
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

19

Integrated Knowledge Base: An Approach to
Knowledge Extraction

Deepa Chaudhary, Praveen K.Yadav, Rakesh K. Singh, Subhojit Mitra, Siddharth

I.P.E.C Ghaziabad

ABSTRACT

This paper describes an approach to integrate knowledge

base via converting predicates into Semantic networks and in

frames. A knowledge base can be represented in a tabular

form, a rule form, a tree form or any other form suitable for

knowledge representation. Form conversion can be

accomplished at all times. Unification of knowledge always

overcome individual limitations and has synergetic effects in

knowledge extraction. The graphical representation of

knowledge base has more understandability than any other

representation. Aim of this paper is to develop a system

which accepts input from the user in the form of predicates

and generates outputs with graphical representation of

semantic networks as well as of frames.

Keywords: Knowledge Representation, Predicate Logic,

Semantic Network, Frames, Ontology, Script and Production

rule.

1. INTRODUCTION

Machines cannot be called intelligent until they are able to

learn to do new things and to adapt to new situations, rather

than simply doing as they are told to do.[Rich and Knight,

1991]

Knowledge is the information which represents long-term

relationship i.e. ways of doing things, common sense, ideas,

methods, skills, and so on. Knowledge is the backbone of

Artificial Intelligence and so issues related to knowledge

representation, understanding, knowledge designing and

implementation are of relevance. In the creation of common

sense knowledge base major information contents are the

ontology of classes, instances and individuals; parts,

properties, and materials of objects; functions and uses of

objects; locations, durations, post and preconditions of

events; behaviour; emotions; strategies; and context. To

accommodate all these concepts in a single unit, a unique

knowledge representation scheme is required [1].

Ontology is a specification of a conceptualization

which defines a set of representational primitives with which

to model a domain of knowledge or discourse. The

representational primitives are typically classes (or sets),

attributes (or properties), and relationships (or relations

among class members). The definitions of the

representational primitives include information about their

meaning and constraints on their logically consistent

application. Ontology defines (specifies) the concepts,

relationships, and other distinctions that are relevant for

modeling a domain. The specification takes the form of the

definitions of representational vocabulary (classes, relations,

and so forth), which provide meanings for the vocabulary

and formal constraints on its coherent use. Ontologies are

used in artificial intelligence, semantic web, software

engineering, biomedical information, library science and

information architecture as a form of knowledge

representation about the world or some part of it. Ontology

language can be classified by logic, graph and using frames

[2].

Various knowledge representation schemes like Logic,

Frame, Production Rules, Scripts, and Grids etc. have been

employed in a number of successful practical systems. There

are systems that employ different formalisms to knowledge

representation like logic [3], semantic net [4], frame [5],

production rules [6], script [7] separately or suitably

combines some of these schemes and hence are more

effective in subsequent use.

Predicates, the language of logic, is one way of representing

knowledge. Predicates can be used to illustrate all the basic

concepts of logic. The atomic sentences (indivisible syntactic

elements) consist of a single predicate followed by a

parenthesized list of terms. The meaning of a concept comes

from the ways in which it is connected to other concepts [1].

For example,

Facts can be written as:

Mammal has legs either 0 or 2 or 4.

Human is a mammal

Human eats food.

Humans have 2 legs.

There corresponding predicates are as follows:

Legs(mammal,0/2/4)

Isa(human, mammal)

Eat(human ,food)

Legs(human,2)

Semantic networks are an alternative to predicate logic as a

form of knowledge representation. The idea is that we can

store our knowledge in the form of a graph, with nodes

representing objects in the world, and arcs representing

relationships between those objects. Semantic nets are

natural way to represent relationships that would appear as

ground instances of binary predicates in predicate logic (e.g.

instance(Marcus , Man)). Semantic nets are graph based

approach of ontology language.

This form of representation is closer to the way human

structure knowledge by building mental links between things

than the predicate logic we considered earlier. An important

property of semantic nets, that they may be used for a form

of inference known as inheritance. The idea of this is that if

an object belongs to a class (indicated by an isa link) it

inherits all the properties of that class. Another important

aspect of semantic nets is their ability to represent default

values for categories. Semantic nets have advantage of

simplicity and transparency of the inference processes

example:

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

20

Similarly Frame represents prototypical constellations of

elements and attributes. Frame is a general record-like

structure which represents an entity as a set of slots

(attributes) and associated values. A frame can represent a

specific entity, or a general concept A frame represents

knowledge in an “object-oriented'' manner, which means that

facts are associated with the objects mentioned in the facts.

