
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

17

Automatic Detection of Software Design Patterns from

Reverse Engineering

Amit Kumar Gautam
IMS Engg. College, Ghaziabad, India

Saurabh Diwaker
KIET, Ghaziabad, India

ABSTRACT

It is proposed to present a novel approach to recover design

patterns which can achieve better performance and greater

accuracy by representing the characteristics, basically

structural, behavioural etc. of design pattern by using weight

and matrix concept so that to reduce the anomalies like false

positives rate and false negative rate. Also follow the pattern

taxonomy for reverse engineering and applying sparse matrix

algorithms for efficient storage and computation. Apply the sub

matrix algorithm to design pattern binary matrix and binary

matrix generated from source code. Comparison with other

standard pattern detection tools for effectiveness and

performance.

Keywords: XMI file, matrix matching, SD Metrics

1. INTRODUCTION

Design patterns are widely used in every domain of software

industry, to identify the problem that is similar for many

different categories of software and trying to build a reusable

solution which can be reused in different types of environment

and context. It is a common general reusable solution to an

iterative problem in design [3][4][5]. They are so

distinguishing in nature in many ways that it is intend for a

problem and is independent of particular domain and

technology. Design pattern provide developers with base for

development of object oriented frameworks and toolkits which

is extensively used in component development as well as

component based software development. Design patterns tell us

the way of structuring classes and objects to solve certain

feasible problems and it’s our responsibility to follow and

acclimate those designs to suitable our particular application. It

can also handle both functional as well as non functional

requirement i.e. quality attributes. Patterns neither provide

exact solution nor it solves all the design problems but it

captures essentials parts of design in compact form with one or

more solution. A design pattern is visualized and described by

the four mandatory elements

 Pattern Name, brief description of problem, its solution,

and consequences

 Description of problem (usage scenarios) describes

when to apply the pattern.

 Description of solution (involved objects and their

interaction behavior, interfaces generalization,

aggregation, realization).

 Consequences are the outcome and trade-offs of

applying the pattern

The above figure represents the various design patterns in a

particular UML diagram.

Design pattern does not solve all the design aspect and issues

but solve the most critical aspects of design which is essential

for further modifying the software. It describe core of the

solution of that problem. It is basically description of classes,

interfaces and communicating objects customized in such a

manner to solve a general design issue in a particular context.

Design principles provide certain rules then an object oriented

software should consider during the software design phase in

order to make

.A design pattern are

A. Smart

A novice would not think of it quickly

B. Generic

A pattern is meant for a problem and does not depend on a

domain, platform or technology

C. Well proven

Identified from real systems that have been applied several

times

D. Simple

Usually quite small with just a few classes

E. Reusable

Design patterns are well structured and documented and so can

be used in different lexicon.

 Reusable solutions to common problems

 Names of abstractions above the class level

Based on a design of experiments in [3] it is proven that

documented patterns lead to an easier and better understanding

of software systems. Large computer-based systems and legacy

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

18

systems are normally difficult to understand, extend and

maintain due to lack of software architecture and design

documentation. After the integration, packaging and

deployment of the software based systems, the original

software architecture and design related information, and

experience of expert designers is generally lost [1]. Source

code becomes the only source to understand and further

enhance the systems. However, source code is very large in

size and hard to comprehend. It is very critical, time-

consuming and error prone process to observe source code

manually. Understanding the existing legacy systems,

extracting and factoring out the relevant design information is

very essential since it may help on modifying them and to

facilitate the software development life cycle like spiral model,

incremental model, prototype model where there is need of

automation of existing manual system. By extracting the design

pattern we can also able to reconstruct the original software

architecture of the different modules and components.

