
International Journal of Computer Applications (0975 – 8887)

International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS 2015)

23

 Improved Input Data Splitting in MapReduce

Reema Rhine

 PG student, Department of Information Technology
Rajagiri School of Engineering and Technology,

Kochi, India

Nikhila T. Bhuvan
Asst. Professor, Department of Information

Technology Rajagiri School of Engineering and
Technology, Kochi, India

ABSTRACT

The performance of MapReduce greatly depends on its data

splitting process which happens before the map phase. This is

usually done using naive methods which are not at all optimal.

In this paper, an Improved Input Splitting technology based

on locality is explained which aims at addressing the input

data splitting problems which affects the job performance

seriously. Improved Input Splitting clusters data blocks from a

same node into the same single partition, so that it is

processed by one map task. This method avoids the time for

slot reallocation and multiple tasks initializing. Experiment

results demonstrated that this can improve the MapReduce

processing performance largely than the traditional Hadoop

implementation.

General Terms

Big data, Apache Hadoop.

Keywords

HDFS, Improved input splitting, MapReduce

1. INTRODUCTION
Millions of bytes of data are generated daily, according to

IBM. These data are from social networks, Internet searches,

e-commerce transactions etc. This collection of data forms a

large amount of big data that is growing on a daily basis. It is

required to analyze this large amount of data and extract the

useful information from it for future use in a short time. Big

data is a popular term used to describe the exponential growth

and availability of data, both structured and unstructured.

More accurate analysis may lead to much better decision

making. This can mean greater operational efficiencies, cost

reductions and reduced risk. The three Vs of big data are:

Volume, Velocity and Variety. Two additional parameters to

be considered for big data are variability and veracity.Apache
Hadoop[9] is an open source software library. It allows the

distributed processing of large data sets across clusters of

computers using simple programming models. It has a variety

of options ranging from single computer to thousands of

computers, each of which offering local computation and

storage.

Apache Hadoop includes Hadoop core, Hadoop Distributed

File System, and Hadoop MapReduce. Requirements

submitted by user to Hadoop engine will take input data from

HDFS. Data is spread across a number of DataNodes. There is

one NameNode or JobTracker which is responsible for

assigning the work among DataNodes and producing the

result and responding back to user. Architecture of Apache

Hadoop[14] is very robust and fault-tolerant. JobTracker is

continuously tracing the status of DataNode and if the

DataNode remains silent for more than predefined time, task

of that DataNode is given to another DataNode.

According to the MapReduce[2] scheduling mechanism, data

splitting controls the data processing parallelism. So it has a

critical influence on the job completion time and cluster

utilization. Here, an Improved Input Splitting mechanism

based on locality[1] is introduced to cluster blocks located at

the same machine to a split and schedule a map task onto the

node to process it. This avoids the wastage of time for slot

reallocation and task initialization. The replicas[4] are chosen

based on the peer cooperation and resource utilization .This is

done by recording and monitoring the nodes and network

utilization. In this paper, the section 2 describes the details of

HDFS, MapReduce and input splitting. Section 3 deals with

the Hadoop data splitting method and Section 4 deals with the

Improved Input Splitting method. Section 5 evaluates both the

methods.

2. BACKGROUND
HDFS and MapReduce[13] are the two main components of

Apache Hadoop. HDFS handles the storage aspects while the

MapReduce handles the programming aspects of Hadoop.

Thus, the storage system is not physically separate from a

processing system.

2.1 Hadoop Distributed File System
HDFS has a master/slave architecture. An HDFS cluster has a

single NameNode and a number of Datanodes. The

NameNode acts as the master server that manages the file

system namespace. It also regulates the access to files by

clients. The DataNodes, usually one per node in the cluster, is

responsible for managing the storage attached to the nodes

that they run on. A file is split into one or more blocks and

these blocks are stored in a set of DataNodes. The NameNode

executes operations like opening files, closing files, and

renaming files. The DataNodes are responsible for handling

read and write requests from the clients of the file system. The

DataNodes also perform block creation, deletion, and

replication according to the instruction from the NameNode.

HDFS is built using the Java. The NameNode and the

DataNode software can be run on any machine that supports

Java. Usage of Java language enables HDFS to be deployed

on a wide range of machines. A usual deployment has a

dedicated machine that runs the NameNode. Each of the other

machines in the cluster runs one instance of the DataNode.
The NameNode is the repository for all HDFS metadata.

2.2 MapReduce

A MapReduce[7] program consist of the Map function which

performs mapping that includes filtering and sorting and also

the Reduce function which performs the reduction operation

that give the final output. There is also a shuffle operation that

occurs between the map and reduce phase which improves the

overall performance of the system.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS 2015)

24

MapReduce gives the user an opportunity to operate on every

record in the data set individually, during the map phase. This

phase is used to filter out unwanted fields or transform fields.

