
International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

1

Interaction Fault Detection using Combinatorial

Interaction Testing and Random Testing

Gowtham.N,
PG Scholar,
Department of Information Technology,
Bannari Amman Institute of Technology,

ABSTRACT
Software product lines are the common trend in software

development which helps in reducing the development cost.

Mostly the interaction faults are very difficult to identify

during the process of debugging. By the use of combinatorial

testing a set of features can be identified and all small

combinations can be verified to a certain level only. By

introducing random testing can improve the accuracy and

ratio of t-wise fault detection. Through random testing can

acquire a higher level of improvements over the combinatorial

testing which will be under the budgetary limit of the product.

Random testing can provide minimum guarantees on the

probability of fault detection at any interaction level using the

set of theories. For example, random testing becomes even

more effective as the number of features increases and

converges toward equal effectiveness with combinatorial

testing. Given that combinatorial testing entails significant

computational overhead in the presence of hundreds or

thousands of features, the results suggest that there are

realistic scenarios in which random testing may outperform

combinatorial testing in large systems. Furthermore, in

common situations where test budgets are constrained and

unlike combinatorial testing, random testing can still provide

minimum guarantees on the probability of fault detection at

any interaction level. However, when constraints are present

among features, then random testing can fare arbitrarily worse

than combinatorial testing.

Index Terms:

Combinatorial testing, random testing, t-wise fault

1. INTRODUCTION
Software testing is a process of analyzing the effectiveness of

software. Testing has two objectives in order to determine if

the software performs as expected, which are to identify the

differences between existing and expected conditions, which

this differences are sometimes called „bugs‟, but it now can

this denotes a defect in the performance of either hardware or

software. Secondly is to enable the expected performance of

software to be determined before it is used for business

purposes and this type of testing is to determine whether the

right mix of software, hardware and personnel can satisfy the

business needs. Software testing process is important in

software development activities. Therefore, this industrial is

focused on software testing process that currently practices.

National Institute of software testing last estimated the annual

cost of software defects as approximately $59 billion. They

also suggest that approximately $22 billion can be saved

through more effective testing. Testers need to be more

thorough in testing, yet they need to perform testing within a

prescribed budget. Systematic approaches of combination

testing have been suggested to complement current testing

methods in order to improve rates of fault detection. Category

partitioning is a base of systematic approaches as finite values

(options) for parameters are identified for testing. Each of the

finite parameter-values may be tested at least once, in

specified combination together, or in exhaustive combination.

The simplest and least-thorough combination testing approach

is to test all values at least once. The most thorough is to

exhaustively test all parameter-value combinations. However,

exhaustive testing of all possible combinations is too

expensive for most systems. Testers may place constraints to

limit tests from category partitioning; however, this can be an

unsatisfactory solution when constraints are arbitrarily

selected to limit the number of tests. Combination strategies

may be a better solution to limiting tests as they

systematically test combinations of parameter-values across a

system. Combination testing has been applied with ad-hoc

methods, stochastic models, and combinatorial designs. Ad-

hoc methods include tests developed by hand in which testers

attempt to create representative tests to catch problems that

they anticipate. Anti-random testing attempts to provide tests

that minimize overlap using Cartesian products or Hamming

distance. An example of a stochastic model includes Markov

chains to simulate usage. Combinatorial designs have been

applied to test t-way interactions of parameter values.

As software testing process is important in software

development activities, and SBS system is also important for

core banking application, an intensive software testing process

is required to be developed and provided into this

organization. This section clearly discussed and summarized

every comparison study that being conducted on several

testing characteristic for SBS system. Finally, a proposed

Customized Software Testing Process (CSTP) is clearly

defined based on these comparison studies

Unsupervised learning methods such as clustering techniques

are a natural choice for analyzing software quality in the

absence of fault proneness labels. Clustering algorithms can

group the software modules according to the values of their

software metrics. The underlying software-engineering

assumption is that fault-prone software modules will have

similar software measurements and so will likely form

clusters. Similarly, not-fault-prone modules will likely group

together. When the clustering analysis is complete, a software

engineering expert inspects each cluster and labels it fault

prone or not fault prone.

