
International Conference on Emerging Technology Trends on Advanced Engineering Research (ICETT’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

6

Visualization of Graphical Modeling Framework as

Recovery Process for Reverse Engineering in Object

Oriented Design

Kishor R. Kolhe
Research Scholar,

JJTU, Jhunjhunu (Rajasthan), India

Akhilesh R. Upadhyay, PhD.
Dept.of EC Engg., Sagar Institute of Research and

Technology – Bhopal, 462041(M.P.), India

ABSTRACT

For measuring software quality, majority of approaches focus

on metric calculation based on code, which comes very late in

the software development life cycle. The proposed approach

presents a forward as well as reverse engineering approach

that will detect software design patterns in UML model for

forward engineering and from Java source code as a part of

reverse engineering. Our approach uses structural, behavioral

and semantic analysis. We introduce behavioral and semantic

analysis that removes false positives from our structural

analysis results. We are interested in assessing the quality of

the software design by checking whether it conforms to

design pattern and calculating package software metrics.

Based on these two parameters the quality of the software

system can be analyzed. We provide a tool that implements

our approach. An XML schema of design pattern(s) which

further facilitates to automate the process of design pattern

identification given a class diagram with the help of a tool

base. Design patterns are a proven way to build high-quality

software.

Keywords: Design Patterns, Semantic Analysis, XML

Schema.

1. INTRODUCTION

To avoid unnecessary complexity, and promoting code reuse,

maintainability and extensibility Design patterns act as

recurring solutions and offer significant benefits. There are

several code based design pattern detection approaches which

currently exist. However, these approaches have the drawback

that the design pattern analysis is performed at

implementation level and not at design level. This is at much

later stage in the software development life-cycle, because of

which good design decisions cannot be incorporated at early

stage of software development. That is why design based

pattern recognition addressed as a part of our approach is

more suitable for forward engineering activities.

As a part of our approach, we propose, the quality of software

architecture can be analyzed on the basis of conformance to

the design patterns. Patterns are often used in software

architecture designs to implement simple concept and have

proven their value over time. Design pattern symbolizes good

arrangement of data and control as a part of software

structure. Therefore it is useful to check the presence of a

pattern in software architecture to assess the quality of the

design. The quality can be quantified by the degree of

conformance software architecture has with a set of already

defined design patterns. In our two pronged approach, this is

the first factor which we have considered for quality analysis.

For measuring software quality, majority of approaches focus

on metric calculation based on code, which comes very late in

the software development life cycle. If the calculated Object

Oriented metrics are poor at this stage lot of efforts are needed

to correct them. Therefore it is better to calculate the Pattern

Software Metrics at Design Phase to assure Software Quality

well before the Implementation starts. This paper describes

how Design Patterns can be identified from UML class

diagrams and their quality also can be assessed at the same

time i.e. at Design phase.

2. LITERATURE REVIEW

Maplesden [13] proposes the Design Pattern Modelling

Language (DPML), a notation supporting the specification of

design pattern solutions and their instantiation into UML

design models. DPML supports incorporation of patterns at

design-time, rather than program coding, assuming that if

patterns can be effectively incorporated into a UML class

model then conversion to code is straightforward. Though it is

just a specification method no one has tested its effectiveness.

Costagliola [6] proposed a dual approach for pattern detection

including code and design levels. At the code level, the input

is OO source code, which is pre-processed by the Source

Code Extractor to obtain an intermediate representation. At

the design level, the Class Diagram Abstractor is able to

import this representation to generate the corresponding graph

structure. The SVG translator adds layout information to the

graph, and the corresponding UML class diagram is translated

in SVG format. This approach does not require a pre-

processing phase to reduce the search space complexity and

the cardinality of the set of the retrieved pattern candidates, as

carried out by an earlier discussed method by Antoniol [8].

This tool lacks in scalability. Arcelli [9] suggests a process of

design pattern detection which is based on micro architectures

recognition. Instead of analyzing source code directly, they

summarizes it into a set of structures, called subcomponents

or micro architectures, which are not ambiguous and involve a

limited, number of types. This resolves the scalability issue.