A frame is an object with which facts are associated. [1].

Frame are said to contain slots, which may be used to hold

several types of information. A slot is a mapping from a

frame to a set of values. The values stored in slots are called

Fillers. The slots may also contain procedures (i.e. procedural

knowledge or descriptions of how to do things, not

descriptions of things themselves). When slots contain

procedural knowledge, this is often called "procedural

attachment." This is an important distinction between frame

and semantic networks. Unlike a record, structure or class, it

is possible to add slots to a frame dynamically (i.e. while the

program is executing) and the contents of the slot need not be

a simple value. Frame are implicitly associated with one

another because the value of a slot can be another frame [1].

A frame can inherit slots from another frame based on

hierarchy regardless of the value of slot. Frame can represent

procedures, so they are known as having a procedural nature

as well as a declarative capability. For example:

MAMMAL

legs : 0/2/4

exist on : earth

have: lungs

HUMAN

isa : mammal

eat : food

legs : 2

2. INTEGRATION OF KNOWLEDGE

BASE

In our algorithmic approach we are trying to develop a

method to transform one form of knowledge representation

into another.

A. Conversion of Predicates into Semantic Network

In Knowledge Base, predicates are used to store area specific

knowledge. Predicates store knowledge in form of

relationship between two objects or concepts while frame

structures knowledge to associate mapping between chunks

of knowledge. We can store data in a knowledgebase using

Predicate. Suppose a user enters the following predicates:

Is a(mammal ,living thing)

Do(living thing ,respiration)

Have(mammal ,legs)

Legs(mammal,0/2/4)

Is a(human ,mammal)

Eat(human, food)

Legs(human,2)

Instance of(ram, human)

Eat(ram, ice-cream)

Instance of (ram ,mammal)

Instance of(mitthu ,bird)

Have(mammal ,lungs)

Exist on (mammal ,earth)

Exist on (living thing ,universe)

Is a (bird, living thing)

For the sake of simplicity, case sensitivity is not induced

while storing knowledge derived from these predicates. Once

we get the predicate as input we separate each predicate into

three components i.e. attribute with two objects, object 1

having that attribute and object 2 characterizing that attribute.

Linear search is used to gather all the knowledge related to

particular object as object 1 whose attribute is not “instance

of” and a list of unique values for Object1 is generated.

For all those predicates which have “instance of” attribute, its

object 2 value is added in the list if it does not exist in the list

of unique objects for which it is an instance of . In case of

example given above the list of unique objects is as follows:

MAMMAL

LIVINGTHING

HUMAN

BIRD

In the above example any one of two cases for “instance of”

attribute can happen:

Case 1: For predicate instance of (ram, mammal) “mammal”

is already present in the list so mammal is not added to the

list again.

Case 2: For the predicate Instance of (mitthu ,bird), mitthu is

an “instance of” bird and bird is not present in the list of

unique objects and hence Bird is added into the list of unique

objects.

We will separately store all the information related to object

1 of predicate instance of. This will be treated differently as

same name of object 1 can exists for the different object 2’s.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

21

Now the algorithm will first makes a list of attribute with

their values for each object mentioned in the list. In this

process if an attribute for any object occurs with same value

at more than one place then consider it only once. If new

attribute value is found for the same attribute then instead of

creating a new attribute update its value. However in the case

of those predicate which have “instance of’ attribute do not

update the values.

HUMAN

is a : mammal

eat : food

legs : 2

MAMMAL

is a : living thing

have : lungs

legs : 0/2/4

exist on : earth

BIRD

is a : living thing

LIVING THING

do : respiration

exist on : universe

After this step first object in the list HUMAN and its

corresponding attribute values are drawn. They are connected

through arrows labelled with corresponding attribute

Moving forward in the list, next object is MAMMAL. As it is

already present, we do not represent it again. Its

corresponding attribute values are drawn and connected

through arrows labelled with attribute.

Same procedure is repeated for others, which produces final

output as shown below.