Combination testing has been applied with ad-hoc methods,

stochastic models, and combinatorial designs. Ad-hoc

methods include tests developed by hand in which testers

attempt to create representative tests to catch problems that

they anticipate. Anti-random testing attempts to provide tests

Sengottuvelan.P, Ph.D.
Associate Professor,
Department of Information Technology,
Bannari Amman Institute of Technology,

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

2

that minimize overlap using Cartesian products or Hamming

distance usage modeling but do not systematically cover a

system.) The success of combination strategies hide upon

correct identification of parameters and their suitable values

for testing. Indeed, if parameters are missing, or category

partitioning does not select suitable values for parameters,

then any combination strategy may fail. Tester identifies this

threat early on since work is an extension of combination

testing work. The Quad tree algorithm [3] method depicts,

about various clustering algorithms that prevail to partition a

dataset by some means of similarity. In this project, a Quad

Tree based Expectation Maximization (EM) algorithm has

been applied for predicting faults in the classification of

datasets. K-Means is a simple and popular approach that is

widely used to cluster/classify data. However, K-Means does

not always guarantee best clustering due to varied reasons.

The proposed EM algorithm is known to be an appropriate

optimization for finding compact clusters. EM guarantees

elegant convergence. EM algorithm assigns an object to a

cluster according to a weight representing the probability of

membership. EM then iteratively rescores the objects and

updates the estimates. The error-rate for K-Means algorithm

and EM algorithm are computed, denoting the number of

correctly and incorrectly classified samples by each algorithm.

Result consists of charts showing on a comparative basis the

effectiveness of EM algorithm with quad tree for fault

prediction over the existing Quad Tree based K-Means (QDK)

model.

2. SOFTWARE FAULT DETECTION
Fault detection models are used to improve software quality

and to assist software inspection by locating possible faults

Model performance is influenced by a modeling technique

and metrics. The performance difference between modeling

techniques appears to be moderate and the choice of a

modeling technique seems to have lesser impact on

classification accuracy of a model than the choice of a metrics

set. To this end, decided to investigate the metrics used in

software fault prediction and to leave the modeling techniques

aside. In software fault prediction many software metrics have

been proposed. The most frequently used ones are those of

MOOD metrics suite) (QMOOD metrics suite), (CK metrics

suite), Many of them have been validated only in a small

number of studies. Contradictory results across studies have

often been reported. Even within a single study, different

results have been obtained when different environments or

methods have been used. Nevertheless, finding the

appropriate set of metrics for a fault prediction model is still

important, because of significant differences in metrics

performance. This, however, can be a difficult task to

accomplish when there is a large choice of metrics with no

clear distinct ion regarding their usability a preliminary

mapping study on software metrics. The study was broad and

included theoretical and empirical studies which were

classified in the following categories: development,

evaluation, analysis, framework, tool programs, and use

literature survey.

3. PROPOSED SYSTEM
In order to improve the probability of finding faults, CIT aims

at generating test suites with high coverage of feature

interactions. Sample N test cases at random, where the value

of each of the features in the ith column is randomly chosen

with uniform probability from 1; . . . ; vi. Notice that this

procedure could be repeated q times and then select the best

test suite, where the best test suite would be the one with

highest number of covered t-wise interactions. Based on the

computational time tester can afford (i.e., the testing budget),

tester could run random testing with q as high as necessary to

obtain a full t-wise coverage. In this project, however, have to

only consider the case q = 1. Larger values of q would, of

course, lead to higher fault detection. In a comparison with

CIT, tester could choose a value for q that corresponds to the

CIT overhead required to generate covering arrays. Lower

bounds related to some probabilities that describe the

dynamics of random testing when applied to find interaction

faults. Assume P to be the probability that random testing

triggers at least one failure. A probability is always bounded

in (0; 1). Random testing might or might not trigger a failure

when run once. Depending on the problem instances, the

probability P could significantly vary. To prove six theorems

regarding the effectiveness of random tests when applied to

unconstrained combinatorial interaction testing (CIT)

