
International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

21

Compression of FPGA Bit Stream using Modified
Decode Aware Placement Algorithm

R.Saranya

A.S.L.Pauls College of
Engineering and Technology

Coimbatore

 S.Kousalya Devi
A.S.L.Pauls College of

Engineering and Technology
Coimbatore

V.Lakshmi Prabha, Ph.D
Government College of

Technology
Coimbatore

ABSTRACT

FPGA uses a promising technology for developing high-

performance embedded systems. Reconfiguration systems

widely uses Field Programmable Gate Arrays and configured

using bitstream often loaded from memory. The Bitstream

Compression and Decompression technique reduce the size of

the bitstream and also limits the memory constraint. The

Compression mechanism improves the access bandwidth for

communication and thereby decreases the reconfiguration time.

The Existing Approach implements the combination of

techniques Dictionary Selection, Bitmask Selection and Run

Length Encoding with Decode-aware Placement technique.

The drawback of this approach is the extent of continuous

variation of bitstream in the Run Length Encoding.

The proposed work of this paper is Golomb Encoding in place

of Runlength encoding known as modified Decode Aware

Compression method. Golomb Encoding is a compression

technique which is capable of compressing larger size data into

smaller size data. In addition, the achieved Compression Ratio

is independent of the decompression hardware. It depends only

on the entropy of the configuration bitstream. Finally, a time to

configure FPGA depends only on the data rate of the

configuration mechanism. The speed of a memory stores the

configuration data, and the size of the configuration bit-stream.

Index Terms: Bitmask based Compression,

decompression hardware, Golomb coding, Decode aware

placement algorithm.

1. INTRODUCTION
FPGA-based embedded system uses novel compression

technique to reduce the memory requirements for storing

configuration bitstream which limits the capacity and

bandwidth. The reconfigurable systems and application

specific integrated circuits are commonly uses FPGAs, to

reduce the delay in reconfiguration. There are few algorithms

that offer both efficient compression ratio and fast

decompression mechanisms. Figure 1 show the Standard Code

Compression Methodology. The Bitmask based code

compression encodes the original instruction into compressed

instruction. The decompression hardware decodes the

compressed bitstream from the memory to the outside buffer.

To measure the efficiency of bitstream compression,

Compression Ratio (CR) is wide used as a metric.

The compression ratio should be reduced for better

compression techniques.

In the work of this paper, Golomb coding is one of the lossless

data compression techniques. It is capable of compressing large

sized data into small sized data while still allowing the original

data to be reconstructed back after decompression.

Figure1: Standard Code Compression Methodology

The rest of the paper arranges as follows. Section 2 describes

the related work. Section 3 discusses the background

motivation of Golomb coding. Section 4 describes the decode-

aware compression techniques. Section 5 examines the

experimental results. At last, Section 6 concludes the paper.

2. RELATED WORK
Wolfe and Chanin et al. proposed the first compression

techniques for embedded processor using FPGA. [1], [4], [7]

reports the effort related to FPGA configuration compression.

The coding of compression technique in hardware description

language is synthesize into schematic diagram as a logic gates

in the design. The schematic diagram interconnects these gates

to fit into the Look up Tables in a Field Programmable Gate

Array board. To connect the gates together while opening or

closing the switches in the routing matrices, the Place and

Route tool assign the gate collections to a Configuration Logic

Blocks. The bitstream generated is downloaded into Xilinx

FPGA.

In contrast, the compressed bitstream techniques only access

the configuration memory linearly during decompression. In

FPGA, split the given bitstream sequence into a small word of

 IP Core

 Fetch and Execute

Compressed code memory

 Compression Algorithm

Decompression Mechanism

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

22

8-bit. Then compress the bitstream with statistical methods

such as Dictionary, Bitmask and Golomb coding techniques.

The compression ratio improves, by combining the techniques

together. During decompression, the compressed bitstream can

be decoded capably without complex hardware.

3. BACKGROUND MOTIVATION
The existing bitstream compression technique called Run

length encoding addressed a problem of continuous variation in

terms of 1’s and 0’s. To overcome the problem, a new

technique proposed called Golomb Coding. Assume a

parameter value s for a given data set that decides variable

length code structure in terms of compression efficiency. Split

the group as G1, G2, G3, and so on according to the parameter

fixed. The Prefix represents the (k-1) number of one’s followed

by zero (i.e.) attach the binary value 1 in front of the prefix

value of G1=0. While each member of the group is given a tail,

which is the binary representation of zero’s until (s–1). Then

grouping the prefix and tail to produce a codeword. Table 1

describes the run length encoding and Golomb coding

technique. According to the table 1, Split the dataset which

shows the runs of one’s awaiting the code is finished with a

zero is formed. So to encode the Run length by Golomb

coding we used a codeword to replace it. Binary strings can be

divided into subsets of binary strings and replacing the subsets

with the equivalent codeword.

