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ABSTRACT 
Software product lines are the common trend in software 

development which helps in reducing the development cost. 

Mostly the interaction faults are very difficult to identify 

during the process of debugging. By the use of combinatorial 

testing a set of features can be identified and all small 

combinations can be verified to a certain level only. By 

introducing random testing can improve the accuracy and 

ratio of t-wise fault detection. Through random testing can 

acquire a higher level of improvements over the combinatorial 

testing which will be under the budgetary limit of the product. 

Random testing can provide minimum guarantees on the 

probability of fault detection at any interaction level using the 

set of theories. For example, random testing becomes even 

more effective as the number of features increases and 

converges toward equal effectiveness with combinatorial 

testing. Given that combinatorial testing entails significant 

computational overhead in the presence of hundreds or 

thousands of features, the results suggest that there are 

realistic scenarios in which random testing may outperform 

combinatorial testing in large systems. Furthermore, in 

common situations where test budgets are constrained and 

unlike combinatorial testing, random testing can still provide 

minimum guarantees on the probability of fault detection at 

any interaction level. However, when constraints are present 

among features, then random testing can fare arbitrarily worse 

than combinatorial testing. 

Index Terms:  

Combinatorial testing, random testing, t-wise fault 

1. INTRODUCTION 
Software testing is a process of analyzing the effectiveness of 

software. Testing has two objectives in order to determine if 

the software performs as expected, which are to identify the 

differences between existing and expected conditions, which 

this differences are sometimes called „bugs‟, but it now can 

this denotes a defect in the performance of either hardware or 

software. Secondly is to enable the expected performance of 

software to be determined before it is used for business 

purposes and this type of testing is to determine whether the 

right mix of software, hardware and personnel can satisfy the 

business needs. Software testing process is important in 

software development activities. Therefore, this industrial is 

focused on software testing process that currently practices. 

National Institute of software testing last estimated the annual 

cost of software defects as approximately $59 billion. They 

also suggest that approximately $22 billion can be saved 

through more effective testing. Testers need to be more 

thorough in testing, yet they need to perform testing within a 

prescribed budget. Systematic approaches of combination 

testing have been suggested to complement current testing 

methods in order to improve rates of fault detection. Category 

partitioning is a base of systematic approaches as finite values 

(options) for parameters are identified for testing. Each of the 

finite parameter-values may be tested at least once, in 

specified combination together, or in exhaustive combination. 

The simplest and least-thorough combination testing approach 

is to test all values at least once. The most thorough is to 

exhaustively test all parameter-value combinations. However, 

exhaustive testing of all possible combinations is too 

expensive for most systems. Testers may place constraints to 

limit tests from category partitioning; however, this can be an 

unsatisfactory solution when constraints are arbitrarily 

selected to limit the number of tests. Combination strategies 

may be a better solution to limiting tests as they 

systematically test combinations of parameter-values across a 

system. Combination testing has been applied with ad-hoc 

methods, stochastic models, and combinatorial designs. Ad-

hoc methods include tests developed by hand in which testers 

attempt to create representative tests to catch problems that 

they anticipate. Anti-random testing attempts to provide tests 

that minimize overlap using Cartesian products or Hamming 

distance. An example of a stochastic model includes Markov 

chains to simulate usage. Combinatorial designs have been 

applied to test t-way interactions of parameter values. 

As software testing process is important in software 

development activities, and SBS system is also important for 

core banking application, an intensive software testing process 

is required to be developed and provided into this 

organization. This section clearly discussed and summarized 

every comparison study that being conducted on several 

testing characteristic for SBS system. Finally, a proposed 

Customized Software Testing Process (CSTP) is clearly 

defined based on these comparison studies  

Unsupervised learning methods such as clustering techniques 

are a natural choice for analyzing software quality in the 

absence of fault proneness labels. Clustering algorithms can 

group the software modules according to the values of their 

software metrics. The underlying software-engineering 

assumption is that fault-prone software modules will have 

similar software measurements and so will likely form 

clusters. Similarly, not-fault-prone modules will likely group 

together. When the clustering analysis is complete, a software 

engineering expert inspects each cluster and labels it fault 

prone or not fault prone. 

