
Special Issue of International Journal of Computer Applications (0975 – 8887) 

on International Conference on Electronics, Communication and Information Systems (ICECI 12) 

29 

Fault Secure Memory Design using Difference Set Codes 
 

 K.Manikandan 
M .Tech VLSI Design Scholar, 

 Dept. of ECE., Kalasalingam University,                                                
Krishnankoil, virudhunagar Dist, Tamil Nadu, India 

 G.Thiruselvi 
Assistant Professor 

 Dept. of ECE., Kalasalingam University, 
Krishnankoil, virudhunagar Dist, Tamil Nadu, India 

ABSTRACT 

Modified decoding algorithms for DS codes   are proposed 

that, in addition to error correction, provide error detection 

when the number of correctable bit errors is exceeded by one. 

This combined error detection and correction capability of the 

modified decoder are provide to prevent soft errors from 

causing data corruption, memories are typically protected with 

error correction codes (ECCs). Memory applications require 

low latency encoders and decoders. These codes allow us to 

design a fault tolerant error-detector unit that detects any error 

in the received code-vector despite having faults in the 

detector circuitry. The fault secure detector unit to check the 

output vector of the encoder and corrector circuitry, and if 

there is any error in the output of either of these units, that 

unit has to redo the operation to generate the correct output 

vector. Using this detect-and-repeat technique, correct 

potential transient errors in the encoder or corrector output 

and provide fault tolerant memory system with fault-tolerant 

supporting circuitry. 
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1. INTRODUCTION 

The fault-secure memory detection unit to design a fault 

tolerant encoder and corrector by monitoring their outputs .If 

a detector detects an error in either of these units, that unit 

must repeat the operation to generate the correct output 

vector. Using this retry technique, we can correct potential 

transient errors in the encoder and corrector outputs and 

provide a fully fault-tolerant memory system.  

Memory system design that can tolerate errors in any part of 

the system, including the storage unit and encoder and 

corrector circuits using the fault-secure detector. Any single 

error in the encoder or corrector circuitry can at most corrupt a 

single codeword bit this by preventing logic sharing between 

the circuits producing each codeword bit or information bit in 

the encoder and the corrector respectively .This fault-secure 

detector can verify the correctness of the encoder and 

corrector operation. A proposed reliable memory system is 

shown in Fig. 1 and is described in the following. The 

information bits are fed into the encoder to encode the 

information vector, and the fault secure detector of the 

encoder verifies the validity of the encoded vector. If the 

detector detects any error, the encoding operation must be 

redone to generate the correct codeword. The codeword is 

then stored in the memory. During memory access operation, 

the stored codeword’s will be accessed from the memory unit.  

All the memory words pass through the Additional Error 

Detection MLDD and any potential error [5] in the memory 

words will be corrected. Similar to the encoder unit, a fault-

secure detector monitors the operation of the corrector unit. 

 When using the normal decoder that requires 15 iterations 

(for codeword length 15) to decode a word .This results in a 

large latency that in a memory application would increase the 

access time. Additionally, the number of iterations would 

increase linearly with the length of the coded word. The 

latency of the decoder can be reduced by using a modified 

MLDD implementation 

 

Fig . (1) Memory system with Modified MLDD 

2. MlDD 

In general, the decoding algorithm is still the same as the one 

in the plain ML decoder version [1]. The difference is that, 

instead of decoding all codeword bits by processing the ML 

decoding during cycles, the proposed method stops 

intermediately in the third cycle, as illustrated in Fig. 2. If in 

the first three cycles of the decoding process, the evaluation of 

the XOR matrix for all is “0,” the codeword is determined to 

be error-free and forwarded directly to the output.If they 

contain in any of the three cycles at least a “1,” the proposed 

method would continue the whole decoding process in order 

to eliminate the errors. The control unit manages the detection 

process. It uses a counter that counts up to three, which 

distinguishes the first three iterations of the ML decoding 

3. MODIFIED MLDD 

The Modified MLDD algorithm performs the decoding as in 

the MLDD with some modifications The Modified MLDD 

algorithm is illustrated in Fig.4. Modified MLDD algorithm 

requires additional logic compared to the MLDD algorithm. 

