
International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

1

Software Up-gradations and Optimal Release Planning

P K Kapur

Amity International Business School, Amity University, Noida, Uttar Pradesh, India

ABSTRACT

Intense global competition in the dynamic environment has

lead to up-gradations of software product in the market. The

software developers are trying very hard to project themselves

as organizations that provide better value to their users. One

major way to increase the market charisma is by offering new

functionalities in the software periodically. But these

intermittent add-ons in the software lead to an increase in the

fault content. Thus, for modelling the reliability growth of

software with these up-gradations, we must consider the

failures of the upcoming release and the faults that were not

debugged in the previous release. Based on this idea, a

mathematical modelling framework for multiple releases of

software products has been proposed. The model uniquely

identifies the faults left in the software when it is in

operational phase during the testing of the new code. The

model has been validated on real data set. Now, since the

proposed structure is dependent only on time, it can be

categorized under one dimensional modelling outline. But the

need of the hour is to consider other factors (available

resources; coverage, etc) simultaneously. Therefore, using a

Cobb Douglas production function we have extended our own

modelling framework and developed a two dimensional

software reliability growth model for multi releases which

concurrently takes into consideration testing time and the

available resources. Another major concern for the software

development firms is to plan the release of the upgraded

version. In a Software Development Life Cycle the testing

phase is given a lot of importance. But testing cannot be done

indefinitely, hence it is pertinent to find the optimal release

time during testing phase. Too late an entry is likely to lead to

significant loss of opportunity and on the other hand early

release of any software product might hinder its growth due to

lack of receptiveness of users towards new expertise.

Therefore, timing plays a very important role. In software

world we term this problem as Release Time Problem. Many

release time problems with optimization criteria like cost

minimization, reliability maximization and budgetary

constraints etc. have been discussed in the literature. We have

formulated an optimal release planning problem which

minimizes the cost of testing of the release that is to be

brought into market under the constraint of removing a

desired proportion of faults from the current release. The

problem is illustrated using a numerical example, and is

solved using Genetic Algorithm. Further, we have also

discussed the release time problem based on a new concept of

Multi-Attribute Utility Theory that takes into consideration

two conflicting attributes simultaneously. This framework has

also been illustrated using a numerical example.

Keywords

Software Reliability, Multi up-gradation, Multi Attribute

Utility Theory, Software Reliability Growth Model, Cobb

Douglas production function, Optimal Release Time.

1. INTRODUCTION
The demand for continuous service in mission- and safety-

critical software applications, such as Internet infrastructure,

aerospace, telecommunication, military defense and medical

applications is expanding .The intense global competition in

the dynamic environment has lead to a technological

substitution of software product in the market. The software

developers are trying very hard to project themselves as

organizations that provide better value to its customer. One

major way to increase the market presence is by offering new

functionalities in the software periodically. Technological

breakthroughs are happening rapidly and these new

innovations often take form of a new product. The concept of

performance of a new technology generation over its life

cycle has been explained by using well known s-shaped curve

or sigmoid curve. It has been seen that in the initial period of

the software more efforts are put increasingly so that overall

performance of the technology can be improved till attaining

its natural performance limit. In general when software

reaches a level when it attains it operational reliability level

desired by the firm, a new version is introduced and the

software gets upgraded. The term upgrade refers to the

replacement of a product with a newer version of the same

product. It is most often used in computing and consumer

electronics, generally meaning a replacement of hardware,

software or firmware with a newer or better version, in order

to bring the system up to date or to improve its characteristics.

As the software firms are involved in developing complex

software system with a sharp eye on the market competition,

the quality of their product is always under check.

Performance of a software system is dependent on its user's

needs and requirements. While a system's performance may

remain the same or even improve, the user may come to

believe that the system is declining in performance as

technology changes. Although technological obsolescence is

present in any industry, its speed is more pronounced in the

software industry. Therefore, it is critical to have a constant

look on the state of a software system which includes the

views of its customers. This index allows us to incorporate

customer views directly into the process, and to develop an

operational framework for the analysis of warranty,

maintenance, and upgrade policies .Upgrading a software

application is a complex process. The new and the old

component may differ in the functionality, interface, and

performance. Only selected components of an application are

changed while the other parts of the application continue to

function. This process leads to an increase in the fault

contents. The software testing team is always interested in

knowing the bugs present in the software. Therefore they

continuously keep on testing the software. Although

developers produce upgrades in order to improve a product,

there are risks involved, including the possibility that the

upgrade will worsen the product. Upgrades of software

introduce the risk that the new version (or patch) will contain

a bug, causing the program to malfunction in some way or not

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Consumer_electronics
http://en.wikipedia.org/wiki/Consumer_electronics
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Firmware
http://en.wikipedia.org/wiki/Software_bug

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

2

to function at all. For example, in October 2005, a glitch in a

software upgrade caused trading on the Tokyo Stock

Exchange to shut down for most of the day [22,23]. Similar

gaffes have occurred: from important government systems to

freeware on the internet. Upgrades can also worsen a product

subjectively. A user may prefer an older version even if a

newer version functions perfectly as designed. The above

phenomenon is generally due to software failure. Software

failures may be due to errors, ambiguities, oversights or

misinterpretation of the specification that the software is

supposed to satisfy, carelessness or incompetence in writing

code, inadequate testing, incorrect or unexpected usage of the

software or other unforeseen problems. Abundance of

software reliability models have been developed in the history

of this subject. Goel and Okumoto [19] proposed an SRGM,

which describes the fault detection rate, as a non

homogeneous Poisson process (NHPP) assuming the hazard

rate is proportional to remaining fault number.

The basic assumptions of their model were as follows:-

1. Software systems are subject to failure during execution

caused by a fault remaining in the system.

2. Failure rate of the software is equally affected by the faults

remaining in the software.

3. The number of faults detected at any time is proportional to

the remaining number of faults in the software.

4. On a failure, repair effort starts and the fault is removed

with certainty.

5. All faults are mutually independent from failure detection

point of view.

6. The proportionality of fault detection/isolation/correction is

constant.

7. The fault detection/ correction are modeled by non

homogeneous poison process.

8. The number of faults in the beginning of the testing phase

is finite.

In the last two decades several Software Reliability models

have been developed in the literature showing that the

relationship between the testing time and the corresponding

number of faults removed. They are either Exponential or S-

shaped or a mix of the two. The software includes different

types of faults, and each fault requires different strategies and

different amounts of testing effort to remove it. Ohba [17]

refined the Goel-Okumoto model by assuming that the fault

detection/removal rate increases with time and that there are

two types of faults in the software. SRGM proposed by

Bittanti et al. and Kapur and Garg [5,9] has similar forms as

that of Ohba but is developed under different set of

assumptions but all are flexible in nature. Bittanti et al. [30]

proposed an SRGM exploiting the fault removal (exposure)

rate during the initial and final time epochs of testing.

