filtering is responsible to filter out irrelevant traffic

flows. The main benefit of this stage is reducing the traffic

workload and makes application classifier process more

efficient. Malicious activity detector is responsible to analyze

the traffics carefully and try to detect malicious activities that

internal host may perform and separate those hosts and send

to next stage. Traffic Monitoring is responsible to detect the

group of hosts that have similar behavior and communication

patterns by inspecting network traffics. Analyzer is

responsible for comparing the results of previous parts

(Traffic Monitoring and Malicious Activity Detector) and

finding hosts that are common on the results of both parts.

Fig 5: Traffics filtering stages

Fig 6: Architecture overview of our proposed

detection framework

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

33

A. Filtering

Filtering is responsible to filter out irrelevant traffic flows.

The main objective of this part is for reducing the traffic

workload and makes the rest of the system perform more

efficiently. Figure 6 shows the architecture of the filtering.

In C1, we filter out those traffics which targets

(destination IP address) are recognized servers and will

unlikely host botnet C&C servers. For this purpose we used

the top 500 websites on the web

(http://www.alexa.com/topsites), which the top 3 are

google.com, facebook.com and yahoo.com. In C2, we filter

out traffics that are established from external host towards

internal hosts. In C3, we filter out handshaking processes

(connection establishments) that are not completely

established. Handshaking is an automated process of

negotiation that dynamically sets parameters of a

communications channel established between two entities

before normal communication over the channel begins. It

follows the physical establishment of the channel and

precedes normal information transfer. A good example that

usually we face with that in network is TCP protocol

operations. To establish a connection, TCP uses a three-way

handshake; in this case we filter out the traffics that TCP

handshaking have not completed. Like a host sends SYN

packets without completing the TCP handshake. Based on our

experience these flows are mostly caused by scanning

activities.

B. Traffic Monitoring

Traffic Monitoring is responsible to detect the group

of hosts that have similar behavior and communication pattern

by inspecting network traffics. Therefore we are capturing

network flows and record some special information on each

flow. We are using Audit Record Generation and Utilization

System (ARGUS) which is an open source tool for monitoring

flows and record information that we need in this part. Each

flow record has following information: Source IP(SIP)

address, Destination IP(DIP) address, Source Port(SPORT),

Destination Port(DPORT), Duration, Protocol, Number of

packets(np) and Number of bytes(nb) transferred in both

directions.

Fig 7: Recorded information of network flows using

Then we insert this information on a data base like

Figure 2, which are network flows. After this stage we specify

the period of time which is 6 hours and during each 6 hours,

all n flows that have same Source IP, Destination IP,

Destination port and same protocol (TCP or UDP) are marked

and for each network flow (row) we calculate Average

number of bytes per second and Average number of bytes per

packet:

a) Average number of bytes per second(nbps) =
Number of bytes/ Duration

b) Average number of bytes per packet(nbpp) =

Number of Bytes/ Number of Packets

Then, we insert this two new values (nbps and nbpp)

including SIP and DIP of the flows that have been marked

into another database, similar to figure 3 . Therefore, during

the specified period of time (6 hours), we might have a set of

database, which each of these databases have same SIP, DIP,

DPORT and protocol (TCP/UDP). We are focusing just at

TCP and UDP protocols in this part.

As we mentioned earlier, the bots belonging to the

same botnet have same characteristics. They have similar

behavior and communication pattern, especially when they

want to update their commands from botmasters or aim to

attack a target; their similar behaviors are more obvious.

Fig 8: Database for analogous flows

Therefore, next step is to looking for groups of

Databases that are similar to each other. For finding similar

communication flows among databases, one solution is using

clustering algorithm like X-means clustering algorithm. X-

means is one of the most famous clustering algorithms.