The corrections are performed during the first n iterations. A 

counter is used to determine if there have been more than t 

errors in those iterations and based on the result the corrected 

or the original register is send to the output. If the majority 

gate detect any error in codeword the iterations take place  
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Fig. 2.Flow diagram of the MLDD algorithm 

depends upon the length of the codeword’s.                                                                 

The process stops after three iteration if the codeword length 

less than ten and six iteration for codeword less than twenty, if 

the codeword greater than 20 then nine iteration performed   

 

 

Fig. 3 Generator matrix for the (15, 7, 5) EG-LDPC 

Modified MLDD detect more than five bit-flips and high 

efficiency compare to Majority logic decoder. The control 

unit manages the detection process. It uses a counter that 

counts up to three, which distinguishes the first three 

iterations of the ML decoding. Data bits stay in memory for a 

number of cycles and, during this period, each memory bit can 

be upset by a transient fault with certain probability. 

Therefore, transient errors accumulate in the memory words 

over time. In order to avoid accumulation of too many errors 

in any memory word that surpasses the code correction 

capability, the system must perform memory scrubbing. 

Memory scrubbing is the process of periodically reading 

memory words from the memory, correcting any potential 

errors, and writing them back into the memory 

4. Encoder Design 

Encoder design [3] here used to encodes a k-bit information 

vector i into n-bit codeword c In this figure i = (i0... i6) is the 

information vector and will be copied to (c0... c6) bits of the 

encoded vector, c.  

 

An n-bit codeword, which encodes a -bit information vector, 

is generated by multiplying the k-bit information vector with a 

k × n bit generator matrix. 

The encoded vector consists of information bits followed by 

parity bits, where each parity bit is simply an inner product of 

information vector and a column of x , from G=[I : X] 

Fig. 3 shows the systematic generator matrix to generate (15, 

7, 5) code word. The encoded vector consists of information 

bits followed by parity bits, where each parity bit is simply an 

inner product of information vector and a column of , from . 

Fig.6 shows the encoder circuit to compute the parity bits of 

the (15, 7, 5) EG-LDPC code. In this Fig. 6 i = (i0... i6) is the 

information vector and will be copied to (c0... c6) bits of the 

encoded vector, c by the information vector and will be 

copied to bits of the encoded vector, , and the rest of encoded 
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vector, the parity bits, are linear sums (XOR) of the 

information bits. EG-LDPC codes are not systematic and the 

information bits must be decoded from the encoded vector, 

which is not desirable for fault-tolerant approach 

5. Corrector 

One-step majority logic correction [3] is the procedure that 

identifies the correct value of an each bit in the codeword 

directly from the received codeword the majority value 

indicates the correctness of the code-bit under consideration; 

if the majority value is 1, the bit is inverted, otherwise it is 

kept unchanged.  

 

 

Fig.5 Serial one-step majority logic corrector for 15-bit 

codeword’s 

The circuit implementing serial one-step majority logic 

Corrector for (15, 7) codeword is shown in Fig. 5. One-step 

majority-logic correction is a fast and relatively compact 

error-correcting technique 

 

Fig. 6 Encoder Circuit 

A compact implementation for the majority gate is by using 

Sorting Networks[3] .The binary Sorting Networks is used to 

do the sort operation of the second step efficiently. An -input 

sorting network is the structure that sorts a set of bits, using 2-

bit sorter building blocks. Fig. 7 (a) Shows a 4-input sorting 

network. Each of the vertical lines represents one comparator 

which compares two bits and assigns the larger one to the top 

output and the smaller one to the bottom see Fig. 7 (b) the 

four-input sorting network, has five comparator blocks, where 

each block consists of two two-input gates; overall the four-

input sorting network consists of ten two-input gates in total. 

6. Conclusion 

In this paper, modified Majority Logic detector/decoder 

(MLDD) code algorithms for difference set codes for memory 

applications have been proposed 

A fault-detection mechanism, Modified MLDD, has been 

presented based on MLDD decoding using the DSCCs .The 

proposed technique is able to detect any pattern of up to more 

than five bit-flips in the three  to nine cycles depending on the 

codeword length of the decoding process. This improves the 

performance of the design with respect to the traditional MLD 

approach.  

 

 

Fig 7 (a) Four-input sorting network; each vertical line 

shows a one-input comparator. (b) One comparator 

structure. (C) Eight-input majority gate using sorting 

network 

This is useful to avoid silent data corruption that can cause 

catastrophic failures in critical systems. By combining with 

MLDD techniques, the modified MLDD algorithms can be 

implemented very efficiently in terms of efficiency with a low 

latency. This makes them attractive for memory applications. 

The proposed scheme can be extended by requiring a larger of 

the majority logic check equations to take a value of one to 

perform a correction. This would increase the error detection 

capabilities at the expense of the error-correction capabilities. 
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