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ABSTRACT 

The main intension of this work is to present the importance 

of neural chip with learning capability. The designed 

sequentially trained MLP structure is used to solve the 

classical XOR problem and the structure is realized on FPGA 

device environment. By comparing the device utilization 

summary for the design in different families of Xilinx FPGA, 

the importance of platform selection for hardware 

implementation is presented. Finally the importance of on-

chip learning is emphasized. 
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1. INTRODUCTION 

Artificial Neural Network (ANN) is an important soft 

computing tool. ANN is an adaptive statistical model which 

resembles the human brain activities. Artificial neuron is the 

main information processor of the network; it may inspired by 

biological neuron activities. Unlike conventional computers, 

ANN does the process of learning to structure an analytical 

model. The designed analytical model solves given tasks 

based on previous experience with reasonable accuracy, at 

reasonable cost and in a reasonable amount of time [1-3].  

An important characteristic of artificial neural network (ANN) 

is its inherent parallelism. All the neurons available in the 

same layer may work instantaneously. Hardware 

implementation may preserve this inherent parallelism [4], so 

computation speed may increase compared to sequential 

software implementation. Neural network hardware is usually 

defined as those devices structured to realize neural 

architectures and learning algorithms, especially those devices 

that take advantage of the inherent parallelism characteristic 

of ANN [17]. 

Reconfigurable FPGA architectures are suitable for hardware 

implementation of neural networks, because it preserves the 

parallelism characteristics of ANN [4], [12], [19].  

The main goal of the network is to learn some association 

between input and output patterns, or to analyze, or to find the 

structure of the input patterns [1]. Basic structure of a neuron-

perceptron model with ‘n’ input is shown in Fig.1 

 

Fig 1: Structure of a neuron-perceptron model 

The weighted sum value x is calculated as follows, 

                       ---------------- [1] 

The output value is calculated by applying the activation 

function on weighted sum value as follows 

                                     ----------------- [2] 

2. IMPLEMENTATION CONSIDERATI-

ON 

The important characteristics of the network depend on 

i. The activation functions  of the neuron; 

ii. Structure of the network; 

iii. Learning mechanism of the network. 

So during hardware implementation of ANN, these 

parameters should be considered for efficient implementation 

[4]. For classification task, Multilayer Perceptron architecture 

with back propagation learning algorithm is popularly used 

[5]. 

2.1 Network Structure 

Multilayer Perceptron is the most important neural network 

model to solve the real world problem [3]. In Multilayer 
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Perceptron network, the processing elements are usually 

organized into several layers as input layer, hidden layer, 

output layer as shown in Fig.2. There is no standard available 

to define the number of neurons and number of hidden layer 

to be available in each layer to structure the network. Defining 

the architecture to obtain the required performance is a 

tedious process; usually trial and error method is used to 

structure the network architecture [6], [13], [16]. 

 

Fig 2: Multilayer perceptron architecture 

Based on the input feature, count number of neurons in the 

input layer is defined. Test vector classes define the number 

of neurons in the output layer. The maximum number of 

neuron may be available in the hidden layer is {2(number of 

input feature) +1} [3]. In the network architecture if the 

number of neurons in the hidden layer is large in number it in 

turn increases the implementation complexity. So that 

maximum one hidden layer may enough to obtain the required 

performance [13], [16].  

2.2 Activation Function 

Generally neuron models use the same procedure to produce 

the total input signal, but they may differ in terms of how they 

produce an output response from this input. Artificial neurons 

use an activation function to compute their activation as a 

function of total input stimulus [1].  

Activation functions are the mathematical formula, which is 

used to determine the output of a processing node. If the 

weighted input sum value is greater than the threshold value, 

means the neuron produces output. Several different functions 

may be used as an activation function. 

 Some activation functions are: 

(i) Threshold activation function 

(ii) Sigmoid activation function 

(iii) Linear activation function 

In Fig.1 f(x) denotes the activation function of the neuron. 

Activation functions such as sigmoid are mostly used because 

sigmoid activation function is continuously differentiable 

which are desirable for network learning [1-3]. 

2.3 Learning 

Learning is the process of changing the weight of the network 

to acquire the desired behavior. During the learning process, 

set of training pattern is given to the network. In neural 

networks three types of learning is used. They are  

(i) Supervised Learning 

(ii) Unsupervised Learning 

(iii) Reinforcement Learning 

Generally, MLP network uses the supervised back 

propagation learning to train the network [5]. In supervised 

learning, the training pattern may have a set of input feature 

and its corresponding target output. When the network is 

converged, that is the difference between the target output and 

actual output becomes small then the training is stopped. Now 

the network is ready for the testing phase [3]. 

Due to its calculation power and simple effective concept is 

mostly used for pattern recognition application [5]. Popularity 

of BP algorithm mainly revolves around the MLP network to 

learn complicated multidimensional mappings. 

3. BACKPROPAGATION ALGORITHM 

Back Propagation (BP) Algorithm is an effective two pass 

multi layer supervised learning algorithm to train the 

multilayer perceptron network to obtain the solution for non-

linearly separable problem [5-6].  