Whereas, Kapur and Garg [5,9] describe a fault removal

phenomenon, where they assume that during a removal

process of a fault some of the additional faults might be

removed without these faults causing any failure. These

models can describe both exponential and S-shaped growth

curves and therefore are termed as flexible models. Later,

Kapur et al.[9] proposed an SRGM with three types of fault.

The first type is modeled by an Exponential model of Goel

and Okumoto [19]. The second type is modeled by Delayed S-

shaped model of Yamada et al. [28, 29]. The third type is

modeled by a three-stage Erlang model proposed by Kapur et

al [5,9]. The total removal phenomenon is again modeled by

the superposition of the three SRGMs. They extended their

model to cater for more types of faults by incorporating

logistic rate during the removal process.

Figure 1 depicts the increase in failure rate due to the addition

of new features in the software. Due to the feature upgrades,

the complexity of software is likely to be increased as the

functionality of software is enhanced [8]. Even fixing bugs

may induce more software failures by fetching other defects

into software. But if the goal of the firm is to upgrade the

software by enhancing its reliability then it is possible to incur

a drop in software failure rate that can be done by redesigning

or re-implementing some modules using better engineering

approaches.

Fig 1: Failure rate curve due to Feature Enhancements for

Software Reliability

2. NOTATIONS
m(t) : Number of faults detected during the testing

time t

ia : Constant, representing the initial number of

faults lying dormant in the software when the testing

starts for ith release; i=1 to 4 .

a : Total fault content (1 2 3 4a a a a a   )

)(tf : Probability density function.

)(tF
 :

Probability distribution function.

1it  Time for
thi release (i=1 to 4).

ib : Fault removal per remaining faults; i=1 to 4.

i : Constant parameter describing learning in the

fault removal rate; i=1 to 4.

3. MODELING SOFTWARE

RELIABILITY FOR VARIOUS

RELEASES
As discussed above a plethora of mathematical models have

been discussed in the literature to capture the cumulative

number of faults removed in the software. Using the hazard

rate approach in deriving the mean value function of

cumulative number of faults removed, we have:

Let { (), 0}N t t  be a counting process representing the

cumulative number of software failures by time t. The N (t)

process is shown to be a NHPP with a mean value function m

(t).Mean value function represents the number of faults

removed my time t.

Test/

Debug

Useful Life Obsolescence

A
d

d
 O

n

A
d

d
 O

n

A
d

d
 O

n

Time

Fa
ilu

re
 R

at
e

http://en.wikipedia.org/wiki/Tokyo_Stock_Exchange
http://en.wikipedia.org/wiki/Tokyo_Stock_Exchange
http://en.wikipedia.org/wiki/Freeware

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

3

(())
Pr(()) exp((())

!

nm t
N t n m t

n
   ,n=1,2.... (1)

So,

 
t

0

dx)x()t(m

   

 
  

1

dm t f t
a m t

dt F t
 


 (2)

Solving the above equation using the initial condition m (0) =

0

   m t a F t
 (3)

Release1

The most important phase in the software development life

cycle is testing. Testing starts once the code of software is

written. Before the release of the software in the market the

software testing team tests the software rigorously to make

sure that they remove maximum number of bugs in the

software .Although it is not possible to remove all the bugs in

the software practically. Therefore, when one software

version is tested by the testing team, there are chances that

they may detect a finite number of bugs in the code

developed. These finite numbers of bugs are then removed

perfectly and mathematical equation for it is given as under:-

   1 1 10m t a F t t t   (4)

Release 2

Due to fierce competition and technological changes the

software developer is forced to add new features to the

software. New features added to the software leads to

complexity and increase in the fault content of the software.

While testing the newly formed code, there is always a

possibility that the testing team may find some faults which

were present in previously developed code. Testing the newly

developed code helps the developer to actually improve the

software overall as it also removes some faults of previously

developed code. In this period, when there are two versions of

the software,   1 1 11a F t the left over fault content of the

first version interact with new detection/ correction rate. As a

result of these interactions a fraction of faults which were not

removed during the testing of the first version of the product

gets removed. In addition, faults are generated due to the

enhancement of the features, a fraction of these faults are also

removed during the testing with new detection proportion i.e.

 2 1F t t . The change in the fault detection is due to change

in time, change in the complexity due to new features, change

in testing strategies etc. The two resulting equations are as

following:

   1 1 1 10m t a F t t t  

        2 2 2 1 1 1 1 2 1

1 2

1m t a F t t a F t F t t

t t t

    

 
 (5)

Release 3

When the new functionalities are added in the software for the

second time again new lines of code are developed. This new

code is integrated with the existing code and a testing is

started again. It is known that bugs present in the software are

infinite. Therefore during the testing in this phase a lot of bugs

which have been left in primitive stage and first add-ons are

removed. This helps in removing more and more bugs from

the developed code. In this period, when there are three

versions of the software,   2 2 21a F t the left over fault

content of the second version interacts with a changed rate of

fault detection/ correction. As a result of these interactions a

fraction of faults which were not removed during the testing

of the second version of the product gets removed.. As the

new version of the software gets introduced, it brings in with

it fault content to the software system. A proportion of these

faults get removed when the testing team tests the new code

and these faults are removed with the detection

proportion  3 2F t t . The three resulting equations are as

following:

   1 1 10m t a F t t t  

        2 2 2 1 1 1 1 2 1

1 2

1m t a F t t a F t F t t

t t t

    

 

        3 3 3 2 2 2 2 3 2 2 31m t a F t t a F t F t t t t t       (6)

In the above situation, the newly developed code for third

release, the code developed for second release and the original

code of the software are tested and the cumulative numbers of

faults are removed with a failure rate of  3 2F t t . In the

third stage, we can identify that a finite number of faults are

left over from first and second release which are now getting

removed with a different testing effort and under different

testing conditions governed by the failure distribution.

Release 4

The process of adding new functionalities is an on going

process. These add-ons keep on happening till the product is

there in the market. This phenomenon helps in improving the

value of product and also helps in increasing the reliability of

the product as more and more faults are removed when testing

and integration of code is done. We discuss a case when the

new features are added in the software for the third time.

