

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

1

ABSTRACT

 Cloud is a simplified operating system that runs just a web

browser, providing access to a variety of web-based applications

that allow the user to perform many simple tasks without booting

a full-scale operating system. Because of its simplicity, Cloud

can boot in just a few seconds. The operating system is designed

for Mobile, and PCs that are mainly used to browse the Internet.

This paper also focuses on various issues characteristics of cloud

Operating System. Paper also Focus on requirements of cloud

OS. It gives the importance of cloud operating system in market.

It also gives implementation of the cloud kernel processes

Keywords
 Cloud OS, Kernel

INTRODUCTION

 Cloud is a simplified operating system that runs just a web

browser, providing access to a variety of web-based applications

that allow the user to perform many simple tasks without booting

a full-scale operating system. Because of its simplicity, Cloud

can boot in just a few seconds. The operating system is designed

for Mobile, and PCs that are mainly used to browse the

Internet.[5]

 Cloud can be installed and used together with other operating

systems, or can act as a standalone operating system. When used

as a standalone operating system, hardware requirements are

relatively low.Cloud OS manages user account. Cloud OS

include simple Text editor, Paint application, spreadsheet and a

presentation viewer that you can use. It includes Calendar,

Contact module, and simple games. Use for Remote application

management.

1. ASSUMPTIONS ON CLOUD NFRASTRUCTURE
 A Cloud is a logical entity composed of managed

computingresources deployed in private facilities and

interconnected over a public network, such as the Internet. Cloud

machines (also called nodes) are comprised of inexpensive, off-

the shelf consumer-grade hardware. Clouds are comprised of a

large number of clusters (i.e. sets of nodes contained in a same

facility) whose size may range from a few machines to entire

datacenters. Clusters may use sealed enclosures or be placed into

secluded locations that might not be accessible on a regular

basis, a factor that hinders access and maintenance activities.

Clusters are sparsely hosted in a number of locations

While a traditional OS is a piece of software that manages the

hardware devices present in a computer, the Cloud OS is a set of

distributed processes whose purpose is the management of Cloud

resources. Analogies to established concepts can therefore help

us to describe the kind of features and interfaces we wish to have

in aCloud OS, ignoring for the moment the obvious differences

of scale and implementation between the two scenarios:

 an OS is a collection of routines (scheduler, virtual

memory allocator, file system code, interrupt handlers,etc.) that

regulate the access by software to CPU, memory, disk, and other

hardware peripherals; the Cloud OS provides an additional set of

functionalities that give administrative access to resources in the

Cloud: allocate and deallocate virtual machines, dispatch and

migrate

processes, setup inter-process communication, etc. an OS

provides a standard library of system calls which programs can

use to interact with the underlying hardware; the Cloud OS

provides a set of network-based interfaces that applications can

use to query the management

system and control Cloud resources.

 an OS includes a standard distribution of libraries and

software packages; the Cloud OS includes software support for

the autonomous scaling and opportunistic deployment of

distributed applications[8]

2. TOWARD SEAMLESS ACCESS TO

NETWORKED RESOURCES

In this section, we present the architecture and functional

building blocks of the Cloud OS. Our current design approach

leverages decades of experience in building networked systems,

from the origins of the Internet architecture[19] to subsequent

achievements in distributed operating systems research [13] and

large-scale network testbed administration [20]. An additional

inspiration, especially concerning the implementation of Cloud

OS, comes from the last decade of advances in distributed

algorithms and peer-to-peer systems.

 Logical architecture of the cloud os
Figure 1 represents a logical model of Cloud OS. We define the

Cloud object as a set of local OS processes running on an single

node, which are wrapped together and assigned locally a

random identifier of suitable length to minimize the risk of

system-wide ID collisions. A Cloud process (CP) is a collection

of Cloud objects that implement the same (usually distributed)

application.

