
International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

45

Multi-Tenant Engineering Architecture in SaaS

Sunil Kumar Khatri
Amity Institute of Information

Technology, AUUP, Noida, India

Himanshu Singhal
Amity Institute of Information

Technology, AUUP, Noida, India

Khushboo Bahri
Amity Institute of Information

Technology, AUUP, Noida, India

ABSTRACT

Multi-Tenancy in SaaS (Software as a Service) architecture is

the concept leveraging cloud computing and virtualization

which incurs cost efficiency. Modularity and customizability

enhances the strength of multi-tenancy and business

opportunities. With the growing business and competition,

there arises a need to introduce an IT based technology to the

system. Business process re-engineering and development of

Enterprise Resource Planning (ERP) has revolutionized the

way an enterprise system is build and executed and even more

exponentially revolutionized with the introduction of multi-

tenancy integrated with SaaS-based ERP system. The

proposed architecture introduces the concept of fully modular

system, where different modules can be implemented and

configured according to the necessities of the user and further

improved based on the requirements avoiding the related

concerns.

Keywords

Multi Tenancy, Cloud Computing, Modularity, SaaS

Architecture, Customizability, Extensibility, ERP.

1. INTRODUCTION
SaaS came with altogether a new idea in software service

industry which transformed the way software is being

delivered to customers. With the evolution of SaaS came an

acceptance mainstream business model. SaaS turned out to be

an on-demand software development platform, in cloud

environment. It extended the business by unveiling the fact

which eliminated the requirement of purchasing and

maintaining severalized Information and Communication

Technology infrastructure.

It is realised over a period of time that a fine SaaS vendor is

one who makes data reliable and secure enduring

customizability and extensibility. Level lower to SaaS, PaaS

(Platform as a Service) placed the concept of virtualization

into third generation category.

The major challenges that are being encountered while

developing SaaS is to provide the customer with security,

scalability and reliability. With this comes the major concerns

such as highest order of customization and extensibility which

provide the access to large business opportunities.

Business process re-engineering, identified many different

processes running parallely in a single business such as

human resources, manufacturing, supply chain management,

finance, management accounting, project management,

customer relationship management etc. All these contribute to

different modules in an ERP. While establishing SaaS ERP,

implementing multi-tenancy with highly modular approach

opens a large and promising business market.

This centres the focus on multi-tenancy and demonstrates

software architectural concern for implementing module -

driven architecture for multi-tenant applications which

inculcates few differentiating aspects.

2. CENTRAL IDEA OF SAAS: THE

MULTI-TENANT ARCHITECTURE

There are different approaches being used to deploy the

concepts of SaaS applications and their models in the cloud

environment.

2.1 Multi-Tenant Architecture

Multi-tenant applications introduce the concept of single

application which can be used for multiple customers. Each

customer is called a tenant.

Multi-tenant architecture runs the application on the

infrastructure of the service vendor, and multiple tenants are

then allowed to access the same instance of the application

with customized configurations.

Optimized use of hardware resources, highly customizable

and extensible application is one of the major concern.

2.2 Maturity Models

SaaS can be explained by emphasizing on few important

characteristics of a mature SaaS application.

Maturity is not an all-or-nothing proposition. An application

can establish just one or two of these attributes and meet all

necessary business requirements; in these cases the architects

should not consider other characteristics. SaaS application

maturity can be expressed using a model with four distinct

levels. Each level is distinguished by enhancing it with the

addition of one of the attributes.

2.3 SaaS application Server & Database

Model
The main technical trade-offs that proves to be a challenge

while designing the underlying definition, which remains

transparent to the customer, are options to deploy application

servers to serve multiple tenants and distributed customers

with data across servers, virtual machine databases, schemas

and tables according to a criteria such as security, scalability,

performance, high availability and maintainability.

2.4 Server Deployment Models
Server deployment can be broadly categorized into four ways

which can be considered by evaluating the customer

requirement. Deploying dedicated servers can increase the

cost but will incur high end data security. Other options can

be shared virtualized application servers which has a

dedicated application running on different virtual machines.

Shared virtualized server shares the virtual machines as well

as the application servers and allows the tenants to share the

application and access them through separate session threads.

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

46

Figure1: Four level SaaS maturity model

2.5 Database Deployment
The different operational modes of deployment, depends on

the infrastructure as Servers or hosts, Database and Schema.

Data architecture needs an optimal degree of isolation for a

SaaS application which depends on technical and business

considerations, exponentially.

2.5.1 Separate Database
One of the simplest approaches to data isolation is storing

tenant data in separate databases.

Resources and code are generally shared between all the

tenants on a server, metadata relates each database with the

correct tenant and thus data security is incurred.

2.5.2 Shared Database, Separate Schemas
It involves multiple tenants in the same database, with each

tenant having its own set of tables, grouped into a schema,

specifically for the every tenant. It moderate degree of logical

data isolation for security-conscious tenants simultaneously

supports a large number of tenants.

