
Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

7

Design and Realization of FPGA based Off-Chip

Trained MLP for Classical XOR Problem and

Need of On-Chip Training

K. Packia Lakshmi

II yr M.E student
M.E Applied Electronics

Einstein College of Engineering, Tirunelveli-12

 M. Subadra, PhD.
Associate Professor & Head

Department of Electronics & Communication Engg.

Einstein College of Engineering,Tirunelveli-12.

ABSTRACT

The main intension of this work is to present the importance

of neural chip with learning capability. The designed

sequentially trained MLP structure is used to solve the

classical XOR problem and the structure is realized on FPGA

device environment. By comparing the device utilization

summary for the design in different families of Xilinx FPGA,

the importance of platform selection for hardware

implementation is presented. Finally the importance of on-

chip learning is emphasized.

General Terms

Hardware based learning, Pattern classification

Keywords

ANN, FPGA, MLP, Off-chip learning, On-chip learning

1. INTRODUCTION

Artificial Neural Network (ANN) is an important soft

computing tool. ANN is an adaptive statistical model which

resembles the human brain activities. Artificial neuron is the

main information processor of the network; it may inspired by

biological neuron activities. Unlike conventional computers,

ANN does the process of learning to structure an analytical

model. The designed analytical model solves given tasks

based on previous experience with reasonable accuracy, at

reasonable cost and in a reasonable amount of time [1-3].

An important characteristic of artificial neural network (ANN)

is its inherent parallelism. All the neurons available in the

same layer may work instantaneously. Hardware

implementation may preserve this inherent parallelism [4], so

computation speed may increase compared to sequential

software implementation. Neural network hardware is usually

defined as those devices structured to realize neural

architectures and learning algorithms, especially those devices

that take advantage of the inherent parallelism characteristic

of ANN [17].

Reconfigurable FPGA architectures are suitable for hardware

implementation of neural networks, because it preserves the

parallelism characteristics of ANN [4], [12], [19].

The main goal of the network is to learn some association

between input and output patterns, or to analyze, or to find the

structure of the input patterns [1]. Basic structure of a neuron-

perceptron model with ‘n’ input is shown in Fig.1

Fig 1: Structure of a neuron-perceptron model

The weighted sum value x is calculated as follows,

 ---------------- [1]

The output value is calculated by applying the activation

function on weighted sum value as follows

 ----------------- [2]

2. IMPLEMENTATION CONSIDERATI-

ON

The important characteristics of the network depend on

i. The activation functions of the neuron;

ii. Structure of the network;

iii. Learning mechanism of the network.

So during hardware implementation of ANN, these

parameters should be considered for efficient implementation

[4]. For classification task, Multilayer Perceptron architecture

with back propagation learning algorithm is popularly used

[5].

2.1 Network Structure

Multilayer Perceptron is the most important neural network

model to solve the real world problem [3]. In Multilayer

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

8

Perceptron network, the processing elements are usually

organized into several layers as input layer, hidden layer,

output layer as shown in Fig.2. There is no standard available

to define the number of neurons and number of hidden layer

to be available in each layer to structure the network. Defining

the architecture to obtain the required performance is a

tedious process; usually trial and error method is used to

structure the network architecture [6], [13], [16].

Fig 2: Multilayer perceptron architecture

Based on the input feature, count number of neurons in the

input layer is defined. Test vector classes define the number

of neurons in the output layer. The maximum number of

neuron may be available in the hidden layer is {2(number of

input feature) +1} [3]. In the network architecture if the

number of neurons in the hidden layer is large in number it in

turn increases the implementation complexity. So that

maximum one hidden layer may enough to obtain the required

performance [13], [16].

2.2 Activation Function

Generally neuron models use the same procedure to produce

the total input signal, but they may differ in terms of how they

produce an output response from this input. Artificial neurons

use an activation function to compute their activation as a

function of total input stimulus [1].

Activation functions are the mathematical formula, which is

used to determine the output of a processing node. If the

weighted input sum value is greater than the threshold value,

means the neuron produces output. Several different functions

may be used as an activation function.

 Some activation functions are:

(i) Threshold activation function

(ii) Sigmoid activation function

(iii) Linear activation function

In Fig.1 f(x) denotes the activation function of the neuron.

Activation functions such as sigmoid are mostly used because

sigmoid activation function is continuously differentiable

which are desirable for network learning [1-3].

2.3 Learning

Learning is the process of changing the weight of the network

to acquire the desired behavior. During the learning process,

set of training pattern is given to the network. In neural

networks three types of learning is used. They are

(i) Supervised Learning

(ii) Unsupervised Learning

(iii) Reinforcement Learning

Generally, MLP network uses the supervised back

propagation learning to train the network [5]. In supervised

learning, the training pattern may have a set of input feature

and its corresponding target output. When the network is

converged, that is the difference between the target output and

actual output becomes small then the training is stopped. Now

the network is ready for the testing phase [3].

Due to its calculation power and simple effective concept is

mostly used for pattern recognition application [5]. Popularity

of BP algorithm mainly revolves around the MLP network to

learn complicated multidimensional mappings.

3. BACKPROPAGATION ALGORITHM

Back Propagation (BP) Algorithm is an effective two pass

multi layer supervised learning algorithm to train the

multilayer perceptron network to obtain the solution for non-

linearly separable problem [5-6].

There are two passes available in BP algorithm [3]. They are,

(i) Forward Pass

(ii) Feedback Pass

3.1 Forward Pass

MLP network is a fully connected network in which all the

neurons in each layer are connected to