
Special Issue of International Journal of Computer Applications (0975 – 8887)  

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012 

 

1 

Application of Goel-Okumoto Model in Software Reliability 

Measurement 

Pankaj Nagar 
Department of Statistics, University of Rajasthan, 

Rajasthan, India 

pnagar121@gmail.com 

Blessy Thankachan 
Department of Statistics, University of Rajasthan, 

Rajasthan, India 

blessy218@gmail.com 
 

ABSTRACT 
The estimation of remaining errors in the software is the deciding 

factor for the release of the software or the amount of more testing 

which is required. Software growth reliability models are used for the 

correct estimation of the remaining errors.  In this paper the Goel-

Okumoto Model has been selected and its various parameters are 

discussed with a case study. A criterion has also been evaluated for 

the estimation of reliability of any software. 

 

Keywords- 
Calendar time, Residual Errors, Reliability Factor, Roundness Factor 

1. INTRODUCTION 

The probability that software will work and produce desirable 

outputs for a specified time under a certain environment is called the 

reliability of the software.  Numerous methods have been designed 

which can help in improving the reliability of the software before it is 

shipped to the user. To make reliable software intensive and careful 

planning of testing phase and accurate decision-making is required. 

This careful planning and decision-making requires the use of 

software reliability analysis model or software reliability growth 

model. Software Reliability Growth Models usually have the form of 

random process that describes the behavior of failures with respect to 

time. It specifies the general form of the dependence of the 

failure process on the principle factors that affect it: fault 

introduction, fault removal, and the operational environment i.e 

Software reliability modeling is done to estimate the form of the 

failure rate function by statistically estimating the parameters 

associated with a selected mathematical model. At any particular 

time it is possible to observe a history of the failure rate (failures per 

unit time) of software. Fault identification and removal generally 

force the failure rate of a software system to decrease with time. The 

purposes of modeling are:  

 To estimate the remaining time required to achieve a 

specified objective.  

 To estimate the expected reliability of the software when 

the product is released. 

Measurement of software reliability comprises of the determination 

of software reliability or its alternative quantities from defect data. 

Software reliability growth models have many underlying 

assumptions that are often violated in practice, but empirical 

evidence has shown that many are quite robust despite these 

assumption violations [1]. Because of assumption violations, it is 

often difficult to know which models to apply in practice. The model 

presented here is the basic execution time model or the Goel-

Okumoto Model [2].  

 

2. GOEL-OKUMOTO SOTWARE 

RELIABILITY GROWTH MODEL 

The primary objective of a software reliability model is to forecast 

failure behavior of the software that will be experienced when the 

software is operational. This expected behavior changes rapidly and 

it can be tracked during the period in which the program is tested. 

A. Basic Assumptions of Goel/Okumoto Model  

 The execution times between the failures are exponentially 

distributed. 

 The cumulative number of failures follows a Non Homogeneous 

Poisson process (NHPP) by its expected value function µ(t).  

 For a period over which the software is observed the quantities 

of the resources that are available are constant. 

 The number of faults detected in each of the respective intervals 

is independent of each other.      

 The mean value function is such that the expected number of 

error occurrences for any time t  to t+∆t is proportional to the 

expected number of undetected errors at time t. It is also 

assumed to be bounded, non-decreasing function of time with 

lim t→∞ µ(t)= N <∞ 

 Fault causing failure is corrected immediately; otherwise 

reoccurrence of that failure is not    counted (repair is immediate 

and perfect). 

B. Goel-Okumoto Baisc Model 

µ(t) = EE (l-e-bt), where  EE ≥0, b>0       (1) 

µ(t) = Predicted number of defects at time t 

EE = Expected total number of defects in the code in   

  infinite time (it is usually finite) 

b = Roundness factor/shape factor = the rate   at which   the 

failure rate decreases.  

  t  = Calendar time/ execution time/ number of test runs 

 

Because it is a non-linear equation, the solution found may be local 

optimum rather global optimum. Therefore it is beneficial to define 

parameter values that are close to the final values [3]. The parameter 

values which are selected should provide a reasonable match to the 

existing data. But it is worthy only if the estimation is done already, 

or the analysis is done after the software is released to the user. If the 

result is obtained using the previous month‟s data, those parameter 

values are a good starting point to estimate the value of expected 

total no. of defects and the roundness factor.  

 

 

 

  

mailto:pnagar121@gmail.com
mailto:blessy218@gmail.com


Special Issue of International Journal of Computer Applications (0975 – 8887)  

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012 

 

2 

C. Components of the Model 

1) Expected no. of Defects: In this model µ(t)= EEF(t). Here 

F(t) is a cumulative distribution function. F(0)=0, i.e  number of 

defects are 0 before the test starts, and F(∞)=1, therefore µ(∞)=EE 

and EE is the total number of bugs detected after an infinite number if 

testing is done.  