Software systems generally should be amenable to changes due

to continuous changes of user requirements, domains,

platforms, technologies and environments. Requirements are

dynamic in nature so change is a constant theme of computer-

based system design and development. To analyze and

understand the source code of existing computer-based system,

we need to discover the original architectural, design decisions

and tradeoffs. Maintenance is one of the necessary and critical

aspect of the software evolution since it involves lot of

operational cost and therefore requires lot of proper

documentation like software requirement specification

document. In maintenance phase, we require lot of

documentation which is generally lost after deployment

otherwise it leads to huge complexity of reverse engineering.

Generally, design-pattern is a reusable solution so by

identifying it we can construct high level design like SRS

document as well as low level design. If design-patterns could

be identified and reused in reverse engineering, the process of

doing reverse engineering would be very effective and helpful

to those people who are involved in system designing and

maintaining the software. So there were many attempts to

detect design-patterns during reverse engineering. Design

pattern are higher level of abstraction than libraries.

Frameworks and libraries are not design patterns and there

does not exist any libraries of design patterns.

Design patterns are also used in the process of designing and

maintaining component-based systems for which the reusable

modules must be found out. By discovering design patterns

from reusable software, it is easier to recognize and verify

those reusable parts in legacy software based system or figure

out in the form of pre-developed components, or build them as

reusable product. Extracting the architectural and design

information from legacy software which consists of large

number of classes i.e. large search space is very typical. So

software metrics and optimization techniques help us to reduce

the search space to great extent.

2. LITERATURE SURVEY

An Since 1990s researchers have been working on

“Recognizing Programmers Design” [1-4]. After popularity of

design patterns, since 1996, object oriented design community

began to collect design patterns used in the software

construction. Since, a pattern provides knowledge about the

role of each class within the pattern, the reasons of certain

relationships among pattern constituents and/or the remaining

parts of a system, localizing instances of the design patterns in

existing software, can improve maintainability of software with

other benefits like code comprehension, analysis of effects of

using design patterns in software development. Some

approaches [5-25] have been proposed to detect design patterns

from source code or a design model, such as the UML

diagrams. Even then to date little research has focused on the

development of techniques for discovering design patterns. Our

work is a step in this direction.

There are many existing methods for discovering design

patterns from design and source code. Rudolf et. al. [5]

presented a pattern matching-based system using the Columbus

framework with which they were able to find pattern instances

from the source code by considering the patterns’ structural

descriptions, but with this method they could not identify false

hits and distinguish similar design patterns such as State and

Strategy. Then they used machine learning algorithms, such as

decision tree and neural network, to enhance pattern mining by

filtering out as many false hits as possible [5]. To do so they

distinguish true and false pattern instances with the help of a

learning database created by manually tagging a large C++

system. Ozalp Babaoglu et al. [6] proposed design patterns as a

conceptual framework for transferring knowledge from biology

to distributed computing. The motivation of their work is that

large-scale and dynamic distributed systems have strong

similarities to some of the biological environments. This makes

it possible to abstract away design patterns from biological

systems and to apply them in distributed systems. They did not

extract design patterns from software engineering practice, as it

is normally done. Instead, they extracted design patterns from

biology and argued that these can be applied fruitfully in

distributed systems. In [7] Pree’s meta patterns are used to

represent the common properties of design patterns as a part of

the detection conditions.

A template matching method [8] from computer vision has also

been applied by calculating the normalized cross correlation

between pattern matrix and system matrix. Graph theory [9-12]

has also been applied in detection of design patterns by

ascertaining similarity between the classes (vertices) in

different systems (graphs) using the similarity score and

iterative algorithm. Kleinberg [11] proposed link analysis

method to find the main hub and source nodes for web pages.

Blondel [10] generalized this idea to an iterative algorithm for

computing the similarity score for any two vertices's. This

similarity score algorithm for design pattern detection has been

applied in [9] by encoding the source code and design patterns

into different feature matrices. Kramer and Prechelt [13] have

proposed an approach and developed a system, called Pat, to

localize instances of structural design patterns, extracting

design information from a CASE tool repository and using

Prolog facts to represent it and rules to express patterns.

