
Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

29

Fault Secure Memory Design using Difference Set Codes

 K.Manikandan
M .Tech VLSI Design Scholar,

 Dept. of ECE., Kalasalingam University,
Krishnankoil, virudhunagar Dist, Tamil Nadu, India

 G.Thiruselvi
Assistant Professor

 Dept. of ECE., Kalasalingam University,
Krishnankoil, virudhunagar Dist, Tamil Nadu, India

ABSTRACT

Modified decoding algorithms for DS codes are proposed

that, in addition to error correction, provide error detection

when the number of correctable bit errors is exceeded by one.

This combined error detection and correction capability of the

modified decoder are provide to prevent soft errors from

causing data corruption, memories are typically protected with

error correction codes (ECCs). Memory applications require

low latency encoders and decoders. These codes allow us to

design a fault tolerant error-detector unit that detects any error

in the received code-vector despite having faults in the

detector circuitry. The fault secure detector unit to check the

output vector of the encoder and corrector circuitry, and if

there is any error in the output of either of these units, that

unit has to redo the operation to generate the correct output

vector. Using this detect-and-repeat technique, correct

potential transient errors in the encoder or corrector output

and provide fault tolerant memory system with fault-tolerant

supporting circuitry.

Keywords

Error correction codes, low-density parity check (LDPC),

memory, majority logic.

1. INTRODUCTION

The fault-secure memory detection unit to design a fault

tolerant encoder and corrector by monitoring their outputs .If

a detector detects an error in either of these units, that unit

must repeat the operation to generate the correct output

vector. Using this retry technique, we can correct potential

transient errors in the encoder and corrector outputs and

provide a fully fault-tolerant memory system.

Memory system design that can tolerate errors in any part of

the system, including the storage unit and encoder and

corrector circuits using the fault-secure detector. Any single

error in the encoder or corrector circuitry can at most corrupt a

single codeword bit this by preventing logic sharing between

the circuits producing each codeword bit or information bit in

the encoder and the corrector respectively .This fault-secure

detector can verify the correctness of the encoder and

corrector operation. A proposed reliable memory system is

shown in Fig. 1 and is described in the following. The

information bits are fed into the encoder to encode the

information vector, and the fault secure detector of the

encoder verifies the validity of the encoded vector. If the

detector detects any error, the encoding operation must be

redone to generate the correct codeword. The codeword is

then stored in the memory. During memory access operation,

the stored codeword’s will be accessed from the memory unit.

All the memory words pass through the Additional Error

Detection MLDD and any potential error [5] in the memory

words will be corrected. Similar to the encoder unit, a fault-

secure detector monitors the operation of the corrector unit.

 When using the normal decoder that requires 15 iterations

(for codeword length 15) to decode a word .This results in a

large latency that in a memory application would increase the

access time. Additionally, the number of iterations would

increase linearly with the length of the coded word. The

latency of the decoder can be reduced by using a modified

MLDD implementation

Fig . (1) Memory system with Modified MLDD

2. MlDD

In general, the decoding algorithm is still the same as the one

in the plain ML decoder version [1]. The difference is that,

instead of decoding all codeword bits by processing the ML

decoding during cycles, the proposed method stops

intermediately in the third cycle, as illustrated in Fig. 2. If in

the first three cycles of the decoding process, the evaluation of

the XOR matrix for all is “0,” the codeword is determined to

be error-free and forwarded directly to the output.If they

contain in any of the three cycles at least a “1,” the proposed

method would continue the whole decoding process in order

to eliminate the errors. The control unit manages the detection

process. It uses a counter that counts up to three, which

distinguishes the first three iterations of the ML decoding

3. MODIFIED MLDD

The Modified MLDD algorithm performs the decoding as in

the MLDD with some modifications The Modified MLDD

algorithm is illustrated in Fig.4. Modified MLDD algorithm

requires additional logic compared to the MLDD algorithm.

The corrections are performed during the first n iterations. A

counter is used to determine if there have been more than t

errors in those iterations and based on the result the corrected

or the original register is send to the output. If the majority

gate detect any error in codeword the iterations take place

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

30

Fig. 2.Flow diagram of the MLDD algorithm

depends upon the length of the codeword’s.

The process stops after three iteration if the codeword length

less than ten and six iteration for codeword less than twenty, if

the codeword greater than 20 then nine iteration performed

Fig. 3 Generator matrix for the (15, 7, 5) EG-LDPC

Modified MLDD detect more than five bit-flips and high

efficiency compare to Majority logic decoder. The control

unit manages the detection process. It uses a counter that

counts up to three, which distinguishes the first three

iterations of the ML decoding. Data bits stay in memory for a

number of cycles and, during this period, each memory bit can

be upset by a transient fault with certain probability.

Therefore, transient errors accumulate in the memory words

over time. In order to avoid accumulation of too many errors

in any memory word that surpasses the code correction

capability, the system must perform memory scrubbing.

Memory scrubbing is the process of periodically reading

memory words from the memory, correcting any potential

errors, and writing them back into the memory

4. Encoder Design

Encoder design [3] here used to encodes a k-bit information

vector i into n-bit codeword c In this figure i = (i0... i6) is the

information vector and will be copied to (c0... c6) bits of the

encoded vector, c.

An n-bit codeword, which encodes a -bit information vector,

is generated by multiplying the k-bit information vector with a

k × n bit generator matrix.