Table 1: Determination of Run Length and Golomb

 Coding

Dataset 10 1111110 1110 111110 110 0

Subset 10 1111110 1110 111110 110 0

Runlength 1 6 3 5 2 0

Golomb 101 0110 111 0101 110 100

4. DECODE - AWARE BITSTREAM

 COMPRESSION
The five important steps in the decode-aware compression

framework are:

 1) Dictionary selection,

 2) Bitmask selection,

 3) Golomb Coding compression,

 4) Decode-aware placement, and

 5) Decompression Engine.

To compress the configuration bitstream, we introduced a new

technique called Dictionary, Bitmask, and Golomb coding on

the compression. After compression, the compressed bitstream

in the memory are transferred into decode-aware placement

technique. Decode aware placement algorithm is used to place

the compressed bitstream into memory. The decompression

engine gathers all the compressed bitstream from the memory

and produces an original configuration bitstream, during

Dynamic Encoding.

Modified Decode-aware Bitstream Compression Algorithm

Input: Input bitstream

Output: Compressed bitstream placed in Memory.

Step 1: Split the input bitstream into 8-bit bitstream.

Step 2: Perform dictionary selection.

Step 3: Perform bitmask pattern selection.

Step 4: Compress the 8-bit code into code sequence

 using Bitmask and Golomb coding.

Step 5: Perform decode aware placement technique.

Figure2: Decode-aware bitstream compression framework

4.1 Dictionary Selection
Dictionary-based code compression techniques provide both

good compression ratio and fast decompression mechanism.

 0 – Compressed

 1 – Uncompressed

 00000001 − − − − −> 0 1

 10000001 − − − − −> 1 1

 00000001 − − − − −> 0 1

 00000000 − − − − −> 0 0

 00000001 − − − − −> 0 1

 00000000 − − − − −> 0 0

 00101101 − − − − −> 1 00101101

 00100000 − − − − −> 1 00100000

 Original Compressed program Index Content

 Program 0

 1

 Dictionary

Figure 3: Dictionary based code compression

The Dictionary corresponds to configuration data and the index

corresponds to the way the dictionary is read in order to

reconstruct a configuration bit-stream. The Dictionary and

Index are derived based on the LZW compression algorithm.

Figure 3 shows the example of Dictionary based code

00000000

00000001

Dictionary Selection

Bitmask

Selection

N

Golomb

Encoding

 CODING

Placement Algorithm

Compressed Program

Original Bitstream

Decompression Engine

Original Bitstream

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

23

compression. Initially assign an instruction sequence as an

input. Split the bitstream into 8-bits. If the instruction contains

repeated occurrence, then replace the instruction by a

codeword that points to index of the dictionary. The

compressed program consists of both code words and

uncompressed instructions.

4.2 Bitmask Selection
The Bitmask-based code compression technique improves the

standard dictionary-based code compression technique by

considering mismatches. Figure 4 shows the example of

Bitmask-based code compression.

The three possible cases in bitmask are:

1) The first bit in the compressed program represents the

compressed (0) or uncompressed bitstream (1). The

second bit indicates the compressed using bitmask

resolve (0) or not (1). The last bit in the program

indicates the dictionary index.

 0 – Compressed

 1 – Uncompressed 0 – Resolve mismatch

 1 – No action

 00000001− − − − − > 0 1 1

 10000001 − − − − −> 1 0 00 00 1

 00000001 − − − − −> 0 1 1

 00000000 − − − − −> 0 1 0

 00000001 − − − − −> 0 1 1

 00000000 − − − − −> 0 1 0

 00101101 − − − − −> 1 00101101

 00100000 − − − − −> 1 0 01 00 0

 Original bitmask position bitmask value

 Program Compressed program

 Content

 Index

 0

 1

 Dictionary

Figure 4: Bitmask Based Compression

2) While using the bitmask, the compressed bitstream

requires only 7-bits. The first bit represents the

compressed or uncompressed bitstream and Bitmask

action represents the second bit. The next 4-bit describes

the Bitmask Position and Bitmask Pattern. The last bit

represents the Dictionary Index.

3) The Uncompressed bitstream represents that there is

more than 1-bit changes.