Antoniol et al [14] proposed a conservative approach, based on

a multi-stage reduction strategy, using software metrics and

structural properties to extract structural design patterns from

OO design or code. Code and design are mapped into an

intermediate representation, called Abstract Object Language.

Antoniol et al [15] presented a approach in which a design

pattern is represented as a tuple of classes and relations among

classes. OO software metrics are used to determine pattern

constituents candidate sets to avoid combinatorial explosion in

checking all possible class combinations. Pattern structure is

then exploited to further reduce the search space. Shull, Melo

and Basili [16] have developed an inductive method to help

discovering custom and domain-specific design patterns in

existing OO software systems. The method however is

performed manually, although it could be greatly assisted by

tools. Different approaches, exploiting software metrics, were

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

19

used in previous works to automatically detect design concepts

and function clones [17] in large software systems.

Bergenti et al. [18] presented a system called IDEA (Interactive

DEsign Assistant). IDEA is an interactive design assistant for

software architects meant for automating the task of finding

and improving the realizations of design patterns. IDEA is

capable of automatically (i) finding the patterns employed in a

UML diagram and (ii) producing critiques about these patterns.

The core of IDEA is the module that automatically detects the

pattern realizations found in the model that the architect is

producing. When this module finds a pattern realization, a set

of design rules are verified to test if the design could be

improved. Any violation to these rules fires a critique that is

proposed to the engineer as a possible design improvement.

Currently, a prototypal [18] implementation of IDEA is

integrated with two popular CASE tools.

Stencel et al. [19] presented a method that is able to detect

many nonstandard implementation variants of design patterns.

They presented its proof-of-concept implementation and also

compared its efficiency to other state-of-the-art detection tools.

The presented method is customizable. An analyst can

introduce a new pattern retrieval query or modify an existing

one and then repeat the detection using the results of earlier

source code analysis stored in a relational database. Dong et. al.

[20] presented a novel approach to discovering design patterns

by defining the structural characteristics of each design pattern

in terms of weight and matrix. Their discovery process includes

several analysis phases.

Their approach is based on the XMI standard so that it is

compatible with other techniques following such standard.

They also develop a toolkit to support their approach.

Francesca et. al. [21] described an approach to design pattern

detection using supervised classification and data mining

techniques based on sub-components, and summarized the

results they obtained on behavioural Design Patterns. Their

Experiments with neural networks showed some encouraging

results, but their instability led them to decision of employment

of different techniques. Jing et. al. [22] presented some

experiments on design pattern discovery from open-source

systems using the tool they developed for design patterns

detection: DP-Miner. In particular, their experiments discover

the Adapter, Bridge, Strategy, and Composite patterns from the

Java.AWT, JUnit, JEdit, and JHotDraw systems and

experimental results show that design patterns have been

widely applied in these systems and can also be recovered. In

addition, they compared their experimental results with those

of others and found several discrepancies. They analysed this

issue and discussed possible reasons for the discrepancies.

More importantly, they argue for benchmarks for design

pattern discovery.

Damir et. al. [23] presented ontology-based architecture for

pattern recognition in the context of static source code analysis.

The proposed system has three subsystems: parser, OWL

ontologies and analyser. The parser subsystem translates the

input code to AST that is constructed as an XML tree. The

OWL ontologies define code patterns and general

programming concepts. The analyser subsystem constructs

instances of the input code as ontology individuals and asks the

reasoned to classify them. The recognition system is

envisioned as a framework that can be used as a stand-alone

utility, or as a subsystem for various larger systems, such as a

compiler front end or IDE plug-ins. There are many other

techniques that have been proposed earlier. The main problems

encountered in using the above mentioned techniques are

related to scalability, to many false positive results, and to the

impossibility to find several design patterns; hence we decided

to explore the problem and trying to overcome some of the

mentioned or encountered difficulties.

3. PROPOSED APPROACH

The existing approaches suffer from various anomalies and

none of the existing software based on reverse taxonomy is

able to detect the entire static structural design pattern.