 We refer to the small number of CPs that regulate physical

allocation, access control, accounting, and measurements of

resources as the Cloud kernel space. Those CPs that do not

belong to kernel space pertain to the Cloud user space. User

space CPs that are executed directly by users are called User

Applications, while Cloud Libraries are CPs typically called

upon by Applications and other Libraries. Applications can

interface with Libraries and kernel CPs over the network through

a set of standard interfaces called Cloud System Calls2. The

assumptions stated above pose very few constraints about the

features that the underlying Cloud hardware is expected to

provide. Basically, the ability to execute the Cloud kernel

processes, together with the availability of appropriate trust

credentials, is a sufficient condition for a node to be part of the

Cloud3 . A limited access to Cloud abstractions and interfaces is

thus also achievable from machines that belong to administrative

Trends in Cloud Operating System

Sanil C. Savale

Department of Computer Science,

Gogate Jogalekar College, Ratangiri

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

2

domains other than that of the Cloud provider, with possible

restrictions due to the extent of the management rights available

there.

All objects in the Cloud user space expose a Cloud system call

handler to catch signals from the Cloud OS, i.e. they can be

accessed via a network-based interface for management

purposes. The association between object names and their

network address and port is maintained by the process

management and virtual machine management kernel CPs, and

the resulting information is made available throughout the Cloud

via the naming Library. The naming library also keeps track of

the link between User Application CPs and

the objects they are composed of. The access rights necessary for

all management operations are granted and verified by the

authentication kernel CP. Measurement kernel CPs are always

active in the Cloud and operate in both on-demand and

background modes.

3. CLOUD OS REQUIREMENTS

Whereas current datacenter setups can offer a fine-grained

amount of control and pervasive management capabilities, the

Cloud environment is much less predictable and harder to

control: the environment imposes therefore several restrictions to

the Cloud OS design, such as the reliance on coarse-grained

knowledge about Cloud resource availability, the need to detect

and tolerate failures and partitions, and a lack of global view

over the system state. Despite these limitations, our design aims

to meet the following general requirements:

a) The Cloud OS must permit autonomous

management of its resources on behalf of its users

and applications:
 Our main purpose is providing an abstraction of the Cloud as

a coherent system beyond the individual pieces of hardware from

which it is built. The Cloud OS should therefore expose a

consistent and unified interface that conceals whenever possible

the fact that individual nodes are involved in its operations, and

what those low-level operations are. [7]

b) Cloud OS operation must continue despite loss of

nodes, entire clusters, and network partitioning:

Conforming to our assumptions, we expect that every system

component, including networks, may unexpectedly fail, either

temporarily or permanently. Guaranteeing continued operation of

the Cloud management processes in these conditions involves

mechanisms for quickly detecting the failures and enacting

appropriate measures. Note that fault-tolerance at the Cloud level

does not imply any guarantee about the fault-tolerance of

individual applications: the state of any process could suddenly

disappear because of any of the previous events, therefore Cloud

applications should be designed with this in mind. Several Cloud

libraries that implement common fault-tolerance and state

recovery features are provided out of the box.

 c) The Cloud OS must be operating system and

architecture agnostic:
The network is the common interface boundary between the

various software elements of the Cloud. The reason for this

choice is that we want to enable the broadest compatibility

between hardware and software configurations, while providing

at the same time an easy way for future evolution of the Cloud

system, both at a global and at an individual subsystem level.

Experience shows that protocols are able to withstand time much

better than ABIs, standard library specifications, and file formats:

long-lived protocols such as the X protocol and HTTP are good

examples in this regard. While it is wise from an operational

standpoint

to consolidate the number of architectures supported and

standardize around a small number of software platforms, the

Cloud OS operation does not depend on any closed set of

platforms and architectures.

d) The Cloud must support multiple types of

applications, including legacy:
In the assumptions above, we purposefully did not specify a

target set of applications that the Cloud is supposed to host.

Rather than optimizing the system for a specific mode of

operation (e.g. high performance computing, high data

availability, high network throughput, etc.), we aim to address

the much broader requirements of a general-purpose scenario:

applications of every type should ideally coexist and obtain from

the system the resources that best match the application

requirements.

e) The Cloud OS management system must be

decentralized, scalable, have little overhead per user

and per machine, and be cost effective:
The use of such a soft-state approach takes inspiration from

recent peer-to-peer techniques: these systems are capable of

withstanding failures and churn at the price of a reasonable

amount of network overhead, and provide enough scalability to

meet and surpass the magnitudes of today’s datacenters and

large-scale testbeds. Moreover, apart from initial resource

deployment and key distribution, no human intervention should

be required to expand the Cloud resources. Likewise, user

management should only entail the on-demand creation of user

credentials, which are then automatically propagated throughout

the Cloud

f) The resources used in the Cloud architecture must

be accountable, e.g. for billing and debugging

purposes:
The cost of an application’s deployment across the Cloud is also

a part of the end-to-end metrics that may influence the

scheduling of resources as per an application’s own policy.

