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ABSTRACT 

A smart structure cantilever beam is a distributed parameter 

system that employs sensors and actuators at different finite 

element locations on the beam and makes use of controllers that 

respond to inputs obtained from the sensors.     

The paper uses the mathematical modeling of the smart structure 

using finite element method and Euler Bernoulli beam 

assumptions. A state space model of the beam as a Single Input 

Single Output (SISO) system with two vibratory modes is 

obtained and the Eigenstructure assignment for linear system 

with output feedback is studied based on which a controller is 

designed for two vibratory modes. The effectiveness of the 

proposed controller is established by the simulation of closed-

loop system in MATLAB and the results show that the controller 

stabilizes SISO system with a remarkable reduction of settling 

time of the impulse response. 

Keywords: Smart Structure, eigenstructure assignment, finite 

element methodology, output feedback controller. 

1. INTRODUCTION 

A. Smart Structures 

Modeling and control of smart structures has received lot of 

attention in the past decade [1], [2]. This is due to the fact that the 

beam is a fundamental element of many engineering structures 

and its characteristics are well understood [3], [4]. A Smart 

Structure is a distributed parameter flexible cantilever aluminium 

beam with piezoelectric patches symmetrically bonded on both 

sides to provide structural bending. Pair of piezoelectric patches 

is used for both sensing and actuating purposes. Outputs obtained 

from the sensors are processed by the controller designed to 

generate actuating signals to the actuators. This approach ensures 

that the smart structure takes a corrective action to disturbances 

and structural deformations due to wind, stress and other forces 

that may act on the system.  

A diagrammatic representation of a controlled smart structure is 

depicted in fig. 1. 

 

Fig. 1.  Block diagram of a smart structure 

 

B.  Finite Element Model of the Smart Structure 

Basically, the Finite Element method consists of piecewise 

application of classical variational methods to smaller and 

simpler sub domains called finite elements, connected to each 

other in a finite number of points called nodes [5] as shown in fig. 

2. The sensor-actuator dynamics is also included in this context 

while obtaining the model. These values are subsequently used to 

realize the state space model of the beam, which is used for the 

controller design [4], [5]. This results in a large dimensional 

system i.e. a higher order system, typically 4th or higher, 

depending upon the vibratory modes.  

 

Fig. 2.  Smart structure divided into 4 finite elements  

2. REVIEW OF EIGEN STRUCTURE 

ASSIGNMENT TECHNIQUE 

Eigenstructure assignment is a design technique which may be 

used to assign the entire eigenstructure (eigenvalues and 

eigenvector) of a closed loop linear system via a constant gain 

full state feedback or output feedback control law. It is a useful 

tool that allows the designer to satisfy damping, settling time, and 

mode decoupling specifications directly by choosing eigenvalues 

and eigenvectors. For a linear time-invariant system the 

governing equations using the standard notations are given by, 

)()()( tButAxtx 
                                             (1)           

)()( tCxty   

where x Є 
n   the state vector , u Є 

m    the control input 

vector,  y Є 
r  the output vector, and A Є 

nxn ..   and  B Є 
mxn ..   and C Є 

nxr ..  the system matrices respectively.  Each 

of the eigenvalues/vectors of matrix A satisfy the identity, 

iii vAv 
                                                        (2) 

where λi is the ith eigenvalue and vi is the corresponding 

eigenvector. The free transient response of the system to a non-

zero initial condition x0  is given by the equation [6], 

0

.)( xetx tA
                                              (3)                                 
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Assuming the eigenvalues of A to be distinct, a non-singular 

modal matrix Φ consisting of eigenvector can be found, where 

 nvvvv ..321
                                    (4)                     

and  

1 A  

where Λ is the diagonal matrix of eigenvalues. The equation 

(2.3.4) can now be written as, 
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By defining, 
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Substituting the above equations in Equation (4), we get, 
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From the above equation it can be interpreted that every solution 

representing a free response of system in equation (6), depends 

on three quantities:- a) Eigenvalues, which determine the  

decay/growth rate of response, b) Eigenvectors, which determines 

the shape of the response, c) Initial condition, which determines 

the degree to which each mode will participate in the free 

response. 

More recently, eigenvalue assignment via state feedback has been 

studied more deeply by many researchers. Full state feedback 

requires that all of the state variables are measurable, which is 

often not possible. For some system in which states are not 

measurable, full state feedback is not practical and in such cases 

the output feedback is used [7], [8]. 

Output feedback based control algorithms are more practical 

compared to state feedback based algorithms  

[9], [10]. Thus, Eigenstructure assignment by output feedback has 

been a focal point in multivariable system, as discussed by many 

researchers [9], [12], [13]. Davison showed that if the system is 

controllable and if rank [C] = r, then a linear feedback control 

law of the form u(t) = F y(t) , can always be found so that “r” 

eigenvalues of the closed loop system matrix A+BFC, are 

arbitrarily close (but not necessarily equal ) to the “r” pre-

assigned values. 