There are two passes available in BP algorithm [3]. They are, 

(i) Forward Pass 

(ii) Feedback Pass 

3.1 Forward Pass 

MLP network is a fully connected network in which all the 

neurons in each layer are connected to all the neurons in the 

next layer. 

 

Fig 3: Generalized MLP architecture 

Generalized MLP architecture is shown in Fig.3 [3].Where 

{X1,…Xi,…Xn} neurons available in the input layer,{ Z1,… 

Zj,…..Zk } neurons available in the hidden layer, 

{Y1,…Yk,…Ym}, , - weight values of bias term. , 

-  weight values between neurons. 

In forward pass, the input data travelled from the input layer 

to output layer to obtain the output value at each processing 

element and the corresponding error value is calculated at the 

output layer. 

During the training phase, the input vectors linearly travel 

through the input layer. The synaptic weight in between 

neurons determines the strength of the signal to be transferred. 

The ease of transmission of signal altered by the weighted 

signal is the basic for learning method 



Special Issue of International Journal of Computer Applications (0975 – 8887) 

on International Conference on Electronics, Communication and Information Systems (ICECI 12) 

9 

Processing steps involved in forward pass are given below, 

(I) Parameter initialization. (weight, learning rate, and 

error value used for stopping condition) 

(II) Check for the stopping condition. If the error value is 

equal to or lesser than the given error value means the current 

input vector is dropped and the next input vector is taken for 

forward pass. If the stopping condition is false, the 

consecutive steps are taken place. 

(III)For each training pair do steps IV to IX. 

(IV) Each input unit receives the input signal xi and 

transmits the signal to all the units in the above layer, where   

i = 1to n. 

(V) Each hidden unit Zj where j=1 to p have some weight 

value; Weighted sum value at each hidden node is calculated 

as, 

    ------------------ [3] 

Applying its activation function to the weighted sum value to 

obtain the output of each hidden node and the result is 

forwarded to the above layers. The output value at hidden 

node is calculated as, 

                          ------------------- [4] 

(VI) Each output unit Yk where k=1 to m have some 

weight value; Weighted sum value at each output node is 

calculated as 

  -------------------- [5] 

Applying its activation function to calculate the output signal 

as follows, 

                      --------------------- [6] 

Now the output value is compared with the target value to 

find the error value. After an error value calculation the values 

are fed backed and travel towards the input layer to do the 

weight updating process. 

3.2 Feedback Pass 

In feedback pass of BP algorithm, the error value is back 

propagated to do the weight update process for all the nodes 

available in the previous layers. Processing steps involved in 

feedback pass are given below, 

        (VII) For each output unit , where k=1 to m; ‘T’ is the 

target pattern corresponding to its input pattern. The error 

information calculated as, 

               ------------ [7] 

        (VIII) For each hidden unit , where j=1 to p; Sums its 

inputs from the units in the layers above. 

------------ [8] 

)                         ------------ [9] 

Where ) indicates the derivative of the continuous 

activation function. 

          (IX) Values of weights and biases are getting updated 

based on the back propagated gradient value. 

 (A). For each output unit  bias and weights are 

updated as follows, 

         ---------- [10] 

             ---------- [11] 

                 ---------- [12]     

               ---------- [13] 

 (B). For each hidden unit  bias and weights are 

updated as follows, 

           ---------- [14] 

               ---------- [15] 

                      ---------- [16]     

                    ---------- [17] 

4. XOR STANDARD BENCHMARK 

PROBLEM 

MLP model is suitable to solve the non -linearly separable 

problem. If a straight line is used to classify the given input 

problem classes means that problem is called as linearly 

separable. In real time applications the problems are non-

linearly separable. So the standard non-linear benchmark 

XOR problem [10] is chosen for implementation. 

 

Fig 4:  MLP architecture to solve XOR problem 

XOR problem have 2 inputs and 1 output. Based on these 

requirement structured MLP architecture to solve the XOR 

problem is shown in Fig. 4 [6]. By using off-chip training the 

weight and number of neurons in each layer are fixed to 

construct the MLP architecture. 

Table 1. MLP architecture description to solve XOR 

problem 

Layer Activation function No. of  neurons 

Input Linear 2 

Hidden Sigmoid 2 

Output Sigmoid 1 

 

The detailed description of MLP architecture to solve the 

XOR problem is given in Table 1. 

5. OFF- CHIP TRAINING OF MLP 

In off-chip training, learning process relying on sequential 

software execution [11]. In this work training was done by 

using MATLAB software [8]. After the completion of training 

the network structure and weights were fixed. By using that 
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architecture and weight value the VHDL code was written to 

realize it on hardware [6-7]. 