   1 1 1 10m t a F t t t  

        2 2 2 1 1 1 1 2 1 1 21m t a F t t a F t F t t t t t      

        3 3 3 2 2 2 2 3 2 2 31m t a F t t a F t F t t t t t      

        4 4 4 3 3 3 3 4 2 3 41m t a F t t a F t F t t t t t      

(7)

The above equations are explained as follows: when the

testing of the software began initially, the fault content is

1a which gets reduced by the proportion  1 1F t . A proportion

of faults  1 1 1a F t get removed till time 1t . At this time the

developers start to test the new version of the software. The

new version of the software leads to a generation of faults in

the software system due to the complexity added by new

functionalities. When testing is in process, 2a amount of faults

are added in the software in the interval [t1,t2]. The second

equation depicts that a proportion of these faults are removed

while testing and also a part of leftover faults of the first

version software product are removed with a rate which is

different from the initial testing rate. Similarly when a new

version of a software in introduced in the market for the third

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

4

time it further adds to
3a amount of faults in the software. A

fraction of these faults are removed during the testing. In

addition to these faults a part of fault which was left over

during the testing of the second version product .i.e.

  2 2 21a F t . When the software is released for the forth

time in the market a percentage of faults
4a get removed with

detection proportion  4 3F t t . Similarly, the fault contents

which were left over in the software system during the time of

first, second and third releases gets removed with the

proportion  4 3F t t and a part of their fault content gets

removed during testing in the time interval[t3,t4].Here, we

assumed that  F t follows a logistic distribution. This helps

us in developing a flexible software reliability growth model,

which is s-shaped in nature. The s-shapedness of model helps

us to capture the non uniform nature of testing in the above

developed model.

 
  
 

1 exp

1 exp

i

i

i i

b t
F t

b t

 


 
 (8)

4. Estimation of parameters, Model

validation and Comparison Criteria

Parameter estimation is of prime significance in software

reliability prediction. In our study we have used the Statistical

Package for Social Sciences (SPSS) [5, 9]. The present study

is based on the data available on Tandem Computers. Once

the analytical solution for mean number of faults

detected/removed by time t given by
()m t

that is mostly

described by the non-linear functions is known for a given

model, the parameters in the solution are required to be

determined. Parameter estimation is achieved by extensively

used estimation techniques for non-linear models method of

Non-linear Least Square (NLLS). Figures (2,3,4,5): Release

1,2,3,4 respectively.

4.1 Figures and Tables

TABLE 1: parameter estimates

Re

lea

se 1 2 3 4

ia
 110.82 124.37 62.5925 44.983

ib
 0.1720 0.2535 0.5684 0.2669

i 1.2046 3.7784 16.266 2.1116

 0.00002 0.001 0.001 0.3537

TABLE 2: comparison criteria

 Release

1

Release

2

Release 3 Release 4

2R
.982 .995 .996 .995

Bias .07041 .03703 .000541 0.01289

MSE 17.230 9.6021 3.4182 4.305

Variation 3.5645 2.8690 1.7207 1.9649

Fig-2

Fig-3

Fig-4

Fig-5

Fig: 2,3,4,5 respectively showing Goodness of Fit for Four

Releases

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

5

5. TWO DIMENSIONAL MODELING

FRAMEWORK
The heading of a section should be in Times New Roman 12-
The two dimensional SRGM proposed in our work

incorporating testing time and resource usage is based on Non

Homogeneous Poisson Process (NHPP) (described in the

previous section). However, in one dimensional analysis the

object variable is dependent on one basic variable although

the object takes on many different roles based upon its

dependence on various other factors. Two dimensional

models are used to capture the joint effect of testing time and

testing resources on the number of faults removed in the

software. Such two dimension models are also based on

NHPP. In these models we define a two-dimensional

stochastic process representing the cumulative number of

software failures by time s and with the usage of resources u

by
{ (,), 0, 0}N s u s u 

. The mean value function for a

two-dimensional NHPP is formulated as:-.

((,))
Pr((,)) exp((,))

!

nm s u
N s u n m s u

n
  

, n=0, 1,

2…

In recent years, Ishii and Dohi proposed a two dimensional

software reliability growth model and their application[31].

They investigated the dependence of test-execution time as a

testing effort on the software reliability assessment, and

validate quantitatively the software reliability models with

two-time scales. Inoue and Yamada also proposed two

dimensional software reliability growth models[32]. However

their modeling framework was not a direct representative of

using mean value functions to represent of fault removal

process. They discussed software reliability assessment

method by using two dimensional Weibull-type SRGM.

Moreover, their modeling framework assumes software

development as a single release process. Recently, Kapur et.

al. proposed a two dimensional modeling framework which

was applied in determining optimal allocation of testing time

and resources simultaneously to a modular software system.

In this section we develop a two-dimensional multi release

model which incorporates the combined effect of testing time

and resources in each release to remove the faults lying

dormant in the software[33,34]. The model developed is based

on the Cobb Douglas production function [34]. The functional

form of production functions is extensively used to

characterize the relationship of an output to inputs. It was

proposed by Knut Wicksell (1851–1926), and tested against

statistical evidence by Charles Cobb and Paul Douglas in

1900–1928. Cobb-Douglas function presents a simplified

outlook of the economy in which production output is

obtained by the amount of labor occupied and the amount of

capital invested. While there are many factors influencing

economic performance, their model demonstrated remarkable

accuracy. The mathematical form of the production function

is specified as:

1Y=AL Kv v

where: Y = total production (the monetary value of all goods

produced in a year)

L = labor input

K = capital input

A = total factor productivity

v is elasticity of labor. This value is constant and is

determined by available technology.

5.1. Notations

A Initial number of faults.

B Fault detection rate per remaining simple fault.

λi Fraction of the fault for ith release

ai Initial fault content for ith release

S Testing time.

U Resources.

Α Resource Elasticity to Testing Time

m (s, u) Cumulative number of faults removed by time s

and with the usage of resources u.

5.2 Two Dimensional Software Reliability

Growth Model for Single Release

The two dimensional flexible SRGM presented in this section

was proposed by Kapur et al [34]. It is based on the following

assumptions-

1. Failure /fault removal phenomenon is modeled by

NHPP.

2. Software is subject to failures during execution

caused by faults remaining in the software.

3. Failure rate is equally affected by all the faults

remaining in the software.

4. Fault detection rate is non-decreasing time and

resource-dependent function.

5. On a failure, the fault causing that failure is

immediately removed and no new faults are

introduced.