4.3 Golomb Coding
The configuration bitstream usually contains step by step

repeating bit sequences. Golomb Coding is a new technique

used instead of Run Length encoding to avoid continuous

variation during compression. Golomb Coding (GC) yields a

better compression results than bitmask-based code

compression.

Golomb coding [7] comes under lossless data compression

technique and reduces the code redundancy. It is competent of

compressing larger sized data into a smaller sized data while

still allowing the original data to be reconstructed back after

decompression.

 1

0

 False

 True

Figure 5: Golomb Encoder flowchart

The number of 1's in the data-set controls the tail count. As in

figure 5, If the bitstream examine the zero, then increase the

tail count proportionally until it reaches the parameter m and

produce the output as '1'. If the input data is ‘1’, the algorithm

will generate a ‘0’ which acts as the divider between the prefix

and the tail, and output the current tail count as the tail of the

encoded string. The algorithm will then reset the tail count and

waits for the next input data.

4.4 Decode-aware Placement Algorithm
The placement algorithm places all bitmask codes in the

memory so that they can be compressed using the efficient

decompression hardware. First, split the original single

Variable Length Coding bitstream into multiple Fixed Length

Coding bitstream for storage. Bitmask decoding generates the

configuration bitstream by buffering the FLC bitstream

separately during decompression. When compared to VLC

bitstream, the buffering circuitry for FLC bitstream is much

00000000

00000001

Start

Compressed Dataset

Split the runs of one’s ended with zero

Take a set of runs of one’s

Initialize the Tail Count=0

Bitstream

Increase the tail count

Generate ‘1’

Tail Count

= m

Generate ‘0’

Generate ‘m’

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

24

simpler. While adding multiple FLC buffers on the

decompression engine, the performance level still increased.

Definition 1: Power-Two n-bit stream (“PT-n stream” for

short) is FLC stream of n-bit codes, where n is a power of two

such as 20, 21, 22, etc. While each code in a PT-n stream has

the similar length. Subsequently the shift distances are stable

when a PT-n stream is buffered.

4.5 Decompression Engine
The decompression engine is a hardware component used to

decode the compressed configuration bitstream and feed the

uncompressed bitstream to the configuration unit in FPGAs. A

decompression engine divided into two parts.

1. Buffer and align the codes fetched from the memory by

using buffering circuitry.

2. Using multiple decoders, decompression engine generates

configuration bitstream.

The figure 6 shows the structure of decompression engine for

8-bit memory. The working of “Assemble Buffer with a Left

Shifter Array” is to use an array of left shift registers to buffer

the power-two bitstream separately. Bitmask-based

compression represents the first two bits of a code as (is-

compressed and is-bitmask flags) and checks the code length.

The bitmask and Golomb decoder produce an uncompressed

data by fetching the compressed data from an assemble buffer.

When the shifter becomes empty, the decompression algorithm

alerts the incoming memory lines to load the data correctly.

From the decompression algorithm, let the maximum code

length and maximum bandwidth be ‘l’ and ‘b’. Assemble

buffer directly receive the PT-b stream and contains log2 (b) +

2 shift register, including two 1-bit Compressed shift register,

Bitmask shift register used to buffer CS and BS. Log2 (b) shift

register SR-1, SR-2, …, SR-b/2 used to buffer streams PT-1,

PT-2, PT-4, .., PT-b/2. Each stream has the capacity of b bits

same as the memory bandwidth. The size of the assemble

buffer AB is l because AB only holds one code at a time.

Field Programmable Gate Array implements the Assemble

Buffer Left Shift Array requires less area and shorter critical

path length.

Figure 6: Decompression Engine.

5. EXPERIMENTAL RESULTS
In this section, experimental results are presented. Input

bitstream is compressed using Dictionary, bitmask based

compression and Golomb Coding technique. The compressed

bitstream is stored in the main memory and retrieved back as

an original input using decompression hardware. Here, these

techniques were simulated in Modelsim and synthesized using

Xilinx. To get hold of a better Compression Ratio, we club the

compression performance with one another. Table 2 describes

the Compression Efficiency for Different Bitstream. The

compression ratio is obtained based on the difference between

original and compressed bitstream.