A. Proposed Architecture of Design Pattern Detection:

Figure 3.1: Architecture of design pattern detection

According to my proposed architecture the source code is

analyzed and apply reverse engineering of java source code

with the help of Star UML/Rational Rose tool to find out the

class diagram from source code and using export XMI feature

it can be exported into XMI file which contain the structural

information which is required by the structural analysis phase

for detecting design pattern.

One important tool “SDMetrics”, the quality measurement tool

for UML™ designs through which we can easily calculate all

the structural information of different classes and packages

stored in XML file and the stored in tab separated text file.

B. Design of the system

Figure 3.2: Use case diagram

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

20

Figure 3.3: Activity diagram

C. Steps Required for Design Pattern Detection and Sub

Matrix Matching Algorithm:

 Generation of XML/XMI file from java source code

through some UML design tool.

 Extraction and `Calculation of structural

information's from XML file through SD Metrics

tool.

 Calculation of weights of all classes used in java

source code and generation of n × n system matrix

and stored them as sparse when required.

 Optimization of weights to prevent overflow problem.

 Candidate design pattern are also encoded into

another m × m matrix.

 Matching of optimized weights of n- dimensional

system matrix with m-dimensional candidate design

pattern.

 Also matching of candidate design pattern relation

matrix (i.e. association, generalization) with relation

matrix of system matrix using binary sub matrix

matching algorithm.

In this way, the system design information is represented into a

two dimensional n × n data matrix where n is the cardinality of

classes in the system. Similarly, the information in a candidate

design pattern is also represented into another m × m matrix

where m is the cardinality of involved classes in the design

pattern. If the system design matrix contains so many

unchanged entries we stored the n × n and m × m matrix and as

sparse and apply sparse matrix algorithm. The identification of

candidate design pattern is therefore reduced into the matching

of the two matrices.

Once we calculated the optimized weight, association and

generalization binary matrix from the XMI file of the java code

we can examine whether a particular class satisfies the

requirements of a candidate design pattern by matching the

optimized weight and binary matrix of a design pattern with

those of a system design. If the optimized weights and binary

matrix of structured classes of software system is integral

multiples of those of the respective classes of a candidate

design pattern, this group of interacting classes is

acknowledged as a candidate instance of the design pattern.

Besides weight and matrix, we check class type, i.e., if it is an

interface, an abstract or a concrete class. Some design patterns

may require their participating classes to be of certain types. If

we can find a group of such classes, each of which satisfies a

particular role of a design pattern, we record them as an

instance of that design pattern. Modules that generate data

should be separated from a module that consumes data to

increase modifiability of system because changes are often

confines to either side.

To generate the 2D matrix for a system design and a design

pattern we follow the following rules:

 Initially the matrix is represents as n × n where n is

the number of classes involved. Each row and

column represents a class arranged in the symmetric

order, i.e., row i and column i must have the same

class name. Each cell initially has value 1.

 Multiply the value of cell (i, j) by prime number 5 if

each class i and class j has association relationship

with each other.

 Multiply the value of cell (i, j) by prime number 7 if

each class i and class j has generalization relationship

with each other.

 Multiply the value of cell (i, j) by prime number 11,

if each class i and class j has dependency relationship

with each other.

 Multiply the value of cell (i, j) by prime number 13,

if each class i and class j has dependency relationship

with each other.

TABLE1:

PRIME NUMBERS OF STRUCTURAL ELEMENTS

Structural Elements
Prime Number

Value

Attribute 2

Method 3

Association 5

Generalization 7

Dependency 11

Aggregation 13

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

21

Formula for calculation of weight of a class is:

 W= wa × wm × was × w g × w d × wag

 wa = 2(number of attributes in the class)

 wm = 3(number of methods in the class)

 was = 5(number of Association relationship of the class)

 wg= 7(number of generalization relationship of the class)

 wd = 11(number of dependency relationship of the class)

 wag= 13(number of aggregation relationship of the class)

As from table we assign lower prime numbers to attributes,

method since in any class there is more number of attributes

and methods. If we assign more prime value then problem of

overflow may occur very often. To avoid such overflow we

will associate low prime number to more structural element in

class.