6. To cater the combined effect of testing time and

resources we use Cobb-Douglas production function

of the following form:
1 0 1s u    

 (9)

 s : testing time

u

: testing resources (effort)

  : Effect of testing time

Under the above assumptions the differential equation

representing the rate of change of cumulative number of faults

detected w.r.t. to the combined effect of time and resources is

given as:

 ' ()
() ()

1 ()

f
m a m

F


 


 


 (10)

Integrating above equation with initial condition m( =0)=0,

and using equation (10) we get

  . ()m a F 
 (11)

The above model can also be written in the form

 , . (,)m s u a F s u

 (12)

Equation (12) is the generalized two-dimensional SRGM

model (SRGMs). Substituting different types of distribution

functions, we can obtain different mean value functions

corresponding to them. The cumulative number of faults

removed m() is dependent on  .  is a two-dimensional

http://en.wikipedia.org/wiki/Production_function
http://en.wikipedia.org/wiki/Knut_Wicksell
http://en.wikipedia.org/wiki/Labour_%28economics%29
http://en.wikipedia.org/wiki/Capital_%28economics%29
http://en.wikipedia.org/wiki/Total_factor_productivity

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

6

variable, with testing time s and testing effort u as its

dimensions. The two-dimensional models are useful as they

can show the effect of two aspects of a variable on which the

result is dependent.

5.3 Modeling Two Dimensional Multi

Release SRGM

In modeling the proposed model apart from the assumptions,

we assume that while modeling the mean value function for

the next release include the faults of the current release and

the remaining faults of just previous release are considered.

Release 1

In multi release model first release is the first step for entering

into the market. Hence company will have to pay attention on

it because generally first impression counts for the last

impression. Therefore to bang into the market, the firm will

have to test the software rigorously with an attempt to remove

maximum number of faults lying dormant in the software.

But, because of time and resource constraints it is not

practically possible for the testing team to remove all the

errors and thus the initial release of the software is made, with

some of the fault content remaining in it. Therefore, when one

software version is tested by the testing team, there are

chances that they may detect a finite number of bugs in the

code developed. These finite numbers of bugs are then

removed perfectly and mathematical equation for it is given as

under:-

 1 1 1 1() 0m a F     
 (13)

 Release 2

After first release, in order to remain in the market company

adds some new functionality into the software. New features

added to the software leads to complexity and increase in the

fault content of the software. At the same time the firm can’t

even neglect the errors that are reported in operational phase

of the first release.

Therefore, the mathematical equation representing the

cumulative number of faults removed in second release is

given by:

      2 2 2 1 1 1 1 2 1 1 2() 1 } ;m a F a F F              

 (14)

Similar to the arguments given in second release along with

taking into consideration the fact that the next release will

contain the remaining faults of just released version, we can

have the mathematical equations for third, fourth and so on to

ith releases.

We follow Exponential distribution for removal process of the

faults respectively i.e.
()iF t

 is the exponential probability

distribution function related to ith release.

5.4 Data Description

We have used the Tandem Computer Company for four

releases of software [6, 26]. The data set presents the failure

data from four major releases of software product at Tandem

computers. The first release consists of 100 faults count

observed during 20 weeks with cumulative resources of

10000. In the second release 120 cumulative defects were

found collected during 19 weeks with resource usage of

10272. Third release was tested for 12 weeks and 5053

cumulative resources were used and 61 bugs were observed.

Last, fourth release was testes for 19 weeks which reported 42

errors and 11305 units resources were used.

5.5 Criteria for Model Comparison and

Parameter Estimation

For estimating the parameter values of each release is taken as

time of testing (in weeks) and u corresponds to resource

usage. From estimation result of first release it was observed

that total 9 faults were not removed during testing in which 7

faults simple faults and therefore they are also constituted the

part of total faults for the second release. Similarly, the testing

team was unable to remove 13 faults in the testing phase of

second release, thereby formed the part of third release. In

third release only 2 faults was not rectified. The parameter

values of the proposed model obtained for the four releases

are shown in table 3.

Table 3 Parameter Estimates for Four Releases [i=1, 2, 3,

4]

Parameters
ia

b

i


Release-1 124.57 0.004 0.671 0.460

Release-2 128.59 0.035 0.332 0.824

Release-3 54.15 0.014 0.682 0.541

Release-4 48.97 0.002 0.590 0.404

Table 4 Comparison Criteria for Four Releases

Criteria R2 Bias Variation MSE

Release-1 .990 0.403 2.81 7.71

Release-2 .995 0.214 2.159 7.065

Release-3 .995 0.050 1.490 1.909

Release-4 .992 0.075 1.106 1.163

The curve of the estimated values of the number of faults

removed in different releases using the proposed modeling

framework for the four releases is shown graphically in

figures 6 to 9, respectively.

Fig 6: Goodness of Fit Curve for Release 1

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

7

Fig 7: Goodness of Fit Curve for Release 2

Fig 8: Goodness of Fit Curve for Release 3

Fig 9: Goodness of Fit Curve for Release 4

6. RELEASE PLANNING PROBLEM
The heading of subsections should be in Times New Roman

the release of the up-graded version. Owing to the prevailing

paradox between software user’s requirements and time and

resources limitation for the developers; an imperative decision

problem, which arises is to determine when to stop testing of

the current release and come up with new version of the

software system for the users. Such problems are called

Optimal Release Planning Problems. Software users crave for

faster deliveries; cheaper software as well as quality product

whereas software developers desire to minimize their

development cost, maximize the profit margins and meet the

competitive requirements. Moreover, it is also a matter of fact

that if the new release of the software is overly delayed, the

manufacturer (software developer) may undergo thrashing by

means of penalties and revenue loss, while a premature

release of new version may cost heavily in terms of fixes

(removals) to be done of that release in next release and this

might also consequently harm manufacturer’s reputation.

Thus, a tradeoff between conflicting objectives is required.

After the study of existing literature, it has been observed that

a lot of research has been done for the release of single

version software systems. Okumoto and Goel [18] formulated

optimum release time policies using the exponential SRGM.

Yamada and Osaki [35] studied optimal release policies based

on software cost and software reliability simultaneously for

exponential, modified exponential and an S-shaped SRGM.

The objective was to minimize the total software development

cost subject to reliability less than a predefined reliability

level or maximize reliability subject to cost not exceeding a

predefined budget. In 1991 Kapur and Garg [11] formulated

release policies incorporating the effect of testing resource

expenditure for an exponential SRGM under the added

assumption that testing resource curves are described by either

exponential, Rayleigh or Weibull curve. Huang and Lyu[36]

proposed an SRGM with generalized testing effort function

and studied optimal release policies based on cost and

reliability considering testing effort and efficiency. In 2007

Kapur et al. [37] proposed an SRGM with two types of

imperfect debugging and determined the optimal release time

of the software.