Table 2.Initial and updated value of parameters 

Parameter Initial Value Updated Value 

v11 0.8147 5.6301 

v12 0.1270 3.6205 

v21 0.9058 5.6243 

v22 0.9134 3.6052 

w11 0.6324 6.9970 

w12 0.0975 -7.5544 

b1-1 0.2785 -2.2974 

 b1-2 0.5469 -5.5193 

b2 0.9575 -3.1571 

 

Table  3. Learning rate and error value 

Parameter Value 

Learning rate 0.9 

Error value 0.01 

 

The network was trained by using back propagation algorithm, 

the obtained final updated weight value to solve the XOR 

problem is given in Table 2. The performance of the network 

was tested by given an unseen input vector to the network. This 

process output is shown in Table 4. 

Table 4.Testing phase of the network 

Test set Net output Final output 

[1,1] -2.5536 0.0722 

 

During the feedback pass of back propagation algorithm 

weight updating process take place by reducing the MSE 

value till reach the specified error value given in Table 3. 

The plot for epoch VS MSE (Mean Square Error) is shown 

in Fig 5. The given learning rate determines the fast of 

convergence. 

 

 

Fig 5: Epoch Vs MSE plot 

From this plot it may clear that for XOR problem the 

specified MLP structure may take 950 epochs to solve the 

problem. 

6. HARDWARE IMPLEMENTATION 

OF MLP 

After the completion of training, the network structure is 

fixed. To do the hardware implementation of the structure the 

final updated weights value obtained during the training 

process will be used. Design entry to do the hardware 

implementation was done by using VHDL [6-7]. 

6.1. Device utilization 

Device utilized by the simple classical XOR problem on 

FPGA device is shown in Table 5. 

Table  5. Device utilized by XOR problem 

Logic Utilization Need for XOR Problem 

No. of Slices 2464 

No. of 4 input LUTs 4378 

No. of bonded IOBs 96 
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Fig 6.a: RTL Schematic View 

  

 

Fig 6.b: RTL Schematic View 

Fig.6.a, b shows the RTL schematic view of the synthesized 

XOR problem. RTL schematic view shows the hardware area 

required to solve the XOR problem. From this it is clear that 

the inherent parallelism property of ANN is preserved. Fig.7. 

shows the simulation result for XOR problem on Modelsim 
simulator tool. So it is clear that off-chip trained MLP to 

solve the XOR problem is easily implemented in FPGA. 

 

Fig 7: Simulation result 

During FPGA implementation, to preserve the precision of 

network single precision floating point representation is used. 

It may give better accurate result. 

7. ON-CHIP LEARNING 

In section VI off-chip learned MLP network implementation 

for the classical XOR problem is given. In off-chip learning 

the process is easy to realize, because once the training and 

testing is completed using software simulation, the 

architecture and weights are fixed. Realizing this in hardware 

is easy. But this is not suited for real time applications and 

high dimensional problems such as bio-informatics and image 

processing [15]. Because different real time tasks need 

different architecture to solve the given task and the 

computation speed also should be high. The solution provided 

by on-chip learning is useful for adaptive control and system 

modelling for real time applications. On-chip back 

propagation learning is a standard bench mark learning for 

hardware based learning, because it preserves the inherent 

parallelism properties of ANN and the execution speed also 

high[ 11].  

7.1 Hardware Platform for On-Chip 

Learning 

Hardware based learning is well-suited for real world 

application [15-16], because the hardware may train itself to fix 

the architecture and weight to obtain the required performance 

based on the given training vector space. Also it provides 

device portability. 

Implementation complexity is somewhat high in hardware 

based learning, because huge number of arithmetic operation 

and updating process will be take place during the back 

propagation algorithm execution [14]. Table 6 Shows the 

Comparison of Device utilization summary of off-chip based 

learning of XOR problem on different device environment. 

From the comparison table it is clear that for the same problem 

xc3s4000I-4fg900 device environment is over fitted and the 

higher version is needed for the implementation. 

Table 6. Comparison of device utilization percentage 

summary 

Logic 

Utilization 

xc3s4000I-

4fg900 

xc3s400-

4pq 208 

xc3s1000-

fg456 

No. of Slices Over fitted 61% 8% 

No. of 4 input 

LUTs 
89% 63% 7% 

No. of 

bonded IOBs 
60% 68% 15% 

         

 In off-chip learning this may easy, because the architecture is 

fixed and every needed for the given task implementation is 

known in advance. But in on-chip learning this is not a case, 

because more devices may make use of more resources but 

some may require less compared to others. 

Latest Xilinx platform suited for on-chip learning is the Xilinx 

Virtex-5 SX50T FPGA. This model of the Virtex-5 contains 

4080 CLBs and CLBs hold 8 logic function generator, 8 

storage elements, a number of multiplexers and carry logic. 

Now this platform is large enough to test a range of online 

neural network of varying size [14], [18]. 
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8. CONCLUSION 

From the proposed work finally concluded that, FPGA based 

hardware implementation of ANN preserves the parallelism 

property of ANN. Then the need for hardware based learning 

and the platform specification for hardware based learning 

were discussed. Hardware based learning is well-suited for 

real time application and it provide device portability. 

9. FUTURE WORK 

Based on the completed work it is planned to design a 

hardware based trained network to do the diabetic retinopathy 

classification. 
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