
Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

18

Implementation of Cryptography Hash Function Blake 64

bit using SHA-3 Algorithm

M.Rajaram

M .Tech VLSI Design Scholar,
 Dept. of ECE., Kalasalingam University,

Krishnankoil, virudhunagar Dist, Tamil Nadu, India

M.Arul Then Mathi
Assistant Professor

 Dept. of ECE., Kalasalingam University,
Krishnankoil, virudhunagar Dist, Tamil Nadu, India

ABSTRACT

Hash functions form an important category of cryptography,

which is widely used in a great number of protocols and

security mechanisms. In this paper the VLSI implementation

of one of the 14 “second-round” candidates BLAKE for 64 bit

and the round rescheduling technique design are proposed by

using modulo 2n adder and adiabatic multiplexer for high

throughput when compared to SHA 2.

Keywords

SHA-3, BLAKE 64, low power, , cryptography hash function,

Encryption

1. INTRODUCTION

A cryptographic hash function is a hash function, that is, any

algorithm that takes an arbitrary block of data and returns a

fixed-size bit string a hash function is generated by a function

H of the form h=H(M) where M is a variable-length message

and H(M) is the fixed length hash value. Hash functions are

used in a multitude of protocols, be it for digital signatures

within high-end servers or for authentication of embedded

.All hash function operate using bit-by-bit exclusive-OR

(XOR) function

 Ci= bi1 bi2 ….. bim

MD5, SHA-2, and their variants are the most popular hash

algorithms [1]. They follow the Merkle Damg°ard model and

use logic operations such as AND, OR, and XOR in their

compression functions. Recently, collision pairs have been

found for MD5, SHA-0 and SHA-1 making these algorithms

vulnerable to attacks because they do not have the collision

resistance property [2]. Due to security concerns of SHA-1

and recent advances in the cryptanalysis of hash algorithms a

new hash algorithm standard, SHA-3, which is meant to

replace SHA-2. SHA-3 is expected to have at least the

security of SHA-2, and to achieve this with significantly

improved efficiency besides a sufficient security level, SHA 3

should be implementable on a wide range of environments for

security. BLAKE is a second round candidate in the NIST

Hash Competition. BLAKE is one of the simplest designs to

implement, and relies on previously analysed components

such as the HAIFA structure and the Cha-ha core function.

The Inner state is initialized by using salt, counter value and

initial value IVi.

2. ALGORITHM SPECIFICATIONS

BLAKE-512 operates on 64-bit words and returns a 64-byte

hash value. All lengths of variables are doubled compared to

BLAKE-256 the chain values are 512-bit, message blocks are

1024-bit, salt is 256-bit, counter is 128-bit. It is based on the

iteration of a compression function.

3. COMPRESSION FUNCTION

BLAKE’s compression function is the combination of an

initialization, a sequence of rounds ,and a finalization. if m is

a message (a bit string), mi denotes its i-th 16-word block, and

mij is the j-th word of the i-th block of m . A N-block message

m is decomposed as m = m0,m1 . . .mN−1, and the block m0

is composed of words m00, m01,m02, . . . ,m015 each

message word contains 64 bit (ie; totally 1024 bits). The

compression function takes four inputs they are as follows:

1. Chaining values h=h0…..h7

2. A message block m=m0….m15

3. Salt s=s0….s3

4. Counter t=t0,t1

These inputs represent 30 words totally 1920 bits. The Salt is

an optional input for randomized hashing. Randomized

hashing is mainly used for digital signatures instead of

sending the signature Sign(H(m)), the signer picks a random r

and sends (Sign(Hr(m)), r) to the verifier. The advantage of

randomized hashing is that it relaxes the security requirements

of the hash function .The output of the compression function

is a new chaining value h0 = h00. . . h07 of eight words. The

hash value can be expressed as

 h = compress (h, m, s, t).

The compression function of BLAKE-64 makes 14 rounds

instead of ten, and that Gi (a, b, c, d) uses rotation distances

32, 25, 16, and 11, respectively. After ten rounds, the round

function uses the permutations σ 0, . . . , σ4 for the last four

rounds. The compressed function can be decomposed into

initialization, round function and Finalization.