The release time problems discussed above were studied

under the assumption that a software comes in single release;

i.e. these researchers do not take into consideration the impact

of coming up with multi releases of a software in release

planning decisions. But when different versions of the

software are to be released, then the firm cannot just plan the

release of current version on the basis of testing progress of

new code only. It has to consider the log reports of just

previous release too. So, here we have formulated an optimal

release planning problem which minimizes the cost of testing

of the release that is to be brought into market under the

constraint of removing a desired proportion of faults (which

cannot be 1; as testing cannot be continued indefinitely) to be

removed from the release. Another attracting feature of the

formulated problem is that it not only considers time as an

essential criterion for releasing the new version but also looks

simultaneously for resources that govern the pace of testing.

The optimal release planning problem is complex non linear

optimization problems and is solved using genetic algorithm

(GA)[38]. Furthermore, we have also discussed the release

time problem based on a new concept of Multi-Attribute

Utility Theory [4,13,14] that takes into consideration two

conflicting attributes simultaneously [16,24,25]. This

framework has also been illustrated using a numerical

example.

6.1 Release Time Problem (Solution

Method-GA)

 Problem Formulation

In planning the release decisions for software that is to be

brought into the market with new versions; the firm has to

take into consideration two things:

(i) Testing data of the new code.

(ii) Log reports of just previous release, i.e. bugs reported by

the users in the operational phase of the version that had been

there in the market.

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

8

Where in single release software systems, only (i) prevails,

and if (ii) is not taken into consideration for the release

planning of multi release software systems; then the notion of

coming up with various versions gets lost. This is because the

decision of releasing the software lays its foundation on the

total faults that are removed from the software. In multi

release software the bugs of just previous release also get

added to the total faults of the release that is under testing

phase. Therefore, to formulate an optimal release planning

(ORP) for multi release software we require multi release

software reliability growth model. Using the modelling

framework as done in earlier Section, we will discuss the

following release planning problem.

In the present problem, we consider minimizing the testing

cost of the release that is under testing phase with a constraint

of removing a desired proportion of faults.

Cost Function

Suppose the firm has to deliver the nth release of the software.

Then, the cost function will include cost of removing faults

during testing phase of the nth release and cost of failure and

removal of faults after the delivery of the nth release and unit

cost of testing during the testing phase of nth release. All

these costs lead to the following form of the cost functions:

        1 2 1 1 31() 1 ;n n n n n nn n n nC C m C a a F m C           

Using values of m() we get cost function as:

  
 

  
 

  
 

1 1

1 1

1

1

1

1

1

1 1

1 1

1

1

1

2

3

1 exp

1 exp

1 exp

1 exp

1 ex

1

p

1 e

)

xp

(

n n

n n

n n

n n

n n

n n

n n

n

n

n

n n

n n

n

n

n n

n n

n n

a b s u
s u

b s u

b s u

b s u

a b s u

b s u

C C

a a

C

C

 

 

 

 

 

 

 







 

 











 

 







   
    
  

  
 
  
 

 

 

 

   
 


 
 



 

 
 


 
 

 1 ;s u 

where Cn1 is cost incurred on removing a fault during

testing phase of nth release. Cn2 is cost incurred on removing a

fault after the delivery of the nth release of software system.

Cn3 is the testing cost per unit testing time and resources.

Cn is the total cost of testing of nth release.

Also, 1n  

The total cost is to be minimized. Thus, we have that cost

function is a convex function, So, when this cost function will

be plotted with respect to time and resources frame. Hence

release time problem now can be stated as:

Minimize

  
 

  
 

  
 

1 1

1 1

1

1

1

1

1

1 1

1 1

1

1

1

2

3

1 exp

1 exp

1 exp

1 exp

1 ex

1

p

1 e

)

xp

(

n n

n n

n n

n n

n n

n n

n n

n

n

n

n n

n n

n

n

n n

n n

n n

a b s u
s u

b s u

b s u

b s u

a b s u

b s u

C C

a a

C

C

 

 

 

 

 

 

 







 

 











 

 







   
    
  

  
 
  
 

 

 

 

   
 


 
 



 

 
 


 
 

 1 ;s u 

subject to

  
 

  
 

1 1

1 1

1 1

1

11 1

1 1

1 exp 1 exp
((,))

1 exp 1 exp
1

n n n n

n n n n

n n n

n n

n n

n

n n

a b s u b s u
m s u

b s u
a

b u
a

s

   

   


 

 

 

 



 

 

   


  
   
   

  





(ORP Problem)

where ρ is desired proportion of faults to be removed from nth

release.

The above problem is non linear in nature which is difficult to

solve through traditional search and optimization methods.

This requires use of some new optimization techniques based

on natural evolution and natural genetics. Therefore to handle

such difficulties we have solved it using Genetic Algorithm.

The efficiency of GA lies in its ability of working with

population of solutions and not an individual point. In

addition GA breaks the limitation of differentiability.

Numerical Example

As an illustration, here we choose the same data set of four

releases taken in earlier section. In this data set first, second

and third release have already been into market. The problem

formulated in section 6 determines when to stop testing the

fourth release of the software such that the cost of testing is

minimized.

In order to determine the optimal release time and optimal

resource consumption for the fourth release we make use of

the estimated values of the parameters of third and fourth

release given in table 1. With these parameter values we

solved the following problem using genetic algorithm method

given in section 6. Further we assume C1 = 10, C2 = 15, C3 = 5

and it is desired that at least 0.95 proportion of faults should

be removed from 4th release. The problem is solved using

Matlab software under VC++ (6.0) compiler.

Minimize

        
1 2 34 3 34 4 4 444 3() 1C C m C a a F m C         

subject to

   4 34 33() 0.95 1a am F    





where
1 0 1s u    

 3 

The parameters used in GA evaluation for both the problems

are given in Table 5. The crossover method taken is simulated

binary crossover (SBX), and selection criterion is tournament

selection without replacement.

Table 5: Parameters of GA

Parameter
Population

Size

Number of

Generations

Crossover

Probability

Mutation

Probability

Value 100 25 0.9 0.1

Upon solving the problem the optimal time for stop testing the

fourth release came out be 72 week (which is 20 weeks after

third release) with an optimal resource consumption of

39100.33 units. The minimum value of cost came out to be

1663.54.

6.2 Release Time Problem (Solution

Method-MAUT)

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

9

Optimal release time determination in the testing phase is a

typical application of Software reliability models. Software

release time problems have been discussed and solved in

different ways. One of these is to find release time so that the

total cost incurred during remaining phases (i.e. testing and

operational) of the SDLC is minimized [9,19]. Some of the

release time problems are based upon reliability criterion

alone. Optimization models that minimize the number of

remaining faults in the software or the failure intensity also

fall under this category [1,9,29]. Release time problems have

also been formulated for minimizing cost with reliability

requirement or maximizing reliability subject to budgetary

constraint [9,11]. Bi-criterion release policy [9,10]

simultaneously maximizes reliability and minimizes cost

subject to reliability requirement and testing resource

availability constraints. Mathematical programming methods

have been used to find solutions to such problems.