Moreover, dynamic billing schemes based e.g. on resource

congestion could be an effective way to locally encourage a

proportionally fair behavior among users of the system and

increase the cost of attacks based on maliciously targeted

resource allocation .

4. IMPLEMENTATION OF THE CLOUD KERNEL

PROCESSES

 a)Resource Measurement:
The Cloud OS needs to maintain an approximate view of the

available Cloud resources. Our current approach involves

performing local measurements on each Cloud node. This

technique provides easy access to end to-end variables such as

latency, bandwidth, packet loss rate, etc.,which are precious

sources of knowledge that are directly exploitable by the

applications. More detailed knowledge requires complete control

over the network infrastructure, but it may be used in certain

cases to augment the accuracy of end-to-end measurements (e.g.,

with short-term predictions of cpu load or networking

performance) in clouds that span several

datacenters.measurements can target either local quantities, i.e.

inside a single cloud node, or pairwise quantities, i.e. involving

pairs of connected machines (e.g. link bandwidth, latency,etc.).

complete measurements of pairwise quantities cannot be

performed in large-scale systems, as the number of measurement

operations required grows quadratically with the size of the

cloud. Several distributed algorithms to predict latencies without

global measurement campaigns have been proposed. meridian

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

3

uses an overlay network to recursively select machines that are

the closest to a given network host. bandwidth estimation in

cloud environments remains an open problem: despite the

existence of a number of established techniques, most of them

are too intrusive and unsuitable for simultaneous use and to

perform repeated measurements on high capacity links.

b)Resource abstraction:
 Modern OS metaphors, such as the “everything is a file” model

used by UNIX and Plan9, provide transparent network interfaces

and completely hide their properties and pecificities from the

applications. However, characterizing the underlying network is

a crucial exigence for a Cloud OS, for network properties such as

pairwise latencies, available bandwidth, etc., determine the

ability of distributed applications to efficiently exploit the

available resources. One major strength of a file-based interface

is that it is very flexible and its shortcomings can be

supplemented with an appropriate use of naming conventions.

 c)Distributed process and application management:
 The Cloud OS instantiates and manages all objects that exist

across the Cloud nodes. A consolidated practice is the use

of virtual machines (VMs), which provide an abstraction that

flexibly decouples the “logical” computing resources from

the underlying physical Cloud nodes. Virtualization provides

several properties required in a Cloud environment [31], such

as the support for multiple OS platforms on the same node and

the implicit isolation (up to a certain extent) between processes

running on different VMs on the same hardware. Computation

elasticity, load balancing, and other optimization requirements

introduce the need for dynamic allocation of resources such as

the ability to relocate a running process between two nodes in

the Cloud. This can be done either at the Cloud process level,

i.e. migrating single processes between nodes, or at virtual

machine level, i.e check pointing and restoring the whole VM

state on a different node.

d)Access Control and User Authentication:
 Providing seamless support for large numbers of simultaneous

users requires a distributed authentication method to avoid single

points of failure, resulting in the complete or partial

inaccessibility to Cloud resources.

Figure 1. Logical model of Cloud OS, featuring the division

between Cloud kernel / Cloud user space and the system call and

library API interfaces.

5. FEATURES PROVIDED BY THE

CLOUD USER SPACE

In order to fully exploit the potential of a general purpose Cloud

OS, developers should be given access to a set of standard ways

to satisfy common requirements of distributed large-scale

applications. Cloud libraries provide a standard

API with features such as:

 access to Cloud-wide object and process naming via

DNS and/or other distributed naming services

 distributed reliable storage functionality

 automated Cloud application deployment, horizontal

scaling, and lifecycle management

 high availability failover support with check pointed

replicated process execution.