2.5.3 Shared Database, Shared Schema
All tenants share the same set of tables, and a Tenant ID

associates each tenant with the rows that it owns. It provides

lowest hardware and backup costs, because it allows us to

serve the largest number of tenants per database server but

security is the main issue.

3. MODULAR CONCEPTUAL

APPROACH FOR MULTI-TENANT

SAAS ENGINEERING

ARCHITECTURE

3.1 Multi-tenancy Modular Design
Multi-tenancy modular design aims at the tenant access layer

and database specifications of the user. It clearly identifies

and ingrains the functional and non-functional isolation in

terms of database specifications and thus the Tenant Access

Layer (TAL).

It helps in isolating the functionalities and induces data

security between different tenants. It also states the mapping

of database with the TAL customizations.

3.2 Modular Modelling
Modelling defines Tenant Level Customization and

Configuration (TLCC). It distinguishes and maps the relation

between applications and services

With this there arises a need of meta-data driven architecture

to be implemented simultaneously. Tenant meta-data can be

configured for tenant subscription to the services.

3.3 Modular Injection
Modular injection focuses at adaption of pre-existing services

while adding new modules. Changes which need to be made

at all the nodes are self-mapped and are also synchronized

with deployed modules. . It also induces Inversion of Control

(IOC) while modulating the software as a service.

It is not always necessary for the users to make all the

business processes IT driven at the very first go. Extensibility

thus gives the opportunity of implementing package module

wise. Injection thus helps in self-synchronizing different

modules with each other.

Modular injection is an essential concept while implementing

modular approach. There are various business processes

defining each module which user may not be willing to

implement at one go. The injection helps in self-

synchronization of module with each other, service layer and

data base without a need to make changes in technical base

code layer.

Figure2: Modular Conceptualization

4. PROPOSED ARCHITECTURE ON

MULTI-TENANT SAAS

ENGINEERING
The proposed architecture explains the requirements to build a

truly robust Multi-Tenant SaaS solution on the basis of

Modular approach. This architecture identifies the solution as

a five layered design namely Tenant Access Layer, Service

Layer, Tenant Level Customization and Configuration Layer,

Business Functionality Layer and Technical Base Layer. The

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

47

Figure3: N-Tiers and Modularity

major concern while designing SaaS is security, scalability,

customization and extensibility.

The first four layers are semi-permeable in nature i.e. user

interacts with each layer stepwise. Extensibility is the major

issue while considering self-synchronization between all the

modules, thus requiring agile development platform. The

defined modular conceptual approach gives the platform for

agility. Functionality of each layer identifies its

implementation with the help of multi-tenancy modular

design, modular modelling and modular injection to establish

fully modular SaaS application.

Tenant access layer gives the user the additional opportunity

to customize the interface, the look and feel of the product.

Ajax based browser technology at tenant access layer helps in

maximizing the system speed, minimizing the browser

refreshes, improves system interactivity and improves the user

experience. One of the major characteristic of SaaS is pay per

use. While customization is implemented, there arise a need to

map them with the services and functions such as billing and

metering, configuration, tenant provisioning, authorization

and authentication and security.

Tenant Level Customization and Configuration layer enables

user to customize the fields according to the requirement of

the business logics which may differ for each tenant. These

features are customized by the tenant at TAL without

interacting with the technical code specifications. It extends

the capability of application of implementation of custom

business logic, custom work flows, custom reports and

validations. As soon as the customization of business logic is

designed and thus the interface, fields in database are self-

implemented using meta-data driven architecture. An

extension and meta-data table stores all the information about

every custom field defined by each tenant.

The technical base code layer is one layer which has no access

to the tenant requirement and is least affected by any of the

operation related to customizability and extensibility.

Designing a fully compatible code layer which supports

security, scalability, customizability and extensibility

according to tenant requirement and at the same time requires

no need of modification is the major concern.

4.1 Security
A SaaS architect is responsible for building adequate data

protection as well as defines multiple levels that complement

each other to counter both internal and external threats. Data

protection can be implemented through filters or firewalls,

access control lists and encryption.

4.2 Scalability
For a SaaS application, scalability is important, because one

will have to support data belonging to all the customers.

Databases can be extended (by moving to a larger server that

uses more powerful processors, more memory, and faster disk

drives) and deneaned (by partitioning a database onto multiple

servers). Different strategies are appropriate when scaling a

shared database versus scaling dedicated databases.

The most common techniques to scale database are dynamic

provisioning, partitioning and combination of both.

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

48

Figure 4 Proposed Architecture on Multi-Tenant SaaS Engineering Architecture

This technique is being deployed specifically to handle load

balancing to handle the multi-dimensional access and manage

the user traffic to optimize resource utilization, throughput

and response time. The motive is to respond all the user

requests with minimum response time by routing the request

to best available data centres.