The quality of a software system is usually managed or

controlled during the testing and maintenance phases. If the

length of software testing is long, it can remove many

software errors in the software system and its reliability

increases. However it may cause a significant financial loss

for the software company by increasing the testing cost and

delay in software delivery. Further, releasing software to

market before measuring desired level of failure intensity

(which is fixed by the manager) may increase the maintenance

cost during operational phase as well as create risk to lose

future market. To trade-off between two conflicting

objectives, multi-attribute utility theory (MAUT) is applied in

our decision model.

Fig 10. Steps for using MAUT as an Evaluation Approach

MAUT has gained a lot of importance in recent years as it

represents the scenario of management appropriately. It has

strong theoretical foundations based on expected utility theory

[3, 13]. Another importance is that it provides feasibility to

consider the alternative on the continuous scale [2, 13].

In the present study, we have identified two separate utility

assessments. The objective list utilized for this preliminary

analysis is minimization of cost and maximization of

measurement failure intensity. A Multi-Attribute Utility

Function (MAUF) is defined as

 1 2 1 1 2 2

1

1

(, ,...,) (), (),..., () . ()

, 1

n

n n n i i i

i

n

i

i

U x x x f u x u x u x w u x

where w





 







 (15)

where,

U is a multi-attribute utility function over all utility;

()i iu x is single utility function measuring the utility of

attribute i;

ix is level of ith attribute.

iw Represent the different importance weights for the utilities

of attributes

By maximizing the multi-attribute utility function, the best

alternative is obtained, under which the attractiveness of the

conjoint outcome of attributes is optimized [13].

We now discuss the methodology that has been utilized in

formulating the utility function.

Selection of Attributes

A vital decision problem that firms encounter is to determine

when to stop testing and release the software to user. If the

release of the software is unduly delayed, the software

developer may suffer in terms of revenue loss. The

optimization problem of determining the time of software

release can be formulated based on goals set by the firm in

terms of cost and failure intensity. Using the concept of

quantification from Lie et al [13]; the objective of failure

intensity λ(t) is formulated as

max

()
max

t
f




 (16)

where,
if is the measurement of failure intensity and is taken

as to be one of the attributes to be considered in MAUT.

The software performance during the field is dependent on the

reliability level achieved during testing. In general, it is

observed that longer the testing phase, the better the

performance. Better system performance also ensures less

number of faults required to be fixed during operational

phase. On the other hand prolonged software testing unduly

delays the software release. Considering the two conflicting

objectives of better performance with longer testing and

reduced costs with early release, GO [18] proposed a cost

function for the total cost incurred during testing given as:

     1 2 3C T C m T C a m T C T      (17)

where,

1C be the cost of fixing a fault during testing phase.

2C be the cost of fixing a fault during operational phase.

3C is the testing cost per unit testing time.

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

10

 m T is the expected number of faults removed till time

T .

 C T is the total cost in fault removal.

A firm never wants to spend more than its capacity, therefore

the next attribute that we consider is:

Min: 4

()C T
C

C


B

 (18)

where,

BC is the total budget allocated to the firm.

Selection of Attribute Bounds

The upper and lower bounds of an attribute are chosen by the

designer. It is possible to use mathematical optimization

techniques to choose the limits, however there is no rule as to

the size of the range. The range of the attribute can change the

weight of the scaling factors, when using the multi-attribute

utility model. SAUF represents management’s satisfaction

level towards the performance of each attribute. It is usually

assessed by a few particular points on the utility curve [12]. In

the present study, using the concept of Lei et al [13], suppose

that the single utility function for cost is to be determined, the

lowest and highest values of cost are selected first as
0 1

4 4C and C . At these boundary points, we have .

0 1

4 4() 0 () 1u C and u C  .

Lottery

The lottery is the step in the process where the designer's

preferences are determined. In this step, the designer needs to

make a decision between two choices. The first choice is to

have the probability p for the most preferred alternative or 1-

p for the least preferred alternative. The second choice is the

absolute certainty of a particular alternative, or the certainty

value, between the most and least preferred. The goal of the

lottery is to determine the probability p where the decision

maker is indifferent between the two choices. The

indifference between the two choices is called certainty

equivalence.

Development of Single Attribute Utility Function (SAUF)

SAUF is obtained by using a set of lottery questions based on

certainty equivalence. They are monotonic functions, where

the finest outcome is set at 1, and the worst at 0. SAUF are

then developed to describe the designer's compromise

between the finest and worst alternatives based on the lottery

questions.

Many functional forms of utility function exist like linear,

exponential etc. An analytical function is typically used for

preference description, and exponential functions are usually

used to describe its shape. The general form is

.

1 2() . r xu x y y e  , where 1 2y and y are parameters

which guarantee the utility is normalized between 0 and 1,

and “r” is the risk coefficient which shows degree of risk

attitude, reflecting rate at which risk attitude changes with

different attribute level. It may be noted that we use lottery

when there is a preference or indifference between two

lotteries. If they are equal to each other, management is risk

neutral and the linear (additive) form

1 2() .u x y y x  should be used. Otherwise, if management

is not risk neutral then the exponential form will be selected.

Furthermore, it is to note that the additive form of multi-

attribute utility function is based on the utility independence

and the additive independence assumptions [12,13].

The component utility function for attribute i (
iu) is assessed

by the use of lottery [13, 21]. The three data points used to

determine the unknown coefficients are obtained from the

equation u(x) = pu(xo) + (1 − p)u(x *), where x is the certainty

value, xo is the best alternative, and x * is the worst alternative

(Refer Fig 2.). Given that the utility is scaled between 1 and

0,

u(xf) = 1,

 u(x w) = 0, so

 u(x) = p.

Therefore, to find p, for a given x , the firm needs to ask from

decision maker or else use the lottery theory.

Credit Allotment to Weights

In this section we have discussed about estimation of weight

parameter,
iw . The weights are assumed to reflect the relative

importance of moving an attribute from worst to finest level.

Thus they are defined on ratio scale. Many approaches for

obtaining numerical weight have been proposed, including

direct trade-off methods, direct judgment of swing weight and

lottery-base utility assessment [12,13]. By these methods,

Management can assign different importance to each attribute.