Combination testing has been applied with ad-hoc methods, 

stochastic models, and combinatorial designs. Ad-hoc 

methods include tests developed by hand in which testers 

attempt to create representative tests to catch problems that 

they anticipate. Anti-random testing attempts to provide tests 
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that minimize overlap using Cartesian products or Hamming 

distance usage modeling but do not systematically cover a 

system.) The success of combination strategies hide upon 

correct identification of parameters and their suitable values 

for testing. Indeed, if parameters are missing, or category 

partitioning does not select suitable values for parameters, 

then any combination strategy may fail. Tester identifies this 

threat early on since work is an extension of combination 

testing work. The Quad tree algorithm [3] method depicts, 

about various clustering algorithms that prevail to partition a 

dataset by some means of similarity. In this project, a Quad 

Tree based Expectation Maximization (EM) algorithm has 

been applied for predicting faults in the classification of 

datasets. K-Means is a simple and popular approach that is 

widely used to cluster/classify data. However, K-Means does 

not always guarantee best clustering due to varied reasons. 

The proposed EM algorithm is known to be an appropriate 

optimization for finding compact clusters. EM guarantees 

elegant convergence. EM algorithm assigns an object to a 

cluster according to a weight representing the probability of 

membership. EM then iteratively rescores the objects and 

updates the estimates. The error-rate for K-Means algorithm 

and EM algorithm are computed, denoting the number of 

correctly and incorrectly classified samples by each algorithm. 

Result consists of charts showing on a comparative basis the 

effectiveness of EM algorithm with quad tree for fault 

prediction over the existing Quad Tree based K-Means (QDK) 

model. 

2. SOFTWARE FAULT DETECTION 
Fault detection models are used to improve software quality 

and to assist software inspection by locating possible faults 

Model performance is influenced by a modeling technique 

and metrics. The performance difference between modeling 

techniques appears to be moderate and the choice of a 

modeling technique seems to have lesser impact on 

classification accuracy of a model than the choice of a metrics 

set. To this end, decided to investigate the metrics used in 

software fault prediction and to leave the modeling techniques 

aside. In software fault prediction many software metrics have 

been proposed. The most frequently used ones are those of 

MOOD metrics suite) (QMOOD metrics suite), (CK metrics 

suite), Many of them have been validated only in a small 

number of studies. Contradictory results across studies have 

often been reported. Even within a single study, different 

results have been obtained when different environments or 

methods have been used. Nevertheless, finding the 

appropriate set of metrics for a fault prediction model is still 

important, because of significant differences in metrics 

performance. This, however, can be a difficult task to 

accomplish when there is a large choice of metrics with no 

clear distinct ion regarding their usability a preliminary 

mapping study on software metrics. The study was broad and 

included theoretical and empirical studies which were 

classified in the following categories: development, 

evaluation, analysis, framework, tool programs, and use 

literature survey. 

3. PROPOSED SYSTEM 
In order to improve the probability of finding faults, CIT aims 

at generating test suites with high coverage of feature 

interactions. Sample N test cases at random, where the value 

of each of the features in the ith column is randomly chosen 

with uniform probability from 1; . . . ; vi. Notice that this 

procedure could be repeated q times and then select the best 

test suite, where the best test suite would be the one with 

highest number of covered t-wise interactions. Based on the 

computational time tester can afford (i.e., the testing budget), 

tester could run random testing with q as high as necessary to 

obtain a full t-wise coverage. In this project, however, have to 

only consider the case q = 1. Larger values of q would, of 

course, lead to higher fault detection. In a comparison with 

CIT, tester could choose a value for q that corresponds to the 

CIT overhead required to generate covering arrays. Lower 

bounds related to some probabilities that describe the 

dynamics of random testing when applied to find interaction 

faults. Assume P to be the probability that random testing 

triggers at least one failure. A probability is always bounded 

in (0; 1). Random testing might or might not trigger a failure 

when run once. Depending on the problem instances, the 

probability P could significantly vary. To prove six theorems 

regarding the effectiveness of random tests when applied to 

unconstrained combinatorial interaction testing (CIT) 