We proposed a simple solution for finding

similarities among group of databases. For each database we

can draw a graph in x-y axis, which x-axis is the Average

Number of Bytes per Packet (nbpp) and y-axis is Average

Number of Byte Per Second (nbps). (X, Y)= (bpp, bps)

For example, in database (), for each row we have

nbpp that specify x-coordinate and have nbps that determine

y-coordinate. Both x-coordinate and y-coordinate determine a

point (x,y) on the x-y axis graph. We do this procedure for all

rows (network flows) of each database. At the end for each

database we have number of points in the graph that by

connecting those points to each other we have a curvy graph.

We have an example, figure 7, for two different databases

based on data in our lab that their graphs are almost similar to

each other

Next step is comparing different x-y axis graphs, and during

that period of time (each 6 hours) those graphs that are similar

to each other are clustered in same category. The results will

be some x-y axis graphs that are similar to each other. Each of

these graphs is referring to their corresponding databases in

previous step. We have to take record of SIP addresses of

those hosts and send the list to next step for analyzing.

C. Malicious Activity Detector

In this part we have to analyze the outbound traffic from the

network and try to detect the possible malicious activities that

the internal machines are performing. Each host may perform

different kind of malicious activity but Scanning, Spamming,

Binary downloading and exploit attempts are the most

common and efficient malicious activities a botmaster may

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

34

command their bots to perform. In this report we just focus on

scanning and spam-related activities. The outputs of this part

are the list of hosts which performed malicious activities.

1) Scanning: Scanning activities may be used for malware

propagation and DOS attacks. There has been little work on

the problem of detecting scan activities. Most scan detection

has been based on detecting N events within a time interval of

T seconds. This approach has the problem that once the

window size is known, the attackers can easily evade

detection by increasing their scanning interval. Snort are also

use this approaches. Snort version 2.0.2 uses two

preprocessors. The first is packet-oriented, focusing on

detecting malformed packets used for ―stealth scanning by

tools such as nmap. The second is connection oriented. It

checks whether a given source IP address touched more than

X number of ports or Y number of IP addresses within Z

seconds. Snort‟s parameters are tunable, but it suffers from

the same drawbacks as Network Security Monitor (NSM)

since both rely on the same metrics. Other works that are

focusing on scan detection is by Stanford et al. on Stealthy

Probing and Intrusion Correlation Engine (SPICE). SPICE is

focusing on detecting stealthy scans, especially scans that

spread across multiple source addresses and execute at very

low rates. In SPICE there are anomaly scores for packets

based on conditional probabilities derived from the SIP and

DIP and ports. It uses simulated annealing to cluster packets

together into port scan using heuristics that have developed

from real scans. An important need in our system is prompt

response, however reaching to our goals which are

promptness and accuracy in detecting malicious scanners is a

difficult task. Another solution is also using Threshold

Random Walk (TRW), an online detection algorithm. TRW is

based on sequential hypothesis testing.

After assessing different approaches for detecting scanning

activities, the best solution for using in this part is Statistical

sCan Anomaly Detection Engine(SCADE), a snort processor

plug-in system which has two modules, one for inbound scan

detection and another one for detecting outbound attack

propagation.

a) Inbound Scan Detection (ISD): In this part SCADE has

focused on detection of scan activities based on ports that are

usually used by malware. One of the good advantages of this

procedure is that it is less vulnerable to DOS attacks, mainly

because its memory trackers do not maintain per-external-

source-IP. SCADE here just tracks scans that are targeted to

internal hosts. The bases of Inbound Scan Detection are on

failed connection attempts. SCADE in this part has defined

two types of ports: High-Severity (hs) ports which

representing highly vulnerable and commonly exploited

services and low-severity (ls) ports. For make it more

applicable in current situation SCADE focused on TCP and

UDP ports as high-secure and all other as low-secure ports.

There are different weights to a failed scan attempt for

different types of ports.

The warning for ISD for a local host is produced

based on an anomaly score that is calculated as based on this

formula:

 S = (w1Fhs+w2Fls)

Fhs: indicate numbers of failed attempts at high-severity

ports.