In our case the number of attributes considered are only two

and in this case use of the probabilistic scaling (lottery

weight) technique is recommended (useful when there is small

number of attribute).

Consider two attributes C and f as software development

cost and measurement of failure intensity . Let (,)H Hf c and

(, C)L Lf denote the finest and worst possible consequence,

(see right hand side in Figure.2) respectively. There is a

certain joint outcome (,)H Lf C that comprises of two

attributes C and f at the best and worst level with probability p

and (1- p) ,respectively [13,25].

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

11

Fig 11: Two Choices for determining scaling constants

(Source: Li et al [13])

Development of Multi Attribute Utility Function (MAUF)

When certain independence conditions are met, a

mathematical combination of all the SAUF, with scaling

constants, results in the MAUF, which is the overall utility

function with all attributes considered. Scaling constants

reflect designer's preference on the attributes, which is based

on scaling constant lottery questions and preference

independence questions. The form of the MAUF function

depends upon the particular independence conditions fulfilled

by the different SAUF [12]. In the present work, the additive

form of the MAUF is given as:

4

4 4: (,) () ()

1

f C

f C

Max U f C w u f w u C

w w

   

 
 (19)

where fw and
4Cw are the weight parameters for attribute f

and C respectively. ()u f and 4()u C are the single utility

function for each attribute. It may be noted that the

4(,)U f C function is of Max type and it has been written in

terms of f and C4.. From managers point of view, f is to be

maximized while C is to be minimized. To synchronize the

two utilities together, we put ' ' sign before cost utility. By

maximizing this multi-attribute utility function, the optimal

time to release,
*T will be obtained.

Numerical Illustration

Tandem Data [26] comprises of four successive releases. The

proposed decision model has been validated for its third

release. The 3rd version of software is released after 12 weeks.

In this paper we investigate about optimal time for the release

and try to find whether:

 Testing Time for the release is sufficient.

 The software has been under tested.

 The software has been over tested.

To answer these questions, the MAUT as discussed is used.

The determination of optimal planning testing time is done

using the methodology as described in previous section.

We set parameters

1 15C  , 2 18C  , 3 3C  and 2500BC  as parameters of

cost function. The bound are selected to the methodology

discussed earlier. In particular, the lowest budget consumption

requirement is 4 0.5WC  and the highest budget

consumption 4 1BC  . The lowest failure intensity

requirement is 4 0.1Wf  and the highest reliability for this

release considered as 4 0.6Bf  .

By using the concept from earlier section

parameters 1 2y and y are determined. Specifically, we have

the following equations:

4 4() 2 1u C C  ; () 2 .2u f f 

Here, based on the single utility functions and the weight

parameters which have been determined in previous steps, the

MAUF is evaluated

4

4

4 4(,) () ()

1,

()
1

f C

f C

B

Maxu f C w u f w u C

w w

C T

C

   

 



 (20)

The above function is maximized by using Maple package

and the optimal time to release comes out to be

* 16.542T  .

Fig 12: The multi-attribute utility function against time

Fig 13: The behaviour of cost function

Fig 14: Behaviour of failure intensity function

Figure 12 shows the multi attribute utility function. From the

curve it can be noted that the value of utility function starts to

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

12

decline after reaching time around 16 (that is why we consider

the optimal time of release to be this). Figure 13 represents the

behaviour of the cost function. According to Tandem data

failure, real time to 3th release is 12 weeks. Figure 14 depicts

the hump-shaped failure intensity function. After it reaches to

the highest value, it starts to decline and gives the graph the

present shape. Based on optimal result, we can say that

software in this release should be kept under testing for

around four more weeks.

7. CONCLUSION
In software industry, up graded versions are made in the

software at a very brisk speed. The life of software is very

short in the environment of perfect competition market;

therefore developer has to come up with successive releases to

survive. But a matter of fact is that up-gradation of software

application is a complex process. Upgrades of software

introduce the risk that the new version will include a bug,

causing the program to fail. To capture the effect of faults

generated in the software, we have developed multi-release

software reliability modelling framework. The model

uniquely takes into account the faults of that release which is

under the phase of testing (i.e. the release which is to be

brought into market) and the faults left in the previous release

(i.e. the release which is in operational phase). Further, the

model is extended under the assumption that time and

resources simultaneously are essential for modeling an

accurate software reliability growth model. With this

development structure, a relatively unexplored area of

software reliability is investigated in this work. The proposed

multi release two dimensional model is estimated on the real

data set of four releases. Then the release planning problem is

discussed in context of multiple releases. The problem has

been solved using Genetic algorithm which minimizes the

expected software cost subject to removing a minimum

desired proportion of faults from the new version that is to be

brought into the market. The formulated release planning

problem helps in determining both optimal release time and

optimal resource consumption simultaneously. At last, another

methodology of MAUT has been applied to the release time

problem in order to calculate whether the testing has been

done appropriately or some more testing time would have

required if the software developer had the task of minimizing

cost and maximising failure intensity. A numerical illustration

is also given for the developed optimal release planning

problem.

Taking into consideration the environment of imperfect

debugging and exploration of the possibility of including

randomness in the fault detection rate forms the scope of

future research.

8. REFERENCES
[1] Bardhan A K ‘Modelling in Software Reliability and its

interdisciplinary nature’,Ph.D. Thesis, University of

Delhi, Department of Operational Research, 2002.

[2] Ferreira R.J.P.., Almeida A.T., Cavalcante C A V., ‘A

multi-criteria decision model to determine inspection

intervals of condition monitoring based on delay time

analysis’, Reliability Engineering and System Safety, 94,

905–912, 2009.

[3] Fishburn C P, ‘Utility Theory for Decision Making’,

New York: Wiley, 1970.

[4] Kanoun K, Bastos M., Moreira J., ‘A method for

software reliability analysis and prediction application to

the TROPICO-R switching system’. IEEE Trans.

Software. Eng. 17 (4), 334–344. 1991.

[5] Kapur P K,, Pham H., Gupta A., Jha P C, ‘Software

Reliability Assessment with OR Applications’, UK:

Springer, 2011.

[6] Kapur P K, Yadavalli V S S, Aggarwal A G., Garmabaki

A H S, ‘Development of a multi-release SRGM

incorporating the effect of bugs reported from

operational phase’, Communicated., 2012.

[7] Kapur P K, Anand A., Singh O., ‘Modeling Successive

Software Up-gradations with Faults of different

Severity.’ Proceedings of the 5th National Conference;

INDIACom 2011, Eds. Prof M.N.Hoda ,Bharati

Vidyapeeth’s Institute of Computer Applications and

Management, New Delhi. pp 351-356, 2011.