The results obtained are then processed by other two modules,

one called Joiner that identifies sets of classes which could be

“good" candidates to be design pattern instances and the other,

called Neural Network which evaluates if the candidates

identified by the Joiner are really “good" or not. Results

obtained are not completely satisfactory but can be improved

by building a larger and more balanced dataset, in order to

have more reliable results. All these design based approaches

cover structural aspects of design pattern. Later paragraph talk

about the design based pattern recognition approaches which

cover both structural and behavioral aspects of design

patterns.

International Conference on Emerging Technology Trends on Advanced Engineering Research (ICETT’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

7

At the design level, the Class Diagram Abstractor is able to

import this representation to generate the corresponding graph

structure. The SVG translator adds layout information to the

graph, and the corresponding UML class diagram is translated

in SVG format. This approach does not require a pre-

processing phase to reduce the search space complexity and

the cardinality of the set of the retrieved pattern candidates, as

carried out by an earlier discussed method by Antoniol [8].

This tool lacks in scalability.

3. SYSTEM PROPOSED

3.1 Design Patterns

With the increasing complexity and size of the software

systems, understanding and changing of these systems

become difficult tasks, particularly when the architecture and

design documentations are incomplete, missing over time, and

inconsistent with the source code. Recovering the original

design decisions and tradeoffs may help developers to

understand large systems and make change more easily.

Design patterns generally document the design decisions and

tradeoffs as well as possible ways for future evolutions. Thus,

recovering the design patterns applied in a software system

can assist to cope with the complexity of large systems. Such

recovery processes are typically not done from scratch but

take advantages of some existing reverse engineering tools to

extract the important information from source code into some

intermediate representations, such as UML diagrams. When a

design pattern is applied in a design, on the other hand, the

role information about its participants is generally lost.

Recovering such information from the UML diagrams can

help the designers to understand the design and communicate

with other designers. While the UML diagrams are normally

stored in some proprietary format, it is hard to directly

manipulate them. To solve this problem, we use the XMI

standard to serialize UML into XML file and use it as the

intermediate representation. XMI is an XML-based standard

proposed by the Object Management Group that maps UML

to XML. We use XMI as the intermediate representation

based on the following reasons. First, XMI is an interchange

format for metadata in terms of the Meta Object Facility.

While UML models are generally persisted in some

proprietary format of certain tool platforms, XMI specifies

how UML models are mapped into a platform-independent

XML file. By representing a UML model in XML, the UML

model can be searched for patterns.

Thus, the structural analysis can be reduced to the matching of

the design pattern matrix with the system matrix as well as the

weights of the design pattern classes with the weights of the

system classes. We call it a match as long as there exists a sub

matrix of the system matrix such that all cells of the sub

matrix are the integral multiples of the corresponding cells in

the design pattern matrix and that the weights of the classes

Fig.3-1. Overall architecture of the approach in the sub matrix

are the integral multiples of the weights of the corresponding

design pattern classes. We relax the criteria of structural

analysis to reduce the false negative cases. As a consequence,

however, the number of false positive cases may increase. The

false positive cases in the structural analysis results can be

eliminated in the later analysis processes, i.e., the behaviour

and semantic analysis. Our behavioural analysis checks

whether a desired method invocation exists in a class with the

right signatures and polymorphic definitions. Different design

patterns may require different behavioural analyses which can

be determined by the pattern behavioural characteristics

described in the XML file of pattern definition. Some design

patterns, such as Bridge and Strategy, are similar in their

structures and behaviours. They may only differ from their

intents and motivations.

Fig. 3-1. Class diagram — from Java AWT

Although source code generally retains no such semantic

information from system design, the naming convention of

classes may actually provide some trace of the original design

intents and motivations. For example, several class names in

the Java.awt contain “Strategy,” which is a good indication of

the original intents. Our semantic analysis checks the naming

conventions when the distinctions are needed. Although

naming conventions are not always observed by developers,

they actually help to distinguish patterns in many cases as

shown in our experiments. The semantic characteristics that

need to check for each design pattern are also provided by the

pattern definition file in XML.