B. Conversion of Predicates into Frames

Continuing this method further check for presence of “is a”

slot. If “is a” slot is present with any object then check

whether its filler is also an object. If so then inherit all its

(filler object’s) slots (with “*” to differentiate it from original

slot) and filler. Only immediate parent class is searched for

inheritance [8].

HUMAN

is a : mammal

eat : food

legs : 2

*is a : living thing

*have : lungs

*legs : 0/2/4

*exist on : earth

BIRD

is a : living thing

*do : respiration

*exist on : universe

MAMMAL

is a : living thing

have : lungs

legs : 0/2/4

exist on : earth

*do : respiration

*exist on : universe

LIVING THING

do : respiration

exist on : universe

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

22

The algorithm now checks for the next level of inheritance as

discussed in the previous step. This algorithm is capable of

inheriting all possible characteristics of its parent class.

HUMAN

is a : mammal

eat : food

legs : 2

*is a : living thing

*have : lungs

*legs : 0/2/4

*exist on : earth

*do : respiration

*exist on : universe

BIRD

is a : living thing

*do : respiration

*exist on : universe

MAMMAL

is a : living thing

have : lungs

legs : 0/2/4

exist on : earth

*do : respiration

*exist on : universe

LIVING THING

do : respiration

exist on : universe

This algorithm inherits only those slots from its parent object

which are not defined explicitly for the current object. Here

HUMAN will not further inherit legs attribute from its parent

MAMMAL as it already have it with its filler value.

HUMAN

is a : mammal

eat : food

legs : 2

*have : lungs

*exist on : earth

*do : respiration

*exist on : universe

BIRD

is a : living thing

*do : respiration

*exist on : universe

MAMMAL

is a : living thing

have : lungs

legs : 0/2/4

exist on : earth

*do : respiration

*exist on : universe

LIVING THING

do : respiration

exist on : universe

If a slot is defined for parent object as well as its grand parent

object then current object will inherit slots only from its

parent object. Here HUMAN will inherit “exist on” from

MAMMAL not from LIVING THING.

HUMAN

is a : mammal

eat : food

legs : 2

*have : lungs

*exist on : earth

*do : respiration

BIRD

is a : living thing

*do : respiration

*exist on : universe

MAMMAL

is a : living thing

have : lungs

legs : 0/2/4

exist on : earth

*do : respiration

*exist on : universe

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

23

LIVING THING

do : respiration

exist on : universe

If an entity has slot “has”/”have” then its filler is also added

as another slot but is not shown unless its value is defined.

In above example slot lungs is not shown as slot unless

lungs filler is not assigned.

ALGORITHM

TABLE: 2Dimensional array for storage of string with 3

columns for storing one element of predicate logic in each

column.

TABLE1,TABLE2....TABLEi: 2Dimensional array for

storage of string with 2 columns.

column1,column2,column3: Ist,IInd & III rd colum of table.

row I: Ith row of table.

Draw-arrow: function to create an arrow to join two nodes.

Draw-node: function to create a node.

If (first element of predicate logic NOT=”instance of”

Store in TABLE(predicate logic).

 IF TABLE(column1) and TABLE(column2) exists

 Update TABLE(column3)

 END IF

 Else

 Store in separate location.

 END IF

CREATE distinct LIST (TABLE(column 2))

Int n -> length of LIST

 FOR I=0 to n

 FOR J=0 to end of TABLE

 Insert in TABLE2(list [I]),NULL)

 IF(TABLE(colum1)=list[I])

 Insert in TABLE2(TABLE2(column1),TABLE2

(column3))

 END IF

 IF(TABLE(colum1)=”have” OR “has”)

 Insert in

TABLE2(TABLE2(column1),<empty>)

 END IF

 END FOR

END FOR

FOR I=0 TO end to TABLE2

 TABLE3(ROW I)=TABLE2(ROW I);

 WHILE(TABLE2(column3)!=NULL)

 IF(TABLE2(column1)=isa)

 Flag=true

 K=INDEXOF(TABLE2(column1)+1

 ENDIF

 END WHILE

IF(Flag=True)

 FOR X=K TO INDEXOF(NULL)

 TABLE3(column1)= * + TABLE2(column1)

 TABLE3(column2)=TABLE2(column2)

 END FOR

 Flag=False

 ENDIF

END FOR

REPEATE above FOR loop multiple times till it cover

complete inheritance

FOR I =0 to LENGTHOF(TABLEi)

 FOR J=0 TO LENGTHOF(TABLEi)

 IF(TABLEi[I][1]=TABLEi[J][1] ignoring “*”)

 DELETE ROW J

 ENDIF

 END FOR

END FOR.