3.1 INITIALIZATION

At the initialization stage, constants and redundancy of the

impose a nonzero initial state [5].The disposition of inputs

implies that after the first column step the initial value h is

directly mixed with the salt s and the counter tIt consists of 16

word internal states (v0,v1…….v15) is initialized such different

input produce different state. Initialization takes the input as

chaining value and produces the output as internal states. It

represent as 4×4 matrix

http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Bit
http://eprint.iacr.org/2007/278
http://cr.yp.to/chacha.html

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

19

 V0 V1 V2 V3

 V4 V5 V6 V7

 V8 V9 V10 V11

 V12 V13 V14 V15

The initial state is defined as

 h0 h1 h2 h3

h4 h5 h6 h7

S0 C0 S1 C1 S2 C2 S3 C3

t0 C4 t0 C5 t1 C6 t1 C7

3.2 ROUND FUNCTION

Once the state v is initialized, the compression function

iterates a series of 14 rounds. A round is a transformation of

the state v that computes

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13)

G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15) and then

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12)

G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

Figure 1: Block diagram of compression function

 The figure 1 shows the diagram is a compression function

for BLAKE 64 with input hash h, salt s, counter t and message

m. The round function takes the input as message, internal

states v0 to v15 and output is fin_v0 to fin_v15.The sequence G0

to G3 is called a column step. Similarly, the last four calls G4

to G7 in update distinct diagonals and are called a diagonal

step. The input message block is padded into 1024 bits.The

unary operator >>> denotes rotation of words towards least

significant bits.

3.3 FINALIZATION

 After the rounds sequence, the new chain value h00 to h07 is

extracted from the state v0, . . . , v15.With input of the initial

chain value h0, . . . , h7 and the salt s0, . . . , s3:

HH0 <= h0 s0 v0 v8;

HH1 <= h1 s1 v1 v9;

HH2 <= h2 s2 v2 v10;

HH3 <= h3 s3 v3 v11;

HH4 <= h4 s0 v4 v12;

HH5 <= h5 s1 v5 v13;

HH6 <= h6 s2 v6 v14;

HH7 <= h7 s3 v7 v15;

4. HASHING A MESSAGE

For BLAKE-512, message padding goes as follows: append a

bit 1 and as many 0 bits until the message bit length is

congruent to 895 modulo 1024. . Then append a bit 1, and a

128-bit unsigned big-endian representation of the message bit

length:

 m m||1000…0001<l>128

This procedure guarantees that the length of the padded

message is a multiple of 1024. It is then processed block per

block by the compression function, as described below

h0:= IV

For i = 0, . . . ,N − 1

hi+1 := compress(hi,mi, s, i)

return h N

Here, `i is the number of message bits in m0 to mi, that is,

excluding the bits added by the padding. It is used to avoid

certain generic attacks on the iterated hash “random salt” of

BLAKE-512 is a random variable uniformly distributed

over{0, 1}256, and may also mean “uniformly chosen at

random” .The initial value is written as IVi.

5. HASHING A SALT

The BLAKE hash functions take as input a message and a

salt. The aim of hashing with distinct salts is to hash with

different functions but using the same algorithm. Depending

on the application, the salt can be chosen randomly (thus

reusing a same salt twice can occur, though with small

probability), or derived from a counter (nonce). For

applications in which no salt is required, it is set to the null

value (s = 0). In this case the initialization of the state v

simplifies to

6. IMPLEMENTATION OF BLAKE64

WITH 8G CORE

The design shows the architecture of BLAKE, with an

iterative decomposition of the round process 8G. Different

architectures are made possible by varying the number of

integrated G modules [6]. For each round, a nonlinear

function G that operates on four words is applied to columns

and diagonals of the state

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

20

Figure 2: architecture of Blake 64 with 8G core

The figure 2 shows the architecture of Blake 64 with 8G

BLAKE requires some circuitry to perform initialization and

finalization for instance, w = 64 for BLAKE-64 the complete

execution of initialization and finalization can be performed in

the same clock cycle, when the new message block is given

BLAKE uses some constant values, which are

1. The 16 round constants Ci;

2. The 14 round permutations: uses rotation

distances 32, 25, 16, and 11. After 10

rounds the permutations σ0…σ4

3. The initial value IVi (eight w-bit words);

These values are used mainly by the G function; The G

functions performed on the four columns and diagonals can be

done in parallel, which allows convenient performance-area

trade-off. The performance can be improved if more resources

a. 8-word chaining value h;

b. 16-word internal state v;

c. 4-word of the salt value s;

d. 16-word message block m.

The sequential area is thus made by 44×w registers 2816 for

BLAKE 64 plus some additional registers for control unit

.The only differences with BLAKE-256’s Gi are the word

length (64 bits instead of 32) and the rotation distances. At

round r > 9, the permutation used is σr mod 10 in the last

round r = 14 and the permutation σ14 mod 10 = σ5 is used

 Round transformation is based on eight different functions

Gi, with i = 0,…,7. G functions, in the proposed architecture

operate on data with two different ways. First operates on v

matrix cell, in both column and diagonal step. In the proposed

architecture the first four functions Gi are computed in

parallel, due to the fact that each one of them transforms

different columns of the matrix. This is taken place in column

transformation. On the other hand, the next four of Gi

functions, G4,…,G7 work on diagonals and can be work on

parallel, in an alternative way. 8G-BLAKE design

corresponds to the isomorphic implementation of the round

Function. Eight G function units are instantiated; the first four

units work in parallel to compute the column step, while the

last four compute the diagonal step.