As a general principle, the Cloud libraries provided by the Cloud

OS should allow the developers to control the required level of

data replication, consistency, and availability, and also the way

failure handling is performed when application requirements are

not satisfied. This way, an application developer can concentrate

her attention on the specific properties of the application,

knowing that the system will try its best to accommodate the

stated requirements. For instance, when an application demands

high availability and is capable of dealing with temporary

inconsistencies, the library may provide eventual consistency

support, instead of stronger consistency. The advantages of this

configurability are twofold. On one hand, an application

developer doesn’t need to implement her own customized

(application-specific) libraries, but instead can customize the

level of support she needs from the Cloud library API. This

reduces the complexity and error proneness network protocols.

This way, the usability of our Cloud OS will not be restricted by

technology lock-in[17]

6. FUTURE DIRECTIONS

 The existence of simple yet powerful and expressive

abstractions is essential in realizing the full potential of Cloud

Computing. To this purpose we introduced the Cloud operating

system, Cloud OS. Cloud OS aims to provide an expressive set

of resource management options and metrics to applications to

facilitate programming in the Cloud, while at the same time

exposing a coherent and unified programming interface to the

underlying distributed hardware. This unified interface will

provide developers with a quick and transparent access to a

massively scalable computing and networking environment,

allowing the implementation of robust, elastic, and efficient

distributed applications. Our next steps beyond laying out the

architecture of Cloud OS include, first, a detailed definition of

functional elements and interfaces of the kernel-space Cloud

processes and of the user-space libraries, and second, the design

and implementation of the aforementioned elements with

emphasis on fault-tolerance, security, and elasticity

REFERENCES

[1] Cloud Computing: Web-Based Applications That Change

the Way You Work and Collaborate Online, Michael

Miller

[2] Cloud Computing: Principles and Paradigms The

Enterprise Cloud Computing Paradigm, by Benoit Hudzia

[3] Cloud Computing for Dummies by Judith Hurwitz,

Marcia Kaufman & Fern Halper

http://www.amazon.com/dp/0470887990?tag=wwwsoftwarese-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0470887990
http://www.cloudbook.net/community/contributors/benoit-hudzia
http://www.amazon.com/dp/0470484705?tag=wwwsoftwarese-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0470484705
http://www.cloudbook.net/community/contributors/judith-hurwitz

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

4

[4] Cloud Security & Privacy An Enterprise Perspective on

Risks and Compliance by Subra Kumaraswamy , Tim

Mather & Shahed Latif

[5] Power in the Cloud Building Information Systems at the

Edge of Chaos by Jonathan Sapir

[6] “ EyeOS” [Online] http://eyeos.org/

[7]“ vmware “ [Online]

http://www.vmware.com/products/cloud-os/

[8]“Google AppEngine.” [Online]

http://appengine.google.com.

[9] “wikipedia “ [Online]

 http://en.wikipedia.org/wiki/Google_Chrome_OS

[10] Fabio Pianese ,Peter Bosch ,Alessandro Duminuco , Nico

Janssens ,Thanos Stathopoulosy ,Moritz Steiner,

 Toward a Cloud Operating System ,Alcatel-Lucent Bell

 Labs, Service Infrastructure Research Dept. yComputer

 Systems and Security Dept.

[11] R. Gibbens and F. Kelly, “Resource pricing and the

 evolution of congestion control,” Automatica, vol. 35, pp.

 1969–1985, 1999.

[12] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,

 “Hey, you, get off of my cloud: Exploring information

 leakage in third-party compute clouds,” in Proceedings of

 the ACM Conference on Computer and Communications

 Security, (Chicago, IL), November 2009.

 [13] D. D. Clark, “The design philosophy of the darpa internet

 protocols,” in Proc. SIGCOMM ’88, Computer

 Communication Review Vol. 18, No.4, August 1988, pp.

 106–114, 1988.

[14] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir,

 “Experiences building Planetlab,” in In Proceedings of the

 7th USENIX Symp. On Operating Systems Design and

 Implementation (OSDI), 2006.