problems. These theorems provide general results that cannot 

be obtained with empirical studies, though the latter are 

necessary to refine understanding. First, proved that for any t-

wise CIT problem (independently of its properties), random 

testing would always have at least a 63 percent probability of 

triggering at least one failure related to t-wise interaction 

faults (if any is present) when compared against any CIT tool 

using the same number of test cases. Second, perhaps more 

importantly, this probability increases with the number of 

features present in the software under test and converges to 1 

(for infinite number of features), that is, to equal effectiveness 

with CIT techniques. Given that current CIT tools suffer 

severe scalability problems in the presence of large numbers 

of features, thus leading to significant execution overheads to 

generate covering arrays, this additional time could be easily 

used by random testing to run more test cases if an automated 

oracle is available. The results suggest that in such situations 

random testing would be effective at detecting interaction 

faults. To overcome these types of problems previously used 

the CIT method and reduced a certain level by the use of 

combination features and removed the bugs present in them 

which caused the faults. In this project by using random 

testing method can reduce the impact of interaction faults on 

the software systems as well as analyzing their improvements 

in their performance consequently. 
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Figure 1 System Architecture 

 

3.1 Feature Model Extraction  
Feature models are frequently used to present the 

commonalities and variability within variant rich systems 

such as Software Product Lines (SPLs). Feature Models are 

initially created during the requirements analysis where each 

feature „represents a system property that is relevant to some 

stakeholder‟ Utilizing a hierarchical structure, different 

notations and cross tree dependencies feature models are able 

to determine which feature combinations or products are 

permitted and which are forbidden. In this module Feature 

models provide a hierarchical and structured representation of 

the SPL requirements. Thus, it seems to be promising to 

benefit from such a representation of SPL requirements for 

testing purposes. Algorithms ensuring a certain degree of 

requirements coverage within product derivation can take 

advantage of the feature model.   

3.2 Random Testing  
Random testing module uses test configurations that 

correspond to sets of features of test cases. A feature is an 

attribute of generated test inputs that the generator can 

directly control, in a computationally efficient way. For 

example, an API-based test generator might define features 

corresponding to inclusion of API functions (e.g., push and 

pop); a program generator might define features 

corresponding to the use of language constructs (e.g., arrays 

and pointers); and a media-player tester might define features 

over the properties of media files, e.g., whether or not the 

tester will generate files with corrupt headers. A feature 

determines a configuration of test generation, not the System 

Under Test (SUT). In particular, this module are configuring 

which aspects of the SUT will be tested (and not tested) only 

by controlling the test cases output. Features can be thought of 

simply as constraints on test cases, in particular those the test 

case generator lets us control.  

3.3 Lower Bounds  
In this module the lower bounds which related to some 

probabilities that describe the dynamics of random testing 

when applied to find interaction faults. Assume P to be the 

probability that random testing triggers at least one failure. A 

probability is always bounded in (0; 1). Random testing might 

or might not trigger a failure when run once. Depending on 

the problem instances, the probability P could significantly 

vary. A lower bound to the probability that random testing 

triggers at least one failure related to t-wise faults for a given 

test suite size N. This theorem is then used to prove. A high 

lower bound that is independent of N to the effectiveness of 

random testing compared to CIT. Assume P to be the 

probability that random testing triggers at least one failure. A 

probability is always bounded in (0; 1). Random testing might 

or might not trigger a failure when run once. Depending on 

the problem instances, the probability P could significantly 

vary. For example, on very faulty software could have P = 1, 

whereas P could be much lower in cases where only a single 

feature combination triggers failures. Because before running 

Feature Oriented Software Development community (FOSD) 

[2] uses the features of a feature model as fundamental 

artifacts within the development process of variant rich 

systems such as SPLs. There, the features are linked to 

various different artifacts such as code fragments, behavioral 

models, requirements, specifications, documentations and 

tests. 

Any large empirical study it would not be possible to know P 

in advance, then it would be of practical interest to know a 

lower bound b (i.e., P= b) that is valid for any problem 

instance. 
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3.4 Detection of Multiple Faults  
This module is used to find the detection of multiple faults in 

products. So far the system has only analyzed random testing 

from the point of view of triggering at least one failure. 

Software testing can only trigger failures and not directly 

reveal faults. If one has a test suite in which more than one 

test case fails, then some or all of these failures might or 

might not be related to the same fault. To distinguish among 

faults, a software tester has to debug and fix the code, and 

then rerun the test suite to see if any test case is still failing. 