Certain types of joins and grouping can also be done in the

map. It is not necessary that there is an output record for every

input record. Maps can choose to remove records or explode

one record into multiple records. During the shuffle phase,

MapReduce partitions data among the various reducers. The

input to the reduce phase is each key from the shuffle along

with all of the records associated with that particular key.

Because all records with the same key are now collected

together, it is possible to perform joins and aggregation

operations. The MapReduce user explicitly controls

parallelism in the reduce phase. MapReduce jobs that do not

require a reduce phase can set the reduce count to zero. These

are called as map-only jobs.

2.3 Input Splitting

MapReduce is the framework for running jobs in Hadoop. It

provides a simple and powerful mechanism for parallelizing

data processing. The JobTracker is the central coordinator of

jobs in MapReduce. It controls the jobs those are running, the

resources they are using, etc. Each node in the cluster has

a TaskTracker that is responsible for running the map or

reduce tasks assigned to it by the JobTrackerInput split[10] is

the part of the input that is processed by a single map task. It

can also be referred to as the data to be processed by an

individual mapper. Each split is further divided into records,

and the map task processes each record, which is a key value

pair. Split is actually the number of rows and record is that

number. The length of the InputSplit[11] is measured in bytes.

Every InputSplit has a storage location. The storage locations

are used by the MapReduce system to place map tasks as

close to split's data as possible. Usually the tasks are

processed in the order of the size of the splits, the largest one

get processed first. This is done in order to minimize the job

runtime. InputSplit doesn't contain input data but only a

reference to the input data. One need not use InputSplits

directly, InputFormat will do that job. An InputFormat is a

class selects the files or other objects that should be used for

input. It then defines the InputSplits that break a file into

tasks. It also provides a factory for RecordReader objects that

read the file. The client calculates the splits for the job by

calling getSplits function. These splits are the send to the

JobTracker, which then uses their storage locations to

schedule map tasks that will process them on the

TaskTrackers. On a TaskTracker, the map task passes the split

to the createRecordReader method on InputFormat to obtain a

RecordReader for that split. Map task uses RecordReader to

generate record key-value pairs, which it passes to the map

function.The minimum split size is usually 1 byte, although

some formats allow a lower bound on the split size. We can

impose a minimum split size. By setting the split size to a

value larger than the block size, they force splits to be larger

than a block. But this is not a good method while using

HDFS, as it will increase the number of blocks that are not

local to a map task. The maximum split size is by default the

maximum value that can be represented by a Java long type. It

has an effect only when it is less than the block size, which

will force splits to be smaller than a block.

Fig 1:Input Splitting

3. HADOOP DATA SPLITTING
Hadoop consist of two main components: a cluster file system

HDFS and an open source implementation of MapReduce.

HDFS stores the data while MapReduce runs programs in

parallel on top of it. HDFS is designed maintain load balance

by storing data uniformly across nodes. However, in practice,

its balance is not well for each file distribution. Partition of

these blocks are in-practical in some way by hash-based

partitioning.

Fig 2: Hash based partition will split blocks cross-node

into a split causing network transferring.

Another drawback of hash-based splitting is that it may split

block across nodes into the same partition. This will result in

non-local map tasks reading data across nodes from network.

This consumes a lot of network resources. Also the job

completion time is also high.One job’s improper partitioning

may result multiple jobs to interfere with each other for

sequenced job. MapReduce jobs have a sequence of

dependent phases like map/combine/reduce, and each phase

compose of several tasks running in parallel.MapReduce

client sets the input file and split configuration. This is then

submitted to the MapReduce master(JobTracker). When a

MapReduce worker(TaskTracker) have a idle slot, it reports to

the JobTracker. JobTracker receive the request and create a

task which will be placed to the TaskTracker. One map task

for each block will cause too many tasks wasting time for slot

reallocation and task initialization.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS 2015)

25

4. IMPROVED INPUT SPLITTING
Improved Input Splitting clusters data blocks co-located in the

same node, to address the problems of original splitting

method of Hadoop implementation and improve the

MapReduce performance. Input data splitting is processed

before the Map phase. Here it is extended to include the

Improved Input Splitting mechanism based on locality[5].

Improved Input Splitting mechanism consults to the resource

masters for slots utilization details. It also asks the DFS

master for the location of the replicas of data blocks and then

clusters the suitable blocks into the respective partitions.

Fig 3: Improved Input Splitting Strategy co-locates the

same node into one partition

Here data is split into multiple nodes. Also there are multiple

replicas available for each split. To improve the overall

performance, the appropriate replica is to be chosen based on

the locality factor.The DataNodes send heart-beat messages to

the NameNode to keep in touch. Through these messages it is

possible to understand their status. The JobTracker is

consulted for the corresponding nodes utilization to decide

which node replica we choose. So the data for the map task is

chosen based on the location of the data replicas. If a

particular replica is chosen, then all the data of that node is

given to the local map task. This avoids non local reading of

data by the map task. This avoids network problems and also

improves the overall processing time.SplitList is an array list.