[15] P. A. Dinda and D. R. O’Hallaron, “An extensible toolkit

 for resource prediction in distributed systems,” Tech. Re

CMU-CS-99-138, School of Computer Science , Carnegie

 Mellon University, 1999.

[16] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi:

 A decentralized network coordinate system,” in In Proc.

 of ACM SIGCOMM, 2004.

[17] R. Gibbens and F. Kelly, “Resource pricing and the

 evolution of congestion control,” Automatica, vol. 35, pp.

 1969–1985, 1999.

[18] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,

you, get off of my cloud: Exploring information leakage in

third-party compute clouds,” in Proceedings of the ACM

Conference on Computer and Communications Security,

(Chicago, IL), November 2009.

[19] D. D. Clark, “The design philosophy of the darpa internet

protocols,” in Proc. SIGCOMM ’88, Computer Communication

Review Vol. 18, No.4, August 1988, pp. 106–114, 1988.

[20] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir,\

“Experiences building Planetlab,” in In Proceedings of the

7th USENIX Symp. On Operating Systems Design and

Implementation (OSDI), 2006.

[21] P. A. Dinda and D. R. O’Hallaron, “An extensible toolkit

for resource prediction in distributed systems,” Tech.

Rep. CMU-CS-99-138, School of Computer Science ,

Carnegie Mellon University, 1999.

[22] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A

 Decentralized network coordinate system,” in In Proc. of

ACM SIGCOMM, 2004.

[23] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a

 lightweight network location service without virtual

coordinates,” SIGCOMM Comput.Commun. Rev., vol. 35,

no. 4, pp. 85–96, 2005.

[24] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy,

 “BandwidthDestimation: Metrics, measurement techniques,

and tools,” IEEE Network, vol. 17, pp. 27–35, 2003.

[25] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F.

 Kaashoek,and R. Morris, “Flexible, wide-area storage for

 distributed systems with wheelfs,” in NSDI’09: Proceedings

of the 6th USENIX symposium on Networked systems

design and implementation, (Berkeley, CA, USA), pp.43–

58, USENIX Association, 2009.

[26] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-

peer

 information system based on the xor metric,” in IPTPS ’01:

Revised Papers from the First International Workshop on Peer-

to-Peer Systems, (London,UK), pp. 53–65, Springer-

Verlag, 2002.

[27] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global

 view of KAD,”in IMC 2007, ACM SIGCOMM Internet

 Measurement Conference,October 23-26, 2007, San

Diego, USA, 10 2007.

[28] P. Ganesan, B. Yang, and H. Garcia-Molina, “One torus to

 Rule of the 7th International Workshop on the Web and

Databases, (NewYork, NY, USA), pp. 19–24, ACM, 2004.

[29] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury:

 Supporting scalable multi-attribute range queries,” in

 Proceedings of the 2004 conference on Applications,

 technologies, architectures, and protocols for computer

 communications, pp. 353–366,

 [30] P. Costa, J. Napper, G. Pierre, and M. V. Steen,

“Autonomous Resource Selection for Decentralized Utility

http://www.amazon.com/dp/0596802765?tag=wwwsoftwarese-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0596802765
http://www.cloudbook.net/community/contributors/subra-kumaraswamy
http://www.amazon.com/dp/0929652312?tag=wwwsoftwarese-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0929652312
http://www.cloudbook.net/community/contributors/jonathan-sapir
http://eyeos.org/
http://www.vmware.com/products/cloud-os/
http://appengine.google.com/
http://en.wikipedia.org/wiki/Google_Chrome_OS

International Conference on Recent Trends in Information Technology and Computer Science (IRCTITCS) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

5

Computing,” in Proceedings of the 29th IEEE International

Conference on Distributed Computing Systems (ICDCS

2009), (Montreal, Canada), June 2009.

[31] R. Figueiredo, P. Dinda, and J. Fortes, “A case for grid

 computing on virtual machines,” in International Conference

on Distributed Computing Systems (ICDCS), vol. 23, pp.

550–559, 2003.

[32] V. Ramasubramanian and E. G. Sirer, “The design and

 Implementation of a next generation name service for the

 internet,” in SIGCOMM ’04: Proceedings of the 2004

 conference on Applications, technologies, architectures,

and protocols for computer communications, (New

York, NY,

 USA), pp. 331–342, ACM, 2004.