4.3 Customization
It may not be wrong to say that each tenant may have a

different set of requirement and data structure. One defined

template cannot cater all of them. It is critical to deploy

database instance and design schema so fields, type and

constraints can be created, removed or modified without

interrupting the access to the databases.

There are several known techniques to extend existing tables:

4.3.1 Customized predefined fields
When records from different tenants are intermingled within

the same set of tables

4.3.2 Customized predefined Tables
Allow the tenant to create new fields and storing specific data

into a separate table which has already some predefined labels

and data types.

4.3.3 Dynamic fields
It makes sense in the case of the schema is not shared, allow

the tenant to add dynamically new columns to an existing

table. To discuss this feature in detail requires a distinguished

research field and thus all the consideration cannot be

introduced.

Each tenant can view the application as per his specified

customization of look and feel of the interface as well as

logic. Definition of one tenant will not affect the definition

specified by other tenants.

4.4 Extensibility
To access the maximum business opportunities and provide

the customers with a high end flexibility to design their IT

driven business processes inculcating n-tier and modularity

while designing a SaaS backbone of Software as a Service.

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

49

This feature has been taken care while designing the Modular

Conceptual Approach for Multi-Tenant SaaS Engineering

Architecture.

N-tier architecture supports the customization for every tenant

individually. It brings about isolation of all the details from

and among the tenants.

 The extensibility induces modularity among applications and

services of the tenants and for a particular tenant also. Even

the smallest service such as report generation can be modified

and modulated according to the needs of isolation and

requirement

5. CONCLUSION
The Multi-Tenant SaaS architecture is a contemporary

development model which focuses on ingraining IT driven

business processes. SaaS is a milestone in software delivery.

Modular conceptual approach for SaaS architecture which

caters to all the possible features at the customer end, such as

security, scalability, reliability, customization and

extensibility. The focus is to incur this modular approach to

open the services for a wide spectrum of customer.

6. FUTURE SCOPE
Technically, it is difficult to implement such flexible code

which hardly needs to be changed while the following

functions are being performed: (a) customization according to

multi-tenants as well as each individual organization’s

requirements, (b) selecting applications and modules (c)

mapping them with all the services and finally (d) creating

such robust data base. Still it is not impossible to achieve the

same.

The proposed architecture aims at establishing a completely

customizable and extensible SaaS ERP with a fully functional

modular application platform.

The future work will focus on its validation.

7. REFERENCES
[1] Nitu, "Configurability in SaaS (software as a service)

applications," in Proceedings of the 2nd India software

engineering conference Pune, India: ACM, 2009.

[2] S. Merkel, "Parallels Software as a Service (SaaS)," p. 2.

[3] ComputerWeekly.com, "The Computer Weekly guide to

Cloud Computing," 2010.

[4] F. Chong and G. Carraro, "Architecture Strategies for

Catching the Long Tail," Microsoft Corporation, 2006.

[5] F. Chong, G. Carraro, and R. Wolter, "Multi-Tenant Data

Architecture," Microsoft Corporation, 2006.

[6] A. Azeez, S. Perera, D. Gamage, R. Linton, P.

Siriwardana, D. Leelaratne, S. Weerawarana, and P.

Fremantle, "Multi-tenant SOA Middleware for Cloud

Computing," Cloud Computing,

[7] R. Mietzner, T. Unger, R. Titze, and F. Leymann,

"Combining Different Multi-tenancy Patterns in Service-

Oriented Applications," Enterprise Distributed Object

Computing Conference, IEEE

[8] J. Jing and J. Zhang, "Research on Open SaaS Software

Architecture based on SOA," in 2010 International

Symposium on Computational Intelligence and Design,

Hangzhou, 2010, pp. 144

[9] B. Gao, D. C. J. Guo, Z. H. Wang, W. Hao, and D. W.

Sun, "Develop and Deploy Multi-Tenant Web-delivered

Solutions using IBM middleware: Part 3: Resource

sharing, isolation and customization in the single

instance multi-tenant application," IBM, 2009.

[10] Amelia Maurizio, James Sager, Peter Jones, Gail Corbitt,

Lou Girolami, “Service Oriented Architecture:

Challenges for Business and Academia”, Proceedings of

the 41st Hawaii

[11] John Fontanella, “B2B E-Business in the Supply Chain:

New Services and Technologies Require Companies to

Re-evaluate their Strategies”, AMR Research, May,

2008.

[12] Frederick Chong, Gianpaolo Carraro, and Roger Wolterh

http://msdn.microsoft.com/en-us/library/aa479069.aspx,

June 2006.

Frederick Chong, Gianpaolo Carraro, and Roger Wolterh

http://msdn.microsoft.com/en-us/library/aa479086.aspx,

June 2006