Fls : shows numbers of failed attempts at low-severity ports.

b) Outbound Scan Detection (OSD): OSD is based on a voting

scheme (AND, OR or MAJORITY). SCADE in this part has

three parallel anomaly detection models that track all

outbound connection per internal host:

• Outbound scan rate (s1): Detects local hosts that

perform high-rate scans for many external addresses.

• Outbound connection failure rate (s2): Detects

unusually high connection fail rates, with sensitivity to HS

port usage. The anomaly score s2 is calculated based on this

formula:

S2 = (w1Fhs+w2Fls)

 C

Fhs: indicate numbers of failed attempts at high-severity

ports.

Fls : shows numbers of failed attempts at low-severity ports.

C : is the total number of scans from the host within a time

window.

Normalized entropy of scan target distribution (s3):

Calculates a Zipf (power-law) distribution of outbound

address connection patterns. A consistently distributed scan

target model provides an indication of a possible outbound

scan. It is used an anomaly scoring technique based on

normalized entropy to identify such candidates:

S3= H

 Ln(m)

H: is the entropy of scan target distribution

m : is the total number of scan targets

pi : is the percentage of the scans at target

2) Spam-related Activities: E-mail spam, known as

Unsolicited Bulk Email (UBE), junk mail, is the practice of

sending unwanted email messages, in large quantities to an

indiscriminate set of recipients. More than 95% of email on

the internet is spam, which most of these spams are sent from

botnets. A number of famous botnets which have been used

specially for sending spam are Storm Worm which is P2P

botnet and Bobax that used Http as its C&C.

A common approach for detecting spam is the use

of DNS Black/Black Hole List (DNSBL) such as

(http://www.dnsbl.info/dnsbl-list.php). DNSBLs specify a list

of spam senders‟ IP addresses and SMTP servers are blocking

the mail according to this list. This method is not efficient for

bot-infected hosts, because legitimate IP addresses may be

used for sending spam in our network. Creation or misuse of

SMTP mail relays for spam is one of the most well-known

exploitation of botnets. As we know user-level client mail

application use SMTP for sending messages to mail server for

relaying. However for receiving messages, client application

usually use Post Office Protocol (POP) or the Internet

Message Access Protocol (IMAP) to access the mail box on a

mail server. Our idea in this part is very simple and efficient.

Our target here is not recognizing which email message is

spam, though for detecting group of bots that sending spam

with detecting similarities among their actions and behaviors.

Therefore the content of emails from internal network to

external network is not important in our solution. All we want

to do is determining which clients have been infected by bot

and are sending spam. For reaching to this target, we are

focusing on the number of emails sending by clients to

different mail servers. Based on our experience in our lab,

using different external mail servers for many times by same

client is an indication of possible malicious activities. It

means that it is unusual that a client in our network send many

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

35

emails to the same mail server (SMTP server) in the period of

time like one day. Therefore, we are inspecting outgoing

traffic from our network(gateway), and recording SIP and

DIP of those traffics that destination ports are 25(SMTP) or

587(Submission) in the database. Based on network flows

between internal hosts and external computers(SIP belong to

mail servers) and the number of times that it can happen we

can conclude which internal host is behaving unusual and are

sending many emails to different or same mail servers.

D. Analyzer

Analyzer which is the last part of our proposed

framework for detection of botnets is responsible for finding

common hosts that appeared in the results of previous parts

(Traffic Monitoring and Malicious Activity Detector).

4. FUTURE WORK
Botnets is a center of inclination for both the attackers

and the researchers. This concept evolved two decades ago

and proved to be a blitz for internet fraternity in this short

period. There seems to be a state of war going on between the

botnet attackers and defenders or researchers. The researchers

are implementing more advanced and organized strategies to

detriment the internet users and researchers are consistently

trying to cope with their advances. Being an emergent field

there is an open room for research and future work.

Deep analysis of different classifications can lead to one

generalized model of botnets. Furthermore, every technique

mentioned has false positives and negatives which can be

improved. The most recent issue which has called for the

consideration of researchers is that now the botnet headers try

to track honey pots by injecting the binary into the network

and examine who is spying their activities; thus banning the

hackers when they find them out.