0

10

20

30

40

50

60

70

80

90

Bitmask

Bitmask+Dic

Bitmask+Dic+RLE

Bitmask+Dic+GLB

C
o

m
p

r
e
ss

io
n

 R
a

ti
o

C
o

m
p

r
e
ss

io
n

 R
a

ti
o

1 2 3 4 Bitstream

Figure 7: Compression Ratio for different bitstream

SR -2-2 bit

BR-1bit

CR-1bit

Output buffer

Bitmask

Decoder

Golomb

Decoder

 17-bit

Left Shift Array

 SR-4-4-bit

Compressed Bitstream

for 8-bit memory

Decompressed

Bitstream

Assemble Buffer

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

25

Table 2: Compression Efficiency for Different Bitstream

Figure 7 shows that the existing bitstream compression

techniques outcomes with 0 - 55% work of the compression

ratio. While the proposed method outfit that the compression

ratio improves from 0 - 45% compared to the existing work.

Thus, a smaller compression ratio implies a better compression

technique.

5. CONCLUSION
The work of this paper includes a novel configuration

compression technique. The purpose is to reduce memory

compulsorily to store configuration bitstream in FPGA-based

embedded systems. The existing configuration bitstream

techniques provide good compression ratio with slow or fast

decompression efficiency. In the proposed work, we comprise

Golomb coding technique instead of Run Length encoding.

Golomb coding of consecutive repetitive patterns is efficiently

combined with bitmask and dictionary based code

compression, to improve the compression ratio and

decompression efficiency. During decompression, to reduce the

hardware overhead we introduced a technique called placement

algorithm. It enables the compressed variable length coding

bitstream to be stored and buffered separately in the form of

multiple fixed length coding streams. The buffering circuitry

for fixed length coding will reduce the area and delay of the

decompression engine. As a result, the compression technique

improves the compression ratio up to 45%, while the

decompression engine operates at closest to the Field

Programmable Gate Array.

6. ACKNOWLEDGMENTS
I cordially thank my co-authors to complete my study of the

work.

7. REFERENCES
[1] Drisya. M. K and Senoj Joseph (2012), ‘Compression of

FPGA Bitstreams – A Comparsion,’ Bonfring

International Journal of Power Systems and Integrated

Circuits.

[2] Chetan Muthry, Prabhat Mishra, and Xiaoke Qin March

(2011), ‘Decoding – Aware Compression of FPGA

Bitstreams,’ IEEE Transactions on Very Large Scale

Integration (VLSI) Systems.

[3] Chetan Murthy and Prabhat Mishra (2009), ‘Lossless

Compression using Efficient Encoding of Bitmask,’ IEEE

Computer Society Annual Symposium on VLSI.

[4] Beckhoff. C, Koch. D and Teich. J (2007), ‘Bitstream

Decompression for High Speed FPGA Configuration from

Slow Memories,’ in Proc. ICFPT.

[5] Cotofana. J and Stefan. R (2008), ‘Bitstream compression

techniques for Virtex 4 FPGAs,’ in Proc. Int. Conf. Field

Program. Logic Appl.

[6] Dandalis. A, Prasanna. V. K (2005), ‘Configuration

compression for FPGA-based embedded systems,’ IEEE

Trans. Very Large Scale Integr. (VLSI) Syst.

[7] H’ng. G. H, Halim. Z. A and Salleh. M. F. M (2008),

‘Golomb Coding Implementation in FPGA,’

http://fke.utm.my/elektrika.

[8] Hauck. S and Wilson. W (1999), ‘Runlength compression

techniques for fpga configuration,’ in Proc. FCCM.

[9] Kanad Basu and Prabhat Mishra (2008), ‘A Novel Test-

Data Compression Technique using Application-Aware

Bitmask and Dictionary Selection Methods,’ Published by

ACM.

[10] Kanad Basu and Prabhat Mishra (2010), ‘Test Data

Compression Using Efficient Bitmask and Dictionary

Selection Methods,’ IEEE Trans. VLSI Syst.

[11] Li. L and Touba. N. A (2003), ‘Test data compression

using dictionaries with selective entries and fixed-length

indices,’ ACM Trans. Des. Autom. Electron. Syst.

[12] Mitra. T, Pan. J. H and W. F. Wong (2004),

‘Configuration bitstream compression for dynamically

reconfigurable FPGAs,’ in Proc. Int. Conf. Comput.-Aided

Design.

[13] Mishra. P and Seong. S. W (2006), ‘A Bitmask-Based

Code Compression Technique for Embedded Systems,’ in

Proc. ICCAD.

Compression

Techniques

Bitstream

1

Bitstream

2

Bitstream

3

Bitstream

4

Bitmask
20.3 40.6 37.5 46.8

Dictionary+

bitmask

51.6 43.7 43.7 53.1

Dictionary+

bitmask+

RLE

53.1 45.3 45.3 57.8

Dictionary+

bitmask+

Golomb

59.4 54.6 57.8 59.3

http://fke.utm.my/elektrika