The behavioural and semantic analyses may require checking

the source code directly, in addition to the intermediate

representations. However, such checks are based on the

results from structural analysis so that only particular classes

and methods, instead of the entire source code, are checked.

Table 3.1 – Matrix for class diagram in Fig. 3-1

3.2 Formal Specification of our approach

3.2.1 Structural Analysis

In the previous section, we introduce the main ideas of our

approach. To be more precise, clear, and unambiguous, we

formally specify our pattern recovery approach in this section.

We use three patterns, namely, the Adapter, Strategy and

Composite patterns, as examples to illustrate our approach.

Structural Analysis as discussed in the previous section, the

structural analysis concentrates on the classes in a software

system and their attributes, operations, and relationships with

other classes. More specifically, we define set ELM for

attributes and operations as well as set REL for relations, such

as association, generalization, dependence, aggregation, and

realization as follows:

ELM ={attr, oper}

REL ={assoc, gener, depd, aggr, realz}.

Class represents a set of classes. PN is a set of prime numbers.

For example

International Conference on Emerging Technology Trends on Advanced Engineering Research (ICETT’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

8

PN = {2, 3, 5, 7, 11, 13}.

Definition 3.1 (Class-to-Class Relation): The relation between

two classes is a function

r : Class × Class → 2REL.

Example 3.1 (Class-to-Class Relation):

r(A,B) ={assoc, gener, depd}

r(A,B) ={aggr}

r(A,B) ={realz}

represent that classes A and B have the association,

generalization, and dependence relationships, aggregation

relationship, or realization relationship, respectively.

Definition 3.2 (Encoding Function): The elements of sets

ELM and REL are assigned with a unique prime number by a

function

ρ : ELM ∪ REL → PN.

Example 3.2 (Encoding Function): We use the following

encodings in this paper:

ρ(attr) =2

ρ(oper) =3

ρ(assoc) =5

ρ(gener) =7

ρ(depd) =11

ρ(aggr) =13.

Definition 3.3 (Cell Value Function): All relationships

between two classes are mapped into n integer by a function

γ : Class × Class → N

such that ∀A, B ∈ Class

γ(A,B) = i

ρ(Ri) ∀Ri ∈ r(A,B) if r(A,B) = i

γ(A,B) =1, if r(A,B) = i.

Definition 3.4 (System Matrix): The relationships between the

classes of a system are defined as a square matrix

Am = (aij)m

Where aij = γ(Ci, Cj), Ci, Cj ∈ Class, 1 ≤ i, j ≤ m, and

|Class| = m.

Definition 3.5 (Weight): The weight of each class is defined

as a function

ω : Class → N

such that ∀A ∈ Class

ω(A) = ρm(attr) × ρn(oper) ×i

γ(A,Ci)

where 1 ≤ i ≤ l, Ci ∈ Class, miss the number of attributes that

class A contains, n is the number of operations that class A

contains, and l = |Class|.

Definition 3.6 (System Weight Vector): The weights of all

classes in a system are defined by the following vector:

Vector Bm = (bi)m

where bi = ω(Ci), Ci ∈ Class, 1 ≤ i ≤ m, and |Class| = m.

Consider a set of design patterns that need to be discovered

from a software system

PATTERN={adapter, bridge, strategy, composite, . . .}.

Definition 3.7 (Pattern Class): All classes that participate in a

design pattern are defined as its pattern classes, and ∀p ∈

PATTERN, Class(p) represents the set of classes participating

pattern p.

Definition 3.8 (Pattern Matrix): The relationships between the

classes of a design pattern are defined as a square matrix

DM(p) = Am = (aij)m, p∈ PATTERN

where aij = γ(Ci, Cj), Ci, Cj ∈ Class(p), 1 ≤ i, j ≤ m, and

|Class(p)| = m.