For(I=0 to Length of TABLE2)

{

 If(Table2(I,column2)=NULL)

 {

 If(column1 is not present)

 {

 Draw central node (TABLE2 (I,column1)

 }

 Current node=TABLE2(I,column1)

 I=I+1

 }

 Else If(node bottom is empty)

 {

 Draw-arrow to bottom of current (TABLE2(I,column1))

 Draw-node to bottom of current (TABLE2(I,column2))

 I=I+1

 }

Else If(node bottom-left is empty)

 {

 Draw-arrow to bottom-left of current

(TABLE2(I,column1))

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

24

 Draw-node to bottom-left of current

(TABLE2(I,column2))

 I=I+1

 }

Else If(node bottom-right is empty)

 {

 Draw-arrow to bottom-right of current

(TABLE2(I,column1))

 Draw-node to bottom-right of current

(TABLE2(I,column2))

 I=I+1

 }

Else If(node left is empty)

 {

 Draw-arrow to left of current (TABLE2(I,column1))

 Draw-node to left of current (TABLE2(I,column2))

 I=I+1

 }

Else If(node right is empty)

 {

 Draw-arrow to right of current (TABLE2(I,column1))

 Draw-node to right of current (TABLE2(I,column2))

 I=I+1

 }

Else If(node top-left is empty)

 {

 Draw-arrow to top-left of current (TABLE2(I,column1))

 Draw-node to top-left of current (TABLE2(I,column2))

 I=I+1

 }

Else If(node top-right is empty)

 {

 Draw-arrow to top-right of current(TABLE2(I,column1))

 Draw-node to top-right of current(TABLE2(I,column2))

 I=I+1

 }

Else If(node top is empty)

 {

 Draw-arrow to top of current (TABLE2(I,column1))

 Draw-node to top of current (TABLE2(I,column2))

 I=I+1

 }

3. IMPLEMENTATION DETAIL

We have developed this module on .Net platform using c# to

show working of this algorithm. A few screenshots to show

inputs in the form of predicates and outputs in semantic

network and in frame structure are shown.

Screen Shots:

Fig. 1 Screen shot for Inputs as Predicates

Fig. 2 Screen shot for Output as Frames

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

25

Fig. 3 Screen shot for outputs as Semantic network

4. CONCLUSION

We have successfully implemented the algorithm to convert

predicates into Semantic networks and in frames. Work is

going on to convert frames into semantic networks and vice-

versa to give conversion of one Knowledge base into another

a free hand. This experimental work gives us insights to

convert one form of knowledge representation into other

forms of knowledge representations to integrate all the

existing knowledge bases.

5. REFERENCES

[1] Chaudhary Deepa, “Extracting EHCPRs Rules from

Existing Knowledge Bases” International Conferences

on Issues and Challenges in Network, Intelligence &

Computing Technologies, 2-3 Sep.,2011.

[2] V. Maniraj, Dr. R Sivakumar, “Ontology Languages-A

Review”.IACSIT.

[3] McDermott Drew, Doyle John, 1980, “Non-monotonic

Logic”, Artificial Intelligence, vol. 13, pp. 41-72.

[4] Quillian, M.R 1968, “Semantic Memory”, in M. Minski,

Ed., Semantic Information Processing, MIT Press,

Cambridge, MA.

[5] Marvin Minsky, “A Framework for Representing

Knowledge”, MIT-AI Laboratory, Memo 306, 1974.

[6] Davis R. and Buchanan B.G,”Production rules as a

representation system for a knowledge based

Consultation system”, Artificial intelligence, vol 8, pp.

15-45.

[7] Schank R.C and Abelson P.P, 1977, “Scripts Plans

Goals and Understanding”,Hillsdale,N.J.

[8] Deepa Chaudhary, Praveen K.Yadaav, Rakesh K. Singh,

Sudhanshu Mishra,Siddharth , “Enriching the

Knowledgebase Using Unification

Technioques”,”ARTCom 2012”.

