
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

11

Design and Development of Advanced Cross Assembler

for 8085 Microprocessor

Shashank
Bansal

HMR Institute of
Technology and
Management,

Hamidpur, GGSIP
University, ND- 36,

India

Avneesh Mittal
Bhaskaracharya

College of Applied
Sciences, University

of Delhi, Dwarka,
ND-75, India

Vijay Sharma
National Physical
Laboratory, Dr. K.
S. Krishnan Road,

New Delhi- 12,
India.

O.P. Sharma
Kirorimal College,
University of Delhi,
Delhi-110007, India

T.K. Saxena
National Physical

Laboratory, Dr. K.S.
Krishnan Road, ND

– 12, India

ABSTRACT

This paper describes the development of 8085 cross assembler

for students working in their microprocessor lab. The software

has been written in Visual BASIC 5.0 and is user friendly. The

cross assembler converts any 8085 assembly program to the

corresponding operational code and saves it in user defined

binary file used for burning the EPROM chip. Minimization of

the conversion time is the basic aim achieved in the present

software which has been successfully tested on many sample

programs and systems.

Keywords: 8085, Assembler, Cross Assembler,

Microprocessor.

1. INTRODUCTION

Assembler is a software program that takes an assembly

program segment of mnemonics, the source language, and

translates it into an equivalent binary file program, the target

machine language, which can thus be used to burn the EPROM

chip for dedicated application. A simple assembler means that

one can develop a program in one platform and run it on the

same platform. Cross assembler defines that one can develop a

program in one platform run it on other platform. A cross-

assembler is just like any other assembler except that it runs on

CPU other than the one for which it assembles code. Cross-

assemblers are useful as one can use available CPU with

memory, disk drives, a text editor, an operating system, and all

sorts of hard-to-build or expensive facilities to develop code

for another target CPU at different place.

The desired task of a cross assembler has been divided in to

four basic passes [1, 2]. The First pass is the preprocessor,

Second pass is the heart of cross assembler called lexical

analyzer (parser, symbol table, code generation), the third pass

is the, intermediate code generation, improves the quality of

the generated intermediate language. The Fourth pass of the

cross assembler is the opcodes generation, which is the form of

binary executable code.

The assembler/ cross assembler performs more or less

isomorphic translation (one-to-one mapping) from mnemonic

statements into machine instructions and data. This is in

contrast with high-level languages, in which a single statement

generally results in many machine instructions.

The basic processor of 8085 is taken here for simplicity, which

is a complete 8 bit parallel central processor. An 8085 [3]

instruction/ mnemonic consist of operational code and operand

in five different addressing modes. It has 256 different

instruction codes (including 10 new instructions) comprising

74 different operations (operational code) and their operand

combinations. Programming language Visual BASIC 5.0 has

been used for developing the 8085 cross assembler because of

its powerful string manipulation capabilities and GUI.

2. DEVELOPED SOFTWARE

The cross assembler software has been programmed in the

Visual BASIC 5.0 [4, 5]. The developed software is user

friendly. It reads the instruction set as well as its corresponding

binary code from a predefined 8085.txt file in the system in

use. On running the program it opens a window as shown in

Fig 1 and allows the user to browse the existing assembly file

or to enter the mnemonic code in the run time also as shown in

Fig 2(a). It then allows the user to save the entered code in a

user defined .asm file, as shown in Fig 2(b). The program is

insensitive to the character case. On the press of the assemble

command the file is assembled into the desired binary .bin

format as described in the flow chart of Fig 3.

The file conversion starts by removing any unwanted

characters from the entered mnemonic like comma, space, tabs

or blank lines. The resultant file is stored in a .tmp file.

Thereafter it starts the parser. The parser breaks the assembly

line into the parts, tokens, to be used by the lexical analyzer as

well as lexical grammar. The immediate data, the direct or

indirect addresses are also separated and verified. The

immediate data is assumed to start from the symbol #. In case

Fig 1: Initial form of the 8085 Cross

Assembler developed

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

12

Fig 2 (A, B): Steps of the developed cross

assembler to open and save the entered

code.

if there is any mismatch with the lexical grammar then it gives

the error. The labels or pseudo directives are separated from

the entered file. They are separately verified or matched for the

proper syntax/ functioning by using a symbol table. If there is

no error then it generates the operational code. In case there is

a mismatch between the labels it will give error in the label

The speed enhancement has been done in this step by reducing

the comparison time with the standard mnemonics table. A

two-dimensional table of [2611] has been generated with the

first column containing the starting character from A-Z.

Correspondingly other column contains the different possible

mnemonics of that character. The operand part of the

instruction is compared by finite automata algorithm by

generating a tree for an instruction.

An error is generated if any of the mismatch, syntax, and label

errors is found. Machine codes are then generated. The

generated codes can then be used to burn the EEPROM or

directly load in the laboratory kit. User can easily end the

compilation by selecting END option available

3.RESULTS

The developed software was successfully used to convert

various assembly programs to their opcodes saved in the user

defined files. One of the examples is shown in Fig.4 (A) & (B).

Fig 4A shows some of the errors in the entered assembly

program segment. After using the above messages a successful

compilation was performed as shown in the Fig 4B. After

successful compilation the program generates the binary code

and saves it in a desired .Bin file.

4. CONCLUSION

The algorithm used in the above software is very general and

can be used to design cross assembler software from Intel,

Atmel, Zilog, Motorola and other processors and controllers.

The developed software is a cost effective and fast way to

START

Enter
Mnemonic

Code

Save file and

press assemble

Generate

tokens

Tokens compared
with standard
instruction set

Labels handled
using symbol

table

Pattern

Matching

Machine code
Generation

STOP

Fig 3: Flow Chart of the developed

Software of 8085 Cross Assembler

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

13

generate the .bin file. It also gives the computer students an

inside knowledge of Parser, lexical analyzer, handling of the

instruction set having direct and indirect addressing modes,

label handling etc. used in designing of the cross compiler/

assembler.

5. REFERENCES

[1] Allen I. Holub, “Complier Design in C”, Prentice Hall of

India Pvt. Ltd., 2007.

[2] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, “

Compliers: Principles Techniques and Tools”, Pearson

Education, 2001.

[3] Ramesh S. Gaonkar, “Microprocessor Architecture,

Programming, and Applications with the 8085/8085A”,

Wiley Eastern Limited.

[4] Gary Cornel, “Visual Basic 5 from Ground Up”, TMH

Publications

[5] Brian Siler and Jeff Spotts, “Using Visual Basic 6”, Que

Prentice Hall of India Pvt. Ltd., 2002.

Fig 4: Results (A) Errors message generated

by the developed assembler

(B) Successful Compilation after using the

above messages of the developed assembler