Definition 3.9 (Pattern Weight Vector): The weights of all

classes in a design pattern are defined by the following vector:

Vector DW(p) = Bm = (bi)m, p∈ PATTERN

where bi = ω(Ci), Ci ∈ Class(p), 1 ≤ i ≤ m, and

|Class(p)| = m.

Definition 3.10 (Matrix Match): Consider a system matrix

Am = (aij)m, |Class| = m, and a design pattern p ∈PATTERN,

|Class(p)| = n with its matrix DM(p) =(dij)n. If there exists a

submatrix of Am

sub An = (sij)n = A[k1, k2, . . . , kn; k1, k2, . . . , kn],

(1 ≤ k1, k2, . . . , kn ≤ m)

such that

sij mod dij = 0, 1 ≤ i, j ≤ n

then the pattern matrix matches the system matrix.

Definition 3.11 (Weight Match): Consider a system weight

vector Bm = (bi)m, |Class| = m, and a design pattern p ∈

PATTERN, |Class(p)| = n with its weight vectorDW(p) =

(di)n. If there exists a subvector of Bm

sub Bn = (si)n = B[k1, k2, . . . , kn],

(1 ≤ k1, k2, . . . , kn ≤ m)

such that

si mod di = 0, 1 ≤ i ≤ n

then the pattern weight vector matches the system weight

vector.

Definition 3.12 (Pattern Structure Match): When both the

matrix and weight of a design pattern match those of a system,

it is defined as structure match. This definition can be derived

directly from the previous two definitions. Informally

speaking, the previous definitions use matrices and weights to

represent the structural information of systems and patterns

and define the matching of a pattern structure with a system

structure. More specifically, the system matrix (Definition

3.4) or pattern matrix (Definition 3.8) describes the

relationships, such as generalization and association, between

the classes in a system or a pattern, respectively. Pattern

matrix and weights serve as the criteria of structural analysis.

When there is a matrix match (Definition 3.10) between a

system matrix and a pattern matrix, it shows that the system

International Conference on Emerging Technology Trends on Advanced Engineering Research (ICETT’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

9

includes some classes having the same relationships as those

in the pattern. If the weights of these classes in the system

also match those of the classes in the pattern, which is called a

weight match (Definition 3.11), it shows that these classes

have the required numbers of attributes and operations by the

corresponding pattern. Therefore, these classes, whose matrix

and weights match those of the pattern, can be considered as a

structure match with the pattern (Definition 3.12) and, thus, a

candidate instance of the pattern.

4. EXPERIMENTS & RESULT

ANALYSIS

4.1 Experiments for Adapter Pattern

The DPI is given as an input the system which has adapter

design pattern implemented in its design. Our DPI should be

able to extract pattern related information i.e. the name of the

pattern and its components and their role names.

The UML file which is given as input is as shown in Fig 4-1

Fig 4-1 Class diagram containing Adapter Design Pattern

The source code for the same is as shown in the following

listing

MyAdaptee.java

public class MyAdaptee {

 public void xyz() {

 // TODO Auto-generated method stub

 }

}

MyConcreteAdapter.java

public class MyConcreteAdapter extends MyAdapter {

 private MyAdaptee adaptee = null;

 @Override

 public void operation() {

 adaptee.xyz();

 }

}

MyAdapter.java

public class MyAdapter {

 public void operation() {

 // TODO Auto-generated method stub

 }

}

The Results found by DPI is as shown below

UML file : C:\DPIfinalnew\res\uml\my_adapter.uml

------------- Identifying Design Patterns ----------------

Source Folder : C:\DPIfinalnew\res\source\adapter

 Matrix

 MyConcreteAdapter MyAdapter MyAdaptee

--

MyConcreteAdapter 1 17 5

 MyAdapter 1 1 1

 MyAdaptee 1 1 1

 Weight

MyConcreteAdapter : 255

 MyAdapter : 3

 MyAdaptee : 3

 Structural Analysis

Below design patterns are found :-

......................................

Pattern Name : ADAPTER PATTERN

 Adapter : MyAdapter

ConcreteAdapter : MyConcreteAdapter

 Adaptee : MyAdaptee

 Behavioral Analysis

Below design patterns successfully passed Behavioral

Analysis test -

......................................