[8] Kapur P K, Tandon A., Kaur G, ‘Multi Up- gradation

Software reliability Model’ 2nd international conference

on reliability, safety&hazard (ICRESH), pp. 468-474,

2010.

[9] Kapur P K, Garg R B , Kumar S, ‘Contributions to

hardware and software reliability’ Singapore: World

Scientific Publishing Co. Ltd, 1999.

[10] Kapur P K, Agarwala S, Garg R B, ‘Bicriterion release

policy for exponential software reliability growth model”

Recherche Operationnelle – Operations Research, 28:

165-180, 1994.

[11] Kapur P K, Garg R B, ‘Optimal release policies for

software systems with testing effort’ Int. Journal System

Science, ,22(9), 1563-1571, 1990.

[12] Keeney R L, and Raiffa H, ‘Decisions with Multiple

Objectives: Preferences and Value Tradeoffs’, New

York, Wiley, 1976.

[13] Li, X. , Li Y. F., Xie M. and Ng S H, ‘Reliability

analysis and optimal version-updating for open source

software’, Information and Software Technology, Vol.

53, pp. 929–936, 2011.

[14] Luo,Y. Bergander T., ‘Software reliability growth

modeling using weighed laplace test statistic’, Annual

international Conference (COMPSAC 2007), 2:305–312,

2007.

[15] Musa J D., Iannino A., Okumoto K, ‘Software reliability:

Measurement, Prediction, Applications’, New York: Mc

Graw Hill, 1987.

[16] Neumann J V,and Morgenstern O., ‘Theory of Games

and Economic Behaviour (2nd ed.)’, Princeton, NJ,

Princeton University Press, 1947.

[17] Ohba, M ‘Software reliability analysis models’, IBM

Journal of Research and Development,28: 428-443,

1984.

[18] Okumoto K. and Goel A L, ‘Optimal release time for

computer software’ IEEE Transactions On Software

Engineering.; SE-9 (3): 323-327, 1983.

[19] Okumoto K. and Goel A.L., ‘Time dependent error

detection rate model for software reliability and other

http://en.wikipedia.org/wiki/Software_bug

International Journal of Computer Applications (0975 – 8887)

International Conference on Reliability, Infocom Technologies and Optimization, 2013

13

performance measures’ IEEE Transactions on

Reliability, R-28(3): 206-211, 1979.

[20] Pham H, ‘Software Reliability’, Singapore, Springer-

Verlag Pte. Ltd, 2006.

[21] Seung C. and Zhang C.,, ‘Developing socioeconomic

indicators for fisheries off Alaska: A multi-attribute

utility function approach’, Fisheries Research, Vol. 112

No 3, pp. 117-126, 2011.

[22] Singh O., , Kapur P.K. , Anand A.,, ‘A Stochastic

Formulation of Successive Software Releases with faults

Severity’ proceedings of The IEEE International

Conference on Industrial Engineering and Engineering

Management (IEEM), 6-9 December, Singapore, pp136-

140, 2011.

[23] Singh O., Kapur P.K, Anand A., Singh J., ‘Stochastic

Differential Equation Based Modeling for Multiple

Generations of Software and Optimal Release Planning’,

proceedings of 5th International Conference on Quality,

Reliability and Infocom Technology (ICQRIT), Trends

And Future 8Directions, Kathmandu, Nepal, SN-19, pc-

19, 2011.

[24] Thurston L. D., "Multi-attribute Utility Analysis of

Conflicting Preferences." Decision Making in

Engineering Design. Ed. Kemper E. Lewis, et al. New

York, New York: ASME Press, 125-133, 2006.

[25] Winterfeldt D.. And Edwards W. ‘Decision Analysis and

Behavioral Research”, Cambridge, UK, Cambridge

University Press, 1986.

[26] Wood. ‘Predicting software reliability’, IEEE Computer,

Vol. 9, pp. 69-77, 1996.

[27] Xie M., ‘Software Reliability Modeling’, World

Scientific Publishing, 1991.

[28] Yamada S.,. Ohba M, M. and Osaki S ‘S-shaped

software reliability growth models and their

applications’, IEEE Trans. on Reliability, Vol. 33 No. 4,

pp. 289–292, 1984.

[29] Yamada S.,, Narihisa H, Osaki S..‘Optimum release

policies for a software system with a scheduled software

delivery time’, International Journal of Systems Science,

Vol. 15 No. 8, pp. 905–914, 1984.

[30] Bittanti S., Bolzern P , Pedrotti E., Scattolini R . “A

Flexible Modelling Approach For Software Reliability

Growth” Software Reliability Modelling and

Identification (Ed.) G. Goos and J. Harmanis, Springer

Verlag, Berlin, pp. 101-140, 1988

[31] Ishii T. and Dohi, T. "Two-dimensional software

reliability models and their application," in 12th Pacific

Rim Intern. Symp. Dependa. Comput., 2006, pp. 3–10.

[32] Inoue S. and Yamada, S., "Two-Dimensional Software

Reliability Assessment with Testing-Coverage," in

Second International Conference on Secure System

Integration and Reliability Improvement,, 2008.

[33] Kapur P K., Aggarwal A.., Kapoor K and Kaur G

“Optimal Testing Resource Allocation for Modular

Software Considering Cost, Testing Effort and

Reliability using Genetic Algorithm” International

Journal of Reliability, Quality and Safety Engineering,

Vol. 16, No. 6, pp. 495–508, 2009.

[34] Kapur P. K., et al., "Two Dimensional Flexible Software

Reliability Growth Model And Related Release Policy,"

in 4th National Conference; INDIACom-2010, New

Delhi, 2010.

[35] Yamada S., Osaki S., “Optimal software release policies

with simultaneous cost and reliability requirements”,

European Journal of Operational Research, vol. 31, no.

1, pp. 46-51, 1987

[36] Huang C.Y., Lyu M.R., “Optimal Release Time for

Software Systems Considering Cost, Testing Effort, and

Testing Efficiency”, IEEE Transactions on Reliability,

vol. 54, no. 4, Dec 2005.

[37] Kapur P.K., Gupta D., Gupta A., Jha P.C., “Effect of

Introduction of faults and Imperfect Debugging on

Release Time”, In Ratio Mathematica, vol. 18, pp. 62-90,

2008

[38] Goldberg D.E., Genetic Algorithms in Search of

Optimization and Machine Learning, Addison-Wesley,

1989.

http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0165783611X00127&_cid=271306&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=a95a3b5741dc5575bc3218ee8c6fa771
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0165783611X00127&_cid=271306&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=a95a3b5741dc5575bc3218ee8c6fa771