6.1 ROUND RESCHEDULING

 The G function of BLAKE 64 bit based on modified version

cha-cha cipher. The normal addition with the

message/constant (MC) -pair in the G function leads to an

increment of the propagation delay When the round sequence

function is taken over, the new chain value h’ = h’0, …, h’7 is

produced from the state v with inputs of the initial chain value

and the salt. Some generic Gi architecture, which is

basically, consists of n-bit modulo adders, XOR chains and

shift operations and registers .The figure 3 shows the diagram

of G function of BLAKE. In the architecture the first four

functions Gi are computed in parallel, due to the fact that each

one of them transforms different columns of the matrix. This

is taken place in column transformation. On the other hand,

the next four of Gi functions, G4,…,G7 work on diagonals

and can be work on parallel

Figure 3: Column step (on the left) and diagonal step (on the right) in BLAKE

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

21

Figure 4: Block diagram of rescheduled G function

The figure 4 shows the block diagram of rescheduled G

function. In this rescheduled G function consists of addition,

XOR and rotation operations. Each G function operates on 4

elements of state matrix BLAKE-512 is a series of 32 half-

rounds for each 128-byte block. Each half-round contains 4

parallel \G functions" each consuming 6 64-bit additions, 4

64-bit rotations, and 6 64-bit xors 6 64-bit additions per byte,

4 64-bit rotations per byte, and 6 64-bit xors per byte.

a = a + b + (mσr(2i) ⊕ cσr(2i+1))

d = (d ⊕ a)>>>32

c = c + d

b = (b ⊕ c)>>>25

a = a + b + (mσr(2i+1) ⊕ cσr(2i))

d = (d ⊕ a)>>>16

c = c + d

b =(b ⊕ c)>>>11

Where σr represents a permutation of integers between 0 and

15. There are ten different permutations, which are reused

when the round number is ten or greater round 10 uses σ0 and

round 11 uses σ1.The only differences with BLAKE-32’s Gi

are the word length (64 bits instead of 32) and the rotation

distances. At round r > 9, the permutation used is σrmod 10

7. CONCULSION

In the Blake 64 bit architecture, the design of Blake 32 bit

architecture is modified by using MOD 2 adder and adiabatic

multiplexer .compare to Blake 32 bit architecture this

modified design provide high throughput and low area, low

power in rescheduling G function. By the method of

initialization, round function and finalization in the network

security application the Blake 64 bit generate hash value .In

future enhancement by using carry save adder to increase the

throughput and reduce the propagation delay.

8. REFERENCES

[1] Spector, A. Z. 1989. Achieving application requirements.

In Distributed Systems, S. Mullender

[2] NIST, “Announcing the secure hash standard,” FIPS

180-2, Technical report, 2002

[3] R. Lien, T. Grem bowski, and K. Gaj, “A 1 Gbit/s

partially unrolledarchitecture of hash functions SHA-1

and SHA-512,” in Topics in Cryptology - CT-RSA 2004,

ser. Lecture Notes in Computer Science , vol.

2964.Springer Berlin / Heidelberg, 2004.

[4] X. Wang and H. Yu, “How to break MD5 and other

hash functions, ”in Advances in Cryptology -

EUROCRYPT 2005, ser. Lecture Notes inComputer

Science, vol. 3494. Springer Berlin / Heidelberg, 2005,

pp.19–35

[5] C. D. Cannière and C. Rechberger, “Finding SHA-1

characteristics: General results and applications,” in

Advances in Cryptology – ASIA CRYPT2006, ser.

Lecture Notes in Computer Science, vol. 4284.

SpringerBerlin / Heidelberg, 2006, pp. 1–20

[6] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W.

Phan, “SHA-3 proposal BLAKE,” Submission to NIST,

2008, http://131002.net/blake/

[7] Luca Henzen, Student Member, IEEE, Jean-Philippe

Aumasson, Willi Meier, andRaphael C.-W. Phan,

Member, IEEE “VLSI Characterization of the

Cryptographic Hash Function BLAKE” Oct. 2011

[8] D. J. Bernstein, “Cha-cha, a variant of Salsa20,” 2007,

http://cr.yp.to/ chacha.html

[9] “Call for a new cryptographic hash algorithm (SHA-3)

family,” Federal Register, Vol.72, No.212, 2007,

http://www.nist.gov/hash-competition

http://131002.net/blake/
http://cr.yp.to/