Pattern Name : ADAPTER PATTERN

 Adapter : MyAdapter

 ConcreteAdapter : MyConcreteAdapter

 Adaptee : MyAdaptee

 Semantic Analysis

Below design patterns successfully passed Semantic Analysis

test :-

International Conference on Emerging Technology Trends on Advanced Engineering Research (ICETT’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

10

......................................

Pattern Name : ADAPTER PATTERN

 Adapter : MyAdapter

 ConcreteAdapter : MyConcreteAdapter

 Adaptee : MyAdaptee

------------------ Done -------------------

We can see that in structural, behavioral and semantic analysis

Adapter design pattern is identified.

5. CONCLUSION AND FUTURE WORK

In our system, we have presented the formal specification of

our design pattern recovery approach and experimental

results. Our approach uses XMI as the intermediate

representation format to represent the UML diagram

information extracted from source code. XMI is a standard for

metadata exchange, which allows our approach to work with

existing software design and development tools, such as

Eclipse. Our approach includes structural, behavioural, and

semantic analyses, each of which refines the results from the

previous phases. Our approach also uses matrices and weights

encoded by prime numbers to represent object-oriented design

information, which facilitates the pattern-matching processes.

Based on our approach, we have developed a tool, called

Design Pattern Identifier, to recover design patterns.

 During structural analysis phase, our tool extracts the

structural information of the pattern and encodes it into a

matrix and weights in a similar way as we encode the system.

Thus, the structural analysis can be reduced to the matching of

the design pattern matrix with the system matrix as well as the

weights of the design pattern classes with the weights of the

system classes.

We have implemented it for Composite, Adapter and Strategy

Design Patterns and getting good results. The same approach

can be implemented for all the 23 Design Patterns. The

Pattern Software metrics is also implemented by using matrix

approach and if they match the quality attributes as specified

by quality assurance norms they qualify the quality check. If

the values of Efferent and Afferent Coupling if less than 3,

then the design is called good else it is termed as bad. If the

install ability is 0, the design is evaluated as a stable package.

6. REFERENCES

[1] C. Kramer and L. Prechelt. Design recovery by automated

search for structural design patterns in object-oriented

software. In Proc. of the 3 Working Conference on Reverse

Engineering (WCRE), Monterey, A, pages 208-215. IEEE

Computer Society Press, November 1996.

[2] G. Antoniol, G. Casazza, M. di Penta, and R. Fiutem,

“Object-Oriented Design Patterns Recovery,” J. Systems and

Software,vol.59,pp.181-196,

http://web.soccerlab.polymtl.ca/~antoniol/publications/index.

html, Nov. 2001.

[3] R. K. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern

based reverse-engineering of design components. In

ICSE,pages 226–235, 1999.

[4] J. Niere, J.P. Wadsack, and A. Zudorf, “Recovering UML

Diagrams from Java Code Using Patterns,” Proc. Second

Workshop Soft Computing Applied to Software Eng., J.H.

Jahnke and C. Ryan,eds., pp. 89-97,

http://trese.cs.utwente.nl/scase/scase-2/Proceedings.pdf, Feb.

2001.

[5] Sergiu Dascalu, Ning Hao, Narayan Debnath “Design

Patterns Automation with Template Library” 2005 IEEE

International Symposium on Signal Processing

[6] Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia,

Carmine Gravino, Michele Risi” Design Pattern Recovery by

Visual Language Parsing” Proceedings of the Ninth European

Conference on Software Maintenance and Reengineering

(CSMR’05)1534-5351/05 $20.00 © 2005 IEEE

[7] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe,

“Automatic design pattern detection,” in Proc. 11th IWPC,

2003, pp. 94–103.

[8] G. Antoniol, R. Fiutem and L. Cristoforetti” Design Pattern

Recovery in Object-Oriented Software” Istituto per la Ricerca

Scientifica e TecnologicaPovo (Trento), Italy I-38050

[9] Francesca Arcelli, Stefano Masiero, Claudia Raibulet”

Elemental Design Patterns Recognition In Java” Proceedings

of the 13th IEEE International Workshop on Software

Technology and Engineering Practice (STEP'05)0-7695-

2639-X/05 $20.00 © 2005T.