The encoded vector consists of information bits followed by

parity bits, where each parity bit is simply an inner product of

information vector and a column of x , from G=[I : X]

Fig. 3 shows the systematic generator matrix to generate (15,

7, 5) code word. The encoded vector consists of information

bits followed by parity bits, where each parity bit is simply an

inner product of information vector and a column of , from .

Fig.6 shows the encoder circuit to compute the parity bits of

the (15, 7, 5) EG-LDPC code. In this Fig. 6 i = (i0... i6) is the

information vector and will be copied to (c0... c6) bits of the

encoded vector, c by the information vector and will be

copied to bits of the encoded vector, , and the rest of encoded

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

31

vector, the parity bits, are linear sums (XOR) of the

information bits. EG-LDPC codes are not systematic and the

information bits must be decoded from the encoded vector,

which is not desirable for fault-tolerant approach

5. Corrector

One-step majority logic correction [3] is the procedure that

identifies the correct value of an each bit in the codeword

directly from the received codeword the majority value

indicates the correctness of the code-bit under consideration;

if the majority value is 1, the bit is inverted, otherwise it is

kept unchanged.

Fig.5 Serial one-step majority logic corrector for 15-bit

codeword’s

The circuit implementing serial one-step majority logic

Corrector for (15, 7) codeword is shown in Fig. 5. One-step

majority-logic correction is a fast and relatively compact

error-correcting technique

Fig. 6 Encoder Circuit

A compact implementation for the majority gate is by using

Sorting Networks[3] .The binary Sorting Networks is used to

do the sort operation of the second step efficiently. An -input

sorting network is the structure that sorts a set of bits, using 2-

bit sorter building blocks. Fig. 7 (a) Shows a 4-input sorting

network. Each of the vertical lines represents one comparator

which compares two bits and assigns the larger one to the top

output and the smaller one to the bottom see Fig. 7 (b) the

four-input sorting network, has five comparator blocks, where

each block consists of two two-input gates; overall the four-

input sorting network consists of ten two-input gates in total.

6. Conclusion

In this paper, modified Majority Logic detector/decoder

(MLDD) code algorithms for difference set codes for memory

applications have been proposed

A fault-detection mechanism, Modified MLDD, has been

presented based on MLDD decoding using the DSCCs .The

proposed technique is able to detect any pattern of up to more

than five bit-flips in the three to nine cycles depending on the

codeword length of the decoding process. This improves the

performance of the design with respect to the traditional MLD

approach.

Fig 7 (a) Four-input sorting network; each vertical line

shows a one-input comparator. (b) One comparator

structure. (C) Eight-input majority gate using sorting

network

This is useful to avoid silent data corruption that can cause

catastrophic failures in critical systems. By combining with

MLDD techniques, the modified MLDD algorithms can be

implemented very efficiently in terms of efficiency with a low

latency. This makes them attractive for memory applications.

The proposed scheme can be extended by requiring a larger of

the majority logic check equations to take a value of one to

perform a correction. This would increase the error detection

capabilities at the expense of the error-correction capabilities.

7. REFERENCES

[1] Efficient Majority Logic Fault Detection With

Difference-Set Codes for Memory Applications Shih-Fu

Liu, Pedro Reviriego, Member, IEEE, and Juan Antonio

Maestro, Member, IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS,

VOL. 20, NO. 1, JANUARY 2012

[2] P. Ankolekar, S. Rosner, R. Isaac, and J. Bredow,

“Multi-bit error correction methods for latency-

contrained flash memory systems,” IEEE Trans. Device

Mater. Reliabil., vol. 10, no. 1, pp. 33–39, Mar. 2010.

[3] H. Naeimi and A. DeHon, “Fault secure encoder and

decoder for NanoMemory applications,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 4,

pp. 473–486, Apr. 2009.

[4] C. W. Slayman, “Cache and memory error detection,

correction, and reduction techniques for terrestrial

servers and workstations,” IEEE Trans. Device Mater.

Reliabil., vol. 5, no. 3, pp. 397–404, Sep. 2005.

[5] R. C. Baumann, “Radiation-induced soft errors in

advanced semiconductor technologies,” IEEE Trans.

Device Mater. Reliabil., vol. 5, no.3, pp. 301–316, Sep.

2005.

[6] S. Lin and D. J. Costello, Error Control Coding, 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall, 2004.

[7] S. Ghosh and P. D. Lincoln, “Low-density parity check

codes for error correction in nanoscale memory,” SRI

Comput. Sci. Lab. Tech. Rep.CSL-0703, 2007.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

32

[8] Heng Tang et al. Codes on finite geometries. IEEE

Transaction on Information Theory, 51(2):572–596,

2005.

[9] G. C. Cardarilli et al. Concurrent error detection in reed-

solomon encoders and decoders. IEEE Trans. VLSI,

15:842–826, 2007.

[10] Shu Lin and Daniel J. Costello. Error Control Coding.

Prentice Hall, second edition, 2004.

[11] S. Hareland et al. Impact of CMOS process scaling and

SOI on the soft error rates of logic processes. In

Procedings of Symposium on VLSI Digest of

Technology Papers, pages 73–74, 2001.

[12] R. Horan et al. Idempotents, mattson-solomon

polynomials and binary ldpc codes. IEE Proceedings of

Communication, 153(2):256–262, 2006.

[13] J. Kim et al. Error rate in current-controled logic

processors with shot noise. Fluctuation and Noise

Letters, 4(1):83–86, 2004.

[14] C. Tjhai, M. Tomlinson, M. Ambroze, and M.

Ahmed,“Cyclotomic idempotent-based binary cyclic

codes,” Electron. Lett., vol. 41, no. 6, Mar. 2005.