[33] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

 Lakshman,A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels, “Dynamo:Amazon’s highly available key-value

store,” SIGOPS Oper. Syst. Rev.,vol. 41, no. 6, pp. 205–

220, 2007.

[34] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell,

A. Lain, P. Murray, and P. Toft, “The smartfrog

configuration Management framework,” SIGOPS

Oper. Syst. Rev., vol. 43, no. 1, pp. 16–25, 2009.

[35] E. M. Maximilien, A. Ranabahu, R. Engehausen, and L. C.

 Anderson,“Toward cloud-agnostic middlewares,” in

 Proceedings of OOPSLA ’09, (New York, NY, USA), pp.

 619–626, ACM, 2009.

[36] E. M. Maximilien, A. Ranabahu, R. Engehausen, and L. C.

 Anderson, “IBM Altocumulus: a cross-cloud middleware

and platform,” in Proceedings of OOPSLA ’09, (New York, NY,

USA), pp. 805–806, ACM,2009.

[37] M. Coppola, Y. Jegou, B. Matthews, C. Morin, L. Prieto,

O.

Sanchez, E. Yang, and H. Yu, “Virtual organization

support within a gridwide operating system,” Internet

Computing, IEEE, vol. 12, pp. 20–28,March-April 2008.

[38] T. DeWitt, T. Gross, B. Lowekamp, N. Miller, P.

Steenkiste,J. Subhlok, and D. Sutherland, “Remos: A resource

monitoring system for network aware applications,” Tech. Rep.

CMU-CS-97-194, School Computer

Science, Carnegie Mellon University, Pittsburgh, PA,

1997.

[39] P. Chandra, A. Fisher, C. Kosak, T. Ng, P. Steenkiste, E.

Takahashi, and H. Zhang, “Darwin: Customizable resource

management for value-added network services,” IEEE

NETWORK, vol. 15, pp. 22–35, 2001.

[40] R. Van Renesse, K. Birman, D. Dumitriu, and W. Vogel,

 “Scalablemanagement and data mining using Astrolabe,”

in Proceedings of theFirst International Workshop on Peer-to-

Peer Systems (IPTPS’01), 2001.

[45] J. Albrecht, D. Oppenheimer, D. Patterson, and A.

Vahdat, “Design andImplementation Tradeoffs for Wide-

Area Resource Discovery,” ACMTransactions on Internet

Technology (TOIT), vol. 8, September 2008.

[41] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A

 surveyand comparison of peer-to-peer overlay network

 schemes,” IEEE Communications Survey and Tutorial, vol

 7, pp. 72–93, March 2004.

[42] SETI@Home. [Online] http://setiathome.berkeley.edu.

[43] BOINC. [Online] http://boinc.berkeley.edu.

[44] G. Fox, D. Gannon, S.-H. Ko, S. Lee, S. Pallickara, M.

Pierce, X. Qiu,X. Rao, A. Uyar, M. Wang, and W. Wu,

Peer-to-Peer Grids. John Wileyand Sons Ltd, 2003.

[45] I. Foster and A. Iamnitchi, “On death, taxes, and the

 convergence ofpeer-to-peer and grid computing,” in In 2nd

International Workshop on Peer-to-Peer Systems (IPTPS),

pp. 118–128, 2003.

[46] N. Drost, R. van Nieuwpoort, and H. Bal, “Simple locality

 aware coallocation in peer-to-peer supercomputing,” in

 Proceedings of the 6th IEEE/ACM CCGrid Symposium,

 2006.

[47] J. Ritter, “Why gnutella can’t scale. No, really.” [Online]

 http://www.darkridge.com/ jpr5/doc/gnutella.html., Feb

 2001.

 [48] J. Albrecht, R. Braud, D. Dao, N. Topilski, C. Tuttle, A. C.

Snoeren, and A. Vahdat, “Remote Control: Distributed

Application Configuration, Management, and Visualization

with Plush,” in Proceedings of the Twenty-first USENIX

LISA Conference, November 2007.