problems. These theorems provide general results that cannot

be obtained with empirical studies, though the latter are

necessary to refine understanding. First, proved that for any t-

wise CIT problem (independently of its properties), random

testing would always have at least a 63 percent probability of

triggering at least one failure related to t-wise interaction

faults (if any is present) when compared against any CIT tool

using the same number of test cases. Second, perhaps more

importantly, this probability increases with the number of

features present in the software under test and converges to 1

(for infinite number of features), that is, to equal effectiveness

with CIT techniques. Given that current CIT tools suffer

severe scalability problems in the presence of large numbers

of features, thus leading to significant execution overheads to

generate covering arrays, this additional time could be easily

used by random testing to run more test cases if an automated

oracle is available. The results suggest that in such situations

random testing would be effective at detecting interaction

faults. To overcome these types of problems previously used

the CIT method and reduced a certain level by the use of

combination features and removed the bugs present in them

which caused the faults. In this project by using random

testing method can reduce the impact of interaction faults on

the software systems as well as analyzing their improvements

in their performance consequently.

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

3

Figure 1 System Architecture

3.1 Feature Model Extraction
Feature models are frequently used to present the

commonalities and variability within variant rich systems

such as Software Product Lines (SPLs). Feature Models are

initially created during the requirements analysis where each

feature „represents a system property that is relevant to some

stakeholder‟ Utilizing a hierarchical structure, different

notations and cross tree dependencies feature models are able

to determine which feature combinations or products are

permitted and which are forbidden. In this module Feature

models provide a hierarchical and structured representation of

the SPL requirements. Thus, it seems to be promising to

benefit from such a representation of SPL requirements for

testing purposes. Algorithms ensuring a certain degree of

requirements coverage within product derivation can take

advantage of the feature model.

3.2 Random Testing
Random testing module uses test configurations that

correspond to sets of features of test cases. A feature is an

attribute of generated test inputs that the generator can

directly control, in a computationally efficient way. For

example, an API-based test generator might define features

corresponding to inclusion of API functions (e.g., push and

pop); a program generator might define features

corresponding to the use of language constructs (e.g., arrays

and pointers); and a media-player tester might define features

over the properties of media files, e.g., whether or not the

tester will generate files with corrupt headers. A feature

determines a configuration of test generation, not the System

Under Test (SUT). In particular, this module are configuring

which aspects of the SUT will be tested (and not tested) only

by controlling the test cases output. Features can be thought of

simply as constraints on test cases, in particular those the test

case generator lets us control.

3.3 Lower Bounds
In this module the lower bounds which related to some

probabilities that describe the dynamics of random testing

when applied to find interaction faults. Assume P to be the

probability that random testing triggers at least one failure. A

probability is always bounded in (0; 1). Random testing might

or might not trigger a failure when run once. Depending on

the problem instances, the probability P could significantly

vary. A lower bound to the probability that random testing

triggers at least one failure related to t-wise faults for a given

test suite size N. This theorem is then used to prove. A high

lower bound that is independent of N to the effectiveness of

random testing compared to CIT. Assume P to be the

probability that random testing triggers at least one failure. A

probability is always bounded in (0; 1). Random testing might

or might not trigger a failure when run once. Depending on

the problem instances, the probability P could significantly

vary. For example, on very faulty software could have P = 1,

whereas P could be much lower in cases where only a single

feature combination triggers failures. Because before running

Feature Oriented Software Development community (FOSD)

[2] uses the features of a feature model as fundamental

artifacts within the development process of variant rich

systems such as SPLs. There, the features are linked to

various different artifacts such as code fragments, behavioral

models, requirements, specifications, documentations and

tests.

Any large empirical study it would not be possible to know P

in advance, then it would be of practical interest to know a

lower bound b (i.e., P= b) that is valid for any problem

instance.

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

4

3.4 Detection of Multiple Faults
This module is used to find the detection of multiple faults in

products. So far the system has only analyzed random testing

from the point of view of triggering at least one failure.

Software testing can only trigger failures and not directly

reveal faults. If one has a test suite in which more than one

test case fails, then some or all of these failures might or

might not be related to the same fault. To distinguish among

faults, a software tester has to debug and fix the code, and

then rerun the test suite to see if any test case is still failing.