4. ILLUSTRATION

Here we illustrate the Generalization and Association matrix of

bridge design pattern

Abstraction

+Operation()

RefinedAbstraction

Implementor

+OperationImp()

ConcreteImplementor

+imp

Figure 4.1: Class diagram of bridge design pattern

TABLE 4.1:

CLASSES AND ITS CALCULATED WEIGHT USING SD METRICS

TOOL

Similarly we can generate the association, generalization

matrix of all the existing design pattern.

5. RESULT AND FUTURE SCOPE

In this dissertation, we have proposed the new architecture of

Automatic Detection of Software design pattern for reverse

engineering from java source code, along with partial

implementation of the system by converting the java source

into higher level of abstraction. The design is quite general,

modifiable and flexible, so that it can be merged with similar

other legacy systems. The matrix based approach along with

classification of design pattern based on reverse taxonomy

shows good results in terms of reduced search space and

complexity of detection process. Our generated solution is

more accurate and effective since I have used the brute force

search method for binary sub matrix matching of design pattern

from system matrix generated from java source code along

with matching of weight and its matrix. The advantage of brute

force or exhaustive search method is that it simple to

implement and always shows the solutions if it exists.

This project is helpful in the mining of design patterns purpose

in the following manner:

 Contribution to area of software maintenance of

existing program, component and legacy system.

 Solves the specific design problem of existing legacy

software and render conventional and object oriented

design better, flexible, elegant and generally

extendable.

 It also helps for novices to learn about the

functionality, object interaction, and to understand

the good object oriented design-intend of the pre-

developed software.

There are many issues that requires further attention to

resolved them amongst them are to find out suitable

architecture and method to detect the rest of the patterns based

on reverse engineering i.e. dynamic behaviour and

implementation-specific. Space and run time complexity can be

further reduce if we apply chain code algorithm for binary sub

matrix matching can be applied instead of brute force method.

It is generally difficult to separate aggregation from association

in reverse engineering processes from source code since they

differ at semantic level.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

22

6. REFERENCES

[1] Charles Rich, Linda M. Wills, "Recognizing a Program's

Design: A Graph-Parsing Approach," IEEE Software, vol.

7, no. 1, pp. 82-89, Jan./Feb. 1990, doi:10.1109/52.43053.

[2] Linda Mary Wills, Using Attributed Flow Graph Parsing

to Recognize Clichés in Programs In Proceedings of the

International Workshop on Graph Grammars and Their

Application to Computer Science, 1996.

[3] L. Wills, Automated program recognition by graph

parsing, Technical Report 1358, MIT Artificial

Intelligence Lab, July 1992, PhD Thesis.

[4] Michael Siff and Thomas Reps, Identifying Modules via

Concept Analysis, IEEE transaction on software

engineering, Vol. 25, No. 6, 1999, pp 749-768

[5] R. Ferenc, A. beszedes, l. fulop and j. lele, design pattern,

mining enhanced by machine learning, 21st ieee,

international conference on software maintenance, 2005.

[6] Ozalp Babaoglu, Geoffrey Canright, Andreas Deutsch,

Gianni A. Di Caro, Frederick Ducatelle, Luca M.

Gambardella, Niloy Ganguly, M Ark Jelasity, Roberto

Montemanni, Alberto Montresor and Tore Urnes, design

patterns from biology for distributed computing, ACM, pp

1-40, 2006.

[7] Shinpei hayashi, junya katada, ryota sakamoto, takashi

kobayashi and motoshi saeki, design pattern detection by

using meta patterns, special section on knowledge-based

software eengineering, IEICE Trans. Inf. & Syst.,

Vol.E91–D, No.4 April 2008

[8] Jing Dong, Yongtao Sun and Yajing Zhao, Design pattern

detection by template matching, Proceedings of the 2008

ACM symposium on Applied computing, Pages 765-769,

2008

[9] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.