3. EIGENSTURCTURE ASSIGNEMENT 

BASED OUTPUT FEEDBACK 

CONTROLLER DESIGN 

Controller design consists, essentially, of the following steps: a) 

Choose a set (or sets) of possible closed-loop eigenvalues (or 

poles). b) Compute the associated so called allowable eigenvector 

subspace, which describe the freedom available for closed-loop 

eigenvector assignment. c) Select specific eigenvectors from the 

allowable eigenvector subspaces according to some design 

strategies. d) Calculate a control law, appropriate to the chosen 

eigenstructure. 

In many practical situations, complete specification of vid is 

neither required or it is unknown, but rather the designer is 

interested only in certain elements of the eigenvector. Thus, 

assumes that it has the following structure, 

 Tniiji

d

i vxxvxxxxvv 1
              

(7) 

where ijv
 are designer specified components and x is an 

unspecified components. Define, as shown by Andry et al. [4], a 

reordering operation is done so that, 
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where il  is a vector of specified components of 

d

iv
 and id

 

ia a vector of unspecified components of

d
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. The rows of the 

matrix ( λi I  - A )-1B  are also reordered to conform with the 

reordered components of  
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Then as shown by Andry et al. [14], the achievable 

eigenvector 

d

iv
 is given by 

iii

a

i lLBAIv *1 ~
)(  

                                             (10) 

where (.)* denotes the appropriate pseudoinverse of (.). The 

output feedback gain matrix using eigenstructure assignment is 

described by, 

 
1

1 ))((  CVVAZF                                               (11) 

where A1 is the first m rows of the matrix A in equation (1), V 

is the matrix whose columns are the r achievable eigenvectors, Z 

is a matrix whose columns are λizi where the ith eigenvector vi is 

partitioned as, 
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  , with zi an (m x 1) vector and C is the output 

matrix in equation (1) 

4. ANALYSIS OF AN SISO SYSTEM WITH 

TWO VIBRATORY MODES AND 

RESULTS 

The SISO Smart Flexible Cantilever beam is divided into 4 finite 

elements (FE) and the sensor actuator pair is bonded to the master 

structure as a collocated pair at one position only, says the fixed 

end (see Fig. 2) [3]. The state space model of this smart 

cantilever beam with sensor actuator at FE position 4 for two 

vibratory modes as shown in Fig.2 is given by [3],

  
;  
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; 
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and          
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For this system the open loop eigenvalues are 

λ1= -1.27+j158,                  λ2= -1.27-j158, 

λ3= -0.195e-1+j19.8,          λ4= -0.195e-1-j19.8 

Here rank [C] = 1, i.e. we will be able to modify one closed loop 

eigenvalue. The chosen desired closed loop eigenvector is, 

                                 








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
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1

x
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where x defines unspecified condition. The feedback gain of 

the controller is computed for different desired eigenvalues as 

shown in Table.1. The open loop and closed loop impulse 

response for the above desired eigenvalues is shown below in 

Fig.3, Fig.4, Fig.5 and Fig.6. 

5. RESULTS: IMPULSE RESPONSE 

 

Fig. 3.  Open-loop response of SISO system 

 

Fig. 4. Closed-loop Impulse response with -7 desired 

eigenvalues 

 

Fig. 5.  Closed-loop Impulse response with -18 as desired  

eigenvalue 

 

      Fig. 6.  Closed-loop Impulse response with -25 as desired  

Eigenvalue 

TABLE I  

ANALYSIS WITH DIFFERENT DESIRED EIGENVALUES  

FOR A SISO SMART SYSTEM WITH TWO VIBRATORY MODES 

 

Analysis of the above results show that the system clearly 

exhibits  moderate  settling time but with low impulse response 

settling time of  0.04s  for the system with desired eigenvalue of  

(-7).  Correlating this with the gain of the controller, it is 

observed that the better results are obtained with increased gain 

of the controller. 
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6. CONCLUSION 

Controllers have been designed for the smart flexible cantilever 

beam using the eigenstructure assignment for linear system with 

output feedback control technique for SISO system to suppress 

the first two vibratory modes. The flexible cantilever beam was 

divided into 4 elements system and the sensor / actuator pairs 

were bonded to the structure at finite element 4(free end). The 

impulse responses are obtained for various desired eigenvalues. 

From the simulation results, it is observed that modeling a smart 

structure by including the sensor / actuator mass and stiffness and 

its location on the beam at the free end introduces a considerable 

change in the system's structural vibration characteristics. Thus, 

unlike static output feedback, the output feedback control 

technique always guarantees the stability of the closed loop 

control system. The results are verified from Figs. 3-6 and in 

section IV. 

It has been observed that the closed-loop characteristics of a 

SISO system with two vibratory modes can be improved by using 

eigenstructure assignment technique. The open-loop behavior of 

SISO smart beam element is unstable and our controller design 

offers a stable behavior with a realistic settling time for selected 

band of desired eigenvalues. The open-loop and the closed-loop 

system responses with the controller are compared and it is seen 

that the vibrations die out very quickly with high controller gain. 

This study gives the application designer a confidence to build a 

closed-loop controller for higher order vibratory modes by a 

judicious choice of desired eigenvalues and controller gain for a 

good settling time behaviour. 
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