This model attempt to statistically correlate defect detection data with 

other known functions like exponential functions. The model have a 

parameter that relates to the total number of bugs contained in the 

entire cod. Residual Errors [3] can be found out if the entire no. of 

bugs is detected and calculated as follows: 

Residual Errors = Total number of errors in the code - errors 

discovered and rectified. 

2) Roundness Factor: The roundness factor for a perfect 

circle has the value „1‟ and for shapes with increasing irregularity, 

the value tends to „0‟. Other shape factors are sensitive especially for 

the presence of concave irregularities, whereas factors like the 

roundness factor can have the same value for shapes with many small 

concave irregularities and for elongated shapes without concave 

irregularities [4]. 

3) Test Time Data: For any software reliability growth model, 

the appropriate measure of time must relate to the testing effort. 

There are three possible methods for measuring test time: 

 Calendar time 

 Number of tests run 

 Execution (CPU) time. 

 

Plot of Expected Failure in Goel-Okumoto is shown: 

 

 
 

D. Estimation of Model Parameters 

In the case of the above model, two parameters must be estimated: 

total expected failures for infinite time (EE) and the rate of reduction 

in the failure rate or the roundness factor (b).  

 

The parameters can be detected during two phases: 

 During the testing phase or before the software is shipped to the 

client. Statistical inference methods like Maximum Likelihood, 

Classical Least Square, and Alternative Least Square can be 

used to estimate the parameters in terms of calendar time. 

 If the predictions are done after the software is shipped to the 

client, then it is done through software characteristics like size 

and complexity of the software or the failure data. Once the 

failure data is available in terms of execution time, these 

parameters may be estimated, using any statistical inference 

method [5]. The accuracy of the parameters generally increases 

with the size of the sample of failures.  

3. ESTIMATION OF SOFTWARE 

RELIABILITY 

The Measurement of software reliability involves estimation of 

software reliability or the alternate quantities of software reliability 

from failure data. Typically, software reliability prediction takes into 

account factors such as the size and complexity of a program [5]. 

Reliability of the software or MTTF increases as a function of 

execution time. Reliability can be measured on the basis of error 

detection rate per unit time.   

 

These predictions can be further used to analyze the reliability of the 

software.   

       ER= EE – µ(tlast), where,                         (2) 

ER =  Residual Errors 

EE  =  Total Expected Errors 

µ(tlast)  = Predicted Errors at the end of quality assurance 

period   

                          (Goel-Okumoto Model) 

Reliability Factor (RF) = 1-(ER / EE)     (3)                   

Reliability Factor (RF) is the measure for software reliability. Its 

value varies between 0 and 1. If RF=1, then the software under 

consideration is perfect, however, if RF=0, then the software is 

highly vulnerable. When RF approaches close to 1 then the software 

can be considered as reliable. 

4. CASE STUDY 
In this section, we show a demonstration of the tool using a data set. 

It is assumed that the software is in active use for not less than 10 

years. This whole period is considered as the life of the software 

during which defects are being discovered and rectified continuously. 

As the defects are being discovered and removed the number of 

residual errors (ER) remaining in the code goes on decreasing and 

thus increasing the reliability factor (RF). The data set, reproduced in 

Table 1, consists of 10 observations corresponding to times between 

testing. The total expected defects (EE) in the code are 100. The 

roundness factor or the defect reduction rate is considered to be 

between 0.03 and 0.05 (based on empirical studies of several 

softwares). The value of the roundness factor b depends upon the 

type of software and the environment in which it is being used.  

In the initial year the number of residual errors left in the code is high 

but during the lifetime of the software the residual errors keep on 

decreasing, which signifies that the errors lefts in the code 

approaches 0. Thus the reliability factor (RF) also approaches 1, 

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

Goel-Okumoto Model

Predicted Errors (G-O Model)

Expected Total Errors

Execution Time 

E
x

p
e

c
te

d
 F

a
il

u
r

e
s

 



Special Issue of International Journal of Computer Applications (0975 – 8887)  

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012 

 

3 

signifying that the reliability of the software under consideration 

tends to improve as the software is being used continuously for 

considerable amount of time.    