Real-world systems typically contain several faults and it 

would hence be important to study how well random testing 

fares in revealing a set of combinatorial interaction faults 

4. RESULTS AND DISCUSSION 
In many realistic testing environments, testers may not have 

time to run entire test suites that cover all possible parameter-

value combinations, or even all lower strength t-way 

parameter-value combinations. They may also be in an 

environment in which partial test suites are run and then 

testing needs to adapt. Also measure the overlap in the 

number of 2-way, 3-way, and 4-way combinations covered in 

the respective tests. Hence break the studies into two 

experiments with two goals in mind. First, combinatorial 

testing has been criticized as an ineffective testing method 

that offers little benefit over random tests. However, this 

criticism is supported only in small study and contradicts 

other existing literature that reports on the success of 

combinatorial testing. In addition, previous work only reports 

the number of faults found with test suites of specific sizes 

that cover all t-way interactions; they do not report how fast 

the test suites localize faults, nor what happens if a tester 

cannot run an entire test suite. Therefore, the work here on 

distance based testing closely examines the overlap of 

combinations. 

The simulation results indicate that random testing is effective 

only when one runs far too many tests, and hence a 

comparison of random and structured schemes can be 

misleading when one fixes a large number of tests in advance 

to be run. For instance, these simulations indicate that 

distance-based tests can be more effective in locating faults 

sooner and in fewer tests than random tests, especially when 

faults are more complex (i.e: more parameter-values interact 

to cause faults) and faults do not cluster around only few 

parameter-values.  

Table 1 Comparison on performance 

 

In the experiments, the overlap of combinations covered in the 

distance-based tests and random tests is quite high in the 

earliest tests, but this finding does not scale; more than 10 

times as many random tests are needed to cover all 2-way 

combinations in the experiments. In the TCAS experiment, 

distance-based tests work well in finding 2-way interaction 

faults, but mixed results are observed for 3-way, 4-way, 5-

way testing. Indeed, a closer look at the tests and data observe 

that the 3-way interaction faults involve many of the same 

parameter-values. When testing actual software here, random 

testing is quite competitive in the earliest tests but is not 

competitive after approximately 45 to 80 tests are run. 

Hamming distance appears to be more effective than 

uncovered combinations distance than have seen in the 

previous simulations. While the distance-based testing works 

well in this example to identify 2-way interaction faults, initial 

experiments with t = {3} do not exhibit any clear pattern. 

Have to find that uncovered combinations and Hamming 

distance metrics sometimes appear to be more successful at 

finding the first fault, however, maximizing distance with 

either of these approaches is not particularly effective. 

Attribute this to the characteristics of the faults - the numerous 

faults injected into the TCAS system cluster around similar 

parameter-values. In cases when faults cluster, these notions 

of distance may not be adequate. Currently studying alternate 

notions of distance that do not penalize next tests based on 

their proximity to a fault. One can expect such an alternate 

notion of distance to serve well in locating Clustered faults. 

5. CONCLUSION  
Distance-based testing is a systematic testing technique that 

may be used to augment current testing practices. The 

methodology is an abstraction of static combination strategies 

that have been proposed in the past. Instead of generating test 

suites that are run as a whole, an adaptive one-test-at-a-time 

process is more flexible. Tests are adaptively generated as 

systems can undergo modifications. System components may 

be added, removed, modified or temporarily unavailable and 

tests will adapt. The effectiveness of the strategy is examined 

for an actual system and in simulation by measuring the rate 

of fault detection of dispensed tests.  

Distance-based testing can be instantiated using a number of 

different combination strategies, considered recent 

controversy on combination strategies when conducting 

experiments. For instance, a specific example of distance 

based testing, implemented with “uncovered combinations” 

has been reported with mixed reviews. The majority of 

empirical studies report that it is a useful approach, while 

other work suggests that it offers little benefit over random 

testing. Software testing process identifies what the test 

activities to carry out and when, which what is the best time to 

accomplish those test activities. Hence, even though testing 

may differs between organizations, there is still a testing 

process that need to be performed has the basic phases such as 

test planning, test design, test execution and test evaluation. 

Further exploration of distance metrics are needed for systems 

in which interaction faults cluster around a smaller number of 

parameter-values. By using the ACO algorithm and SWARM 

intelligence method can make the fault detection easier. The 

dataset has to be taken as noisy for revealing them from the 

original faults that are associated with the system code. Most 

important attribute can be found for fault prediction and this 

work can be extended to further programming languages. 
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