Real-world systems typically contain several faults and it

would hence be important to study how well random testing

fares in revealing a set of combinatorial interaction faults

4. RESULTS AND DISCUSSION
In many realistic testing environments, testers may not have

time to run entire test suites that cover all possible parameter-

value combinations, or even all lower strength t-way

parameter-value combinations. They may also be in an

environment in which partial test suites are run and then

testing needs to adapt. Also measure the overlap in the

number of 2-way, 3-way, and 4-way combinations covered in

the respective tests. Hence break the studies into two

experiments with two goals in mind. First, combinatorial

testing has been criticized as an ineffective testing method

that offers little benefit over random tests. However, this

criticism is supported only in small study and contradicts

other existing literature that reports on the success of

combinatorial testing. In addition, previous work only reports

the number of faults found with test suites of specific sizes

that cover all t-way interactions; they do not report how fast

the test suites localize faults, nor what happens if a tester

cannot run an entire test suite. Therefore, the work here on

distance based testing closely examines the overlap of

combinations.

The simulation results indicate that random testing is effective

only when one runs far too many tests, and hence a

comparison of random and structured schemes can be

misleading when one fixes a large number of tests in advance

to be run. For instance, these simulations indicate that

distance-based tests can be more effective in locating faults

sooner and in fewer tests than random tests, especially when

faults are more complex (i.e: more parameter-values interact

to cause faults) and faults do not cluster around only few

parameter-values.

Table 1 Comparison on performance

In the experiments, the overlap of combinations covered in the

distance-based tests and random tests is quite high in the

earliest tests, but this finding does not scale; more than 10

times as many random tests are needed to cover all 2-way

combinations in the experiments. In the TCAS experiment,

distance-based tests work well in finding 2-way interaction

faults, but mixed results are observed for 3-way, 4-way, 5-

way testing. Indeed, a closer look at the tests and data observe

that the 3-way interaction faults involve many of the same

parameter-values. When testing actual software here, random

testing is quite competitive in the earliest tests but is not

competitive after approximately 45 to 80 tests are run.

Hamming distance appears to be more effective than

uncovered combinations distance than have seen in the

previous simulations. While the distance-based testing works

well in this example to identify 2-way interaction faults, initial

experiments with t = {3} do not exhibit any clear pattern.

Have to find that uncovered combinations and Hamming

distance metrics sometimes appear to be more successful at

finding the first fault, however, maximizing distance with

either of these approaches is not particularly effective.

Attribute this to the characteristics of the faults - the numerous

faults injected into the TCAS system cluster around similar

parameter-values. In cases when faults cluster, these notions

of distance may not be adequate. Currently studying alternate

notions of distance that do not penalize next tests based on

their proximity to a fault. One can expect such an alternate

notion of distance to serve well in locating Clustered faults.

5. CONCLUSION
Distance-based testing is a systematic testing technique that

may be used to augment current testing practices. The

methodology is an abstraction of static combination strategies

that have been proposed in the past. Instead of generating test

suites that are run as a whole, an adaptive one-test-at-a-time

process is more flexible. Tests are adaptively generated as

systems can undergo modifications. System components may

be added, removed, modified or temporarily unavailable and

tests will adapt. The effectiveness of the strategy is examined

for an actual system and in simulation by measuring the rate

of fault detection of dispensed tests.

Distance-based testing can be instantiated using a number of

different combination strategies, considered recent

controversy on combination strategies when conducting

experiments. For instance, a specific example of distance

based testing, implemented with “uncovered combinations”

has been reported with mixed reviews. The majority of

empirical studies report that it is a useful approach, while

other work suggests that it offers little benefit over random

testing. Software testing process identifies what the test

activities to carry out and when, which what is the best time to

accomplish those test activities. Hence, even though testing

may differs between organizations, there is still a testing

process that need to be performed has the basic phases such as

test planning, test design, test execution and test evaluation.