 

Table 1- Estimation of RF when b=0.05 

Table 2- Estimation of RF when b=0.04 

Table 3- Estimation of RF when b=0.03 

Thus it can be understood that the value of RF is the deciding factor 

for the estimation of reliability of software. Typical values of RF for 

reliable softwares should be: 

Table 4 – Expected RF values for different types of softwares 

4. CONCLUSION 
Software reliability growth models can provide a good prediction of 

the number of failures at time T and thus the number of remaining 

failures (residual errors) can be found out. It is seen that the basic 

execution model is generally superior in capability and applicability 

to the other published models [5]. Wood's empirical study [7] has 

shown that predictions from simple models of cumulative defects 

based on execution time correlate well with field data [1]. In our 

study, predictions from the Goel-Okumoto model based on calendar 

time correlate well with data from our environment. The model 

provides the reasonable estimation of predicted errors.  Reliability 

factor (RF) can be considered a good criterion for the analysis of the 

reliability. The correct estimation of RF value however depends upon 

the correct estimation of Total Expected Errors (EE) and the 

Roundness Factor (b). Roundness factor depends upon the rate of 

decrease of errors or the rate in which the errors are being detected 

and recovered. When the software is high risk software the testing 

efforts would be too high thus leading to fast retrieval of errors, and 

thus the rate of detection of errors would be high and the value of b 

would approach 1, and reliable software can be produced in less time 

and vice versa.   

REFERENCES 

[1] C Stringfellow, A Amschler Andrews “An empirical method of 

selecting software reliability growth models”, Empirical 

Software Engineering, 7, 319–343, 2002.2 Kluwer Academic 

Publishers. Manufactured in The Netherlands. 

[2] J.D.Musa, K. Okumoto, "A logarithmic Poisson execution time 

model for software reliability measurement", Proc. 7th 

International Conference o_nn Software Engineering, Orlando, 

Florida, March 26-29, 1984, pp. 230-238. 

[3] Alan Wood “Software Reliability Growth Models”, Technical 

Report, Part Number 130056, September 1996 

[4] Reinhold Nafe 1 , Wolfgang Schlote, “Methods for Shape 

Analysis of two-dimensional closed Contours - A biologically 

important, but widely neglected Field in Histopathology” 

Electronic Journal of Pathology and Histology Volume 8.2; 

June 2002 

[5] John D Musa, Kazuhira Okumoto “Application of basic and 

logarithmic poisson execution time models in software 

reliability measurement”, Proceeding Software Reliability 

Modelling and Identification, Springer-Verlag London, UK 

©1988, ISBN:3-540-50695-0 

[6]  http://en.wikipedia.org/wiki/Software A. Wood, “Predicting 

Software Reliability," IEEE Computer, vol. 29, no. 11, 

(November 1996), pp. 69 78.  

EE 
T (In 

Months) 
B µ (tlast) ER RF 

100 12 0.05 45.11542 54.88458 0.451154 

100 24 0.05 69.87683 30.12317 0.698768 

100 36 0.05 83.46703 16.53297 0.83467 

100 48 0.05 90.92595 9.074053 0.909259 

100 60 0.05 95.01974 4.980256 0.950197 

100 72 0.05 97.26661 2.733392 0.972666 

100 84 0.05 98.49979 1.500211 0.984998 

100 96 0.05 99.17662 0.823384 0.991766 

100 108 0.05 99.54809 0.451911 0.995481 

100 120 0.05 99.75197 0.248029 0.99752 

EE t(Months) b µ (tlast) ER RF 

100 12 0.04 38.11858 61.88142 0.381186 

100 24 0.04 61.7069 38.2931 0.617069 

100 36 0.04 76.30369 23.69631 0.763037 

100 48 0.04 85.33638 14.66362 0.853364 

100 60 0.04 90.92595 9.074053 0.909259 

100 72 0.04 94.38485 5.615153 0.943848 

100 84 0.04 96.52526 3.474736 0.965253 

100 96 0.04 97.84978 2.150216 0.978498 

100 108 0.04 98.66942 1.330584 0.986694 

100 120 0.04 99.17662 0.823384 0.991766 

EE t (Months) b µ (tlast) ER RF 

100 12 0.03 30.22976 69.77024 0.302298 

100 24 0.03 51.32114 48.67886 0.513211 

100 36 0.03 66.03664 33.96336 0.660366 

100 48 0.03 76.30369 23.69631 0.763037 

100 60 0.03 83.46703 16.53297 0.83467 

100 72 0.03 88.4649 11.5351 0.884649 

100 84 0.03 91.95194 8.048063 0.919519 

100 96 0.03 94.38485 5.615153 0.943848 

100 108 0.03 96.08229 3.917705 0.960823 

100 120 0.03 97.26661 2.733392 0.972666 

S.  

No. 
Type of S/W Expected value of RF 

1. Platform Software [6] 0.95 ≤ RF ≤ 1.0 

2. Application Software [6] 0.90 ≤ RF ≤ 0.95 

3. User Written Software [6] 0.80 ≤ RF ≤ 0.90 

http://en.wikipedia.org/wiki/Software