Halkidis, Design Pattern Detection Using Similarity

Scoring, IEEE transaction on software engineering, 32(11),

2006.

[10] V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and

P. Van Dooren, A Measure of Similarity between Graph

Vertices: Applications to Synonym Extraction and Web

Searching, SIAM Rev., vol. 46, no. 4, pp. 647-666, 2004.

[11] J.M. Kleinberg, Authoritative Sources in a Hyperlinked

Environment, J. ACM, vol.46, no. 5, pp. 604-632, Sept.

1999.

[12] Niklas Pettersson and Welf Lowe, A Non-conservative

Approach to Software Pattern Detection, 15th IEEE

International Conference on Program Comprehension

(ICPC'07), IEEE Computer Society, 2007

[13] Christian Kramer and Lutz Prechelt, Design Recovery by

Automated Search for Structural Design Patterns in

Object-Oriented Software, Proc. Working Conf. on

Reverse Engineering IEEE CS press, Monterey,

November 1996.

[14] G. Antoniol, R. Fiutem and L. Cristoforetti, Design

Pattern Recovery in Object-Oriented Software, Program

Comprehension, IWPC '98. Proceedings., 6th

International Workshop on, 153-160, 1998

[15] G. Antoniol, R. Fiutem and L. Cristoforetti, Using Metrics

to Identify Design Patterns in Object-Oriented Software,

IEEE Computer Society, 1998.

[16] F. Shull, W. L. Melo, and V. R. Basili. An inductive

method for discovering design patterns from

objectoriented software systems. Technical report,

University of Maryland, Computer Science Department,

College Park, MD, 20742 USA, Oct 1996.

[17] K. Kontogiannis, R. De Mori, R. Bernstein, M. Galler,

and Ettore Merlo. Pattern matching for clone and concept

detection. Journal of Automated Software Engineering,

March 1996.

[18] Federico Bergenti and Agostino Poggi, Improving UML

Designs Using Automatic Design Pattern Detection, In

Proc. 12th. International Conference on Software

Engineering and Knowledge Engineering, 2000.

[19] Krzysztof Stencel and Patrycja W egrzynowicz, Detection

of Diverse Design Pattern Variants, 15th Asia-Pacific

Software Engineering Conference, IEEE Computer

Society, 2008.

[20] Jing Dong, Dushyant S. Lad, Yajing Zhao, DP-Miner:

Design Pattern Discovery Using Matrix, Proceedings of

the 14th Annual IEEE International Conference and

Workshops on the Engineering of Computer-Based

Systems, IEEE Computer Society, 2007.

[21] Francesca Arcelli, Luca Cristina, Enhancing Software

Evolution through Design Pattern Detection, Third IEEE

Workshop on Software Evolvability, IEEE Computer

Society, 2007

[22] Jing Dong, Yajing Zhao, Experiments on Design Pattern

Discovery, Third International Workshop on Predictor

Models in Software Engineering (PROMISE'07), IEEE

Computer Society, 2007.

[23] Damir Kirasic and Danko Basch, Ontology-Based Design

Pattern Recognition, Volume 5177/2008, Springer Berlin /

Heidelberg, pp 384-393, 2008.

[24] Sven Wenzel, Udo Kelter, Model-Driven Design Pattern

Detection Using Difference Calculation.

[25] http://pi.informatik.uni-

siegen.de/Mitarbeiter/wenzel/publications/dpd4re06.pdf

[26] Lothar Wendehals and Alessandro Orso, Recognizing

Behavioral Patterns at Runtime using Finite Automata,

ACM, 2006.

http://pi.informatik.uni-siegen.de/Mitarbeiter/wenzel/publications/dpd4re06.pdf
http://pi.informatik.uni-siegen.de/Mitarbeiter/wenzel/publications/dpd4re06.pdf