Further exploration of distance metrics are needed for systems

in which interaction faults cluster around a smaller number of

parameter-values. By using the ACO algorithm and SWARM

intelligence method can make the fault detection easier. The

dataset has to be taken as noisy for revealing them from the

original faults that are associated with the system code. Most

important attribute can be found for fault prediction and this

work can be extended to further programming languages.

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

5

6. REFERENCES
[1] NIST, “The economic impacts of inadequate

infrastructure for software testing,” March 2003.

[2] M. Grindal, J. Offutt, and S. Andler, “Combination

testing strategies: a survey,” Software Testing,

Verification, and Reliability, vol. 15, no. 3, pp. 167–199,

March 2005.

[3] T. J. Ostrand and M. J. Balcer, “The category-partition

method for specifying and generating functional tests,”

Communications of the ACM, vol. 31, no. 6, pp. 676–

686,June 1988.

[4] Y. K. Malaiya, “Antirandom testing: getting the most out

of black-box testing,” in Proceeding of the International

Symposium on Software Reliability Engineering, October

1995, pp. 86–95.

[5] J. A. Whittaker and M. G. Thomason, “A markov chain

model for statistical software testing,” IEEE

Transactions on Software Engineering, vol. 20, no. 10,

pp. 812–824, 1994.

[6] R. C. Bryce and C. J. Colbourn, “Prioritized interaction

testing for pair-wise coverage with seeding and avoids,”

Information and Software Technology Journal (IST,

Elsevier), vol. 48, no. 10, pp. 960–970, October 2006.

[7] K. Burr and W. Young, “Combinatorial test techniques:

Table based automation, test generation, and code

coverage,” in Proceedings of the International

Conference on Software Testing Analysis and Review,

October 1998, pp. 503–513.

[8] S. R. Dalal, A. Karunanithi, J. Leaton, G. Patton, and B.

M. Horowitz, “Model-based testing in practice,” in

Proceedings of the International Conference on Software

Engineering, May 1999, pp. 285–294.

[9] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,

and A. Iannino, “Applying design of experiments to

software testing,” in Proceedings of the International

Conference on Software Engineering, October 1997, pp.

205–215.32

[10] D. Kuhn and M. Reilly, “An investigation of the

applicability of design of experiments to software

testing,” in Proceedings of the 27th Annual NASA

Goddard/IEEE Software Engineering Workshop, October

2002, pp. 91–95.

[11] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software

fault interactions and implications for software testing,”

IEEE Transactions on Software Engineering, vol. 30, no.

6, pp. 418–421, October 2004.

[12] R. Mandl, “Orthogonal latin squares an application of

experiment design to compiler testing,” Communications

of the ACM, vol. 28, no. 10, pp. 1054–1058, October

1985.

[13] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays

for efficient fault characterization in complex

configuration spaces,” IEEE Transactions on Software

Engineering, vol. 31, no. 1, pp. 20–34, January 2006.

[14] R. C. Bryce, C. J. Colbourn, and M. B. Cohen, “A

framework of greedy methods for constructing

interaction tests,” in Proceedings of the 27th

International Conference on Software Engineering, May

2005, pp. 146–155.

[15] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton,

“The combinatorial design approach to automatic test

generation,” IEEE Software, vol. 13, no. 5, pp. 82–88,

October 1996.

[16] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.

Mugridge, “Constructing test suites for interaction

testing,” in Proceedings of the International Conference

on Software Engineering, May 2003, pp. 28–48.

[17] C. J. Colbourn, “Combinatorial aspects of covering

arrays,” Le Matematiche (Catania), vol. 58, pp. 121–167,

2004.

[18] R. C. Bryce and C. J. Colbourn, “A density-based greedy

algorithm for higher strength covering arrays,” Software

Testing, Verification, and Reliability, vol. 19, no. 1, pp.

37– 53, 2009.33

[19] K. Tai and L.Yu, “A test generation strategy for pair-

wise testing,” IEEE Transactions on Software

Engineering, vol. 28, no. 1, pp. 109–111, January 2002.

[20] Y. Tung and W. Aldiwan, “Automating test case

generation for the new generation mission software

system,” in IEEE Aerospace Conference, March 2000,

pp. 431–37.