Here each array contain the blocks of the same partition, and

SplitMemNum is the arrays in this list. In step 8 we choose

the proper replica for every block. Then we cluster the

replicas into partitions based on its locality. We do this by

checking the location of a replica. If it exist in the SplitList, it

is added to the location partition, if not then insert a new list

into SplitList of this new location. HDFS master is consulted

for file mate-data information including file blocks, numbers

of block replica and the replicas’ location etc. The

MapReduce master is monitored for slot utilization.

Alg 1: Improved Input Splitting based on Locality

5. EVALUATION
WordCount program is used to compare the MapReduce

performance with and without the Improved Input Splitting

method. The execution of the WordCount program using the

inbuilt class is shown in figure 4. The total time taken for the

execution is 5226ms.Figure 5 shows the result of the

execution of the WordCount program using the extended class

which implements the Improved Input Splitting. The time

taken for the execution of the program in this case is

3767ms.Figure 6 is the comparison of the two methods, using

the built in class and using the Improved Input Splitting

method. It is clearly visible that the Improved Input Splitting

method performs better than the default method.

Figure 4: Execution of WordCount Program using inbuilt

class

Figure 5: Execution of WordCount Program using

Improved Input Splitting mechanism

International Journal of Computer Applications (0975 – 8887)

International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS 2015)

26

Figure 6: Comparison of the two methods

6. CONCLUSION
The performance of the MapReduce greatly depends on the

input data splitting that happens before the map phase. The

number of input splits decides the number of map tasks.

Usually, the input data splitting is done using hash based

methods. But these methods may result in non local reading of

data by the map task and consumption of large network

resources. The new Improved Input Splitting method splits the

input data in such a way that the replicas are chosen based on

their locality. This results in assigning data to local map tasks.

This greatly improves the performance of MapReduce. The

performance was tested using the WordCount program. It is

seen that the Improved Input Splitting method performs better

than the already existing method.

7. REFERENCES
[1] J. Tan, S. Meng, X. Meng, et al., ”Improving

ReduceTask data locality for sequential MapReduce

jobs,” in INFOCOM, 2013 Proceedings IEEE, 2013, pp.

1627-1635

[2] R. Vernica, A. Balmin, K. S. Beyer, et al., ”Adaptive

MapReduce using situation-aware mappers,” in

Proceedings of the 15th International Conference on

Extending Database Technology, 2012, pp. 420-431.

[3] A. Rasmussen, M. Conley, G. Porter, et al., ”Themis: an

I/O-efficient MapReduce,” in Proceedings of the Third

ACM Symposium on Cloud Computing, 2012, p. 13.

[4] S. Ibrahim, H. Jin, L. Lu, et al., ”Maestro: Replica-aware

map scheduling for mapreduce,” in Cluster, Cloud and

Grid Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on, 2012, pp. 435-442.

[5] M. Hammoud and M. F. Sakr, ”Locality-aware reduce

task scheduling for mapreduce,” in Cloud Computing

Technology and Science (Cloud- Com), 2011 IEEE

Third International Conference on, 2011, pp. 570- 576.

[6] T. Condie, N. Conway, P. Alvaro, et al., ”Online

aggregation and continuous query support in

mapreduce,” in Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, 2010,

pp. 1115-1118.

[7] J. Dean and S. Ghemawat, ”MapReduce: simplified data

processing on large clusters,” Communications of the

ACM, vol. 51,pp.107-113,2008.

[8] H.-c. Yang, A. Dasdan, R.-L. Hsiao, et al., ”Map-reduce-

merge:simplified relational data processing on large

clusters,” in Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, 2007,

pp. 1029-1040.

[9] Hadoop is released as source code tarballs with

corresponding binary tarballs for convenience

http://hadoop.apache.org/

[10] https://www.mapr.com/blog/understanding-mapreduce-

input-split-sizes-and-mapr-fs-chunk-

sizes#.VQcuCfmUegI

[11] http://dailyhadoopsoup.blogspot.in/2014/02/mapreduce-

inputs-and-splitting.html

[12] The paperwork for opening a business or getting

unemployment http://www.openstack.org/

[13] http://www.cloudera.com/content/cloudera/en/products-

and-services/cdh/hdfs-and-mapreduce.html

[14] http://www.revelytix.com/?q=content/hadoop-overview

[15] MarkLogic Connector for Hadoop Developer’s

Guidehttp://docs.marklogic.com/hadoop:get-splits

[16] http://grepcode.com/file/repository.cloudera.com/content

/repositories/releases/com.cloudera.hadoop/hadoop-

core/0.20.2737/org/apache/hadoop/mapreduce/lib/input/F

ileInputFormat.java

[17] Chunguang Wang; Qingbo Wu; Yusong Tan; Wenzhu

Wang; Quanyuan Wu, "Locality Based Data Partitioning

in MapReduce," Computational Science and Engineering

(CSE), 2013 IEEE 16th International Conference on ,

vol., no., pp.1310,1317, 3-5 Dec. 2013

IJCATM : www.ijcaonline.org