All this discussion reveals that botnets are still in

evolutionary phase and provide a capacious field for research.

5. CONCLUSION
Botnet detection is a challenging problem. In this report we

proposed a new P2P botnet detection framework. This

proposed framework is based on our definition of botnets. We

define a botnet as a group of bots that will perform similar

communication and malicious activities pattern within the

same botnet. In our proposed detection framework, we

monitor the group of hosts that show similar communication

pattern in one stage and also performing malicious activities

in another step, and finding common hosts on them. The point

that distinguishes our proposed detection framework from

many other similar works is that there is no need for prior

knowledge of botnets such as botnet signature. In addition, we

plan to further improve the efficiency of our proposed

detection framework with adding unique detection method in

centralized part and make it as one general system for

detection of botnet and try to implement it in near future. It is

impossible to defy the significance of botnets in the current

circumstances. The ravage they have caused to the finances

and solidarity of several government and private organizations

has devoted attention of the IT specialists to find the remedy.

To be well prepared for future botnet attacks, we should study

advanced botnet attack techniques that could be developed by

botmasters in the near future..

In this paper we discussed briefly the emergence of botnets,

their organization and architecture and botnet life cycle steps.

Next the reputed botnet types; the architecture they use and

their different possible detection techniques are presented.

Although different in architectures, all types of botnets are of

great threat to the internet community. They can be used both

for good and bad botnet world, giving a concise but complete

view of different flavors of botnets. This report gives you a

roller coaster ride of the International Conference on

Emerging Security Information, Systems and Technologies.

6. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for

their helpful comments for improving this paper.

7. REFERENCES
[1] Hossein Rouhani Zeidanloo, Azizah Bt Abdul Manaf,

Rabiah Bt Ahmad, Mazdak Zamani, Saman Shojae

Chaeikar, “A Proposed Framework for P2P Botnet

Detection” IACSIT International Journal of Engineering

and Technology, Vol.2, No.2, April 2010.

[2] Fatima Naseem, Mariam shafqat, Umbreen Sabir, Asim

Shahzad, “A Survey of Botnet Technology and Detection”

International Journal of Video & Image Processing and

Network Security IJVIPNS-IJENS Vol: 10 No:

01.Fröhlich, B. and Plate, J. 2000. The cubic mouse: a

new device for three-dimensional input. In Proceedings

of the SIGCHI Conference on Human Factors in

Computing Systems

[3] Hailong Wang, Zhengu Gong, “Collaboration-based

Botnet Detection Architecture”, 2009 Second

International Conference on Intelligent Computation

Technology and Automation.

[4] Maryam Feily, Alireza Shahrestani, Sureswaran

Ramadass, “A Survey of Botnet and Botnet Detection”

2009 Third International Conference on Emerging

Security Information, Systems and Technologies.

[5] Alireza Shahrestani, Maryam Feily, Rodina Ahmad,

Sureswaran Ramadass, “architecture for applying data

mining and visualization on network flow for botnet

traffic detection”, 2009 International Conference on

Computer Technology and Development.

[6] Hossein Rouhani Zeidanloo, Azizah Bt Manaf, Payam

Vahdani, Farzaneh Tabatabaei, Mazdak Zamani, “Botnet

Detection Based on Traffic Monitoring”, 201O

International Conference on Networking and Information

Technology.Y.T. Yu, M.F. Lau, "A comparison of

MC/DC, MUMCUT and several other coverage criteria

for logical decisions", Journal of Systems and Software,

2005, in press.

[7] Jae-Seo Lee, HyunCheol Jeong, Jun-Hyung Park,

Minsoo Kim, Bong-Nam Noh, “The Activity Analysis of

Malicious HTTPbased Botnets using Degree of Periodic

Repeatability”, IEEE International Conference on

Security Technology, 2008.

[8] Wen-Hwa Liao, Chia-Ching Chang, “Peer to Peer Botnet

Detection Using Data Mining Scheme”, IEEE 2010=