[10] Taibi, D. Check, and L. Ngo. Formal specification of design

patterns-a balanced approach. Journal of Object

Technology,2(4), July-August 2003.

[11] Kim and W. Shen”Using Role Based Modelling Language

(RBML)to characterise Model Families”2002

[12] Bayley and H. Zhu. Formalising design patterns in predicate

logic. In Proc. of SEFM’07

[13] D. Mapdlsden, J. Hosking, and J. Grundy, “Design Pattern

Modelling and Instantiation Using DPML,” Proc. 40th Int’l

Conf.Object-Oriented Languages and Systems (TOOLS

Pacific ’02), 2002

[14] W. P. Stevens, G. J. Myers, and L. L.Constantine,

"Structured design," IBM Systems Journal, vol. 13, pp. 115–

139, 1974.

[15] Model Driven Architecture. [Online]. Available:

http://www.omg.org/mda/

[16] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified

Modeling Language User Guide. Reading, MA: Addison-

Wesley, 1999.

[17] Jing Dong, Senior Member, IEEE, Yajing Zhao, and

Yongtao Sun” A Matrix-Based Approach to Recovering

Design Patterns”IEEE TRANSACTIONS ON SYSTEMS,

MAN, AND CYBERNETICS—PART A: SYSTEMS AND

HUMANS, VOL. 39, NO. 6, NOVEMBER 2009

[18] Chidamber S.R., Kemerer C.F., A metrics suite for object

oriented design, Software Engineering, IEEE Transactions,

Vol 20, (1994) 476 -493

[19] Chitra S. Atole and K. V. Kale,” Assessment of Package

Cohesion and Coupling Principles for Predicting the Quality

of Object Oriented Design” 1-4244-0682-X/06/$20.00

©2006 IEEE

[20] W Rebecca, W Brian, W Lauren, “Designing Object

Oriented Software” Prentice Hall 2000.

International Conference on Emerging Technology Trends on Advanced Engineering Research (ICETT’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

11

AUTHOR’S PROFILE

MR. KISHOR R. KOLHE is persuing his PhD from JJTU,

Jhunjhunu (Rajasthan), India. He obtained his M. Tech. in

Information Technology degree from the Bharati Vidyapeeth

Deemed University, Pune [M.S.] and B.E (Hons) Electronics

Engineering from S.G.G.S. Institute of Engineering &

Technology, Nanded [M.S.] in year 2011 and 1996

respectively.

He is currently working as Assistant Professor in Information

Technology Department at Trinity College of Engineering and

Research, Pune, India. He has more than 5 years teaching and

10 years of industry experience. His areas of interest are

Software Engineering, Computer Network and Artificial

Intelligence. He has published more than five research papers

in journals and conferences. He has also guided fifteen

undergraduate students.

DR. AKHILESH R. UPADHYAY obtained Ph.D. degree

from the Swami Ramanand Teerth Marathwada University,

Nanded in 2009, M.E. (Hons.) and B.E. (Hons.) in Electronics

Engineering from S.G.G.S. Institute of Engineering &

Technology, Nanded [M.S.] in year 2004 and 1996

respectively.

He is currently working as Vice Principal and Head of

Electronics and Communication Engineering Department at

Sagar Institute of Research and Technology, Bhopal, India.

He has more than 12 years teaching and 3 years of industry

experience. He is Associate Editor of Journal of Engineering,

Management & Pharmaceutical Sciences, Ex-Editor of

International Journal of Computing Science and

Communication Technologies and member of editorial

boards/review committee of various reputed journals and

International conferences. He has more than 50 research

publications in various international/national journals and

conferences; he also authored more than 16 text/reference

books on electronics devices, instrumentation and power

electronics. He is recognized Ph.D. Supervisor for various

Universities in India and presently guiding 11 Ph.D. scholars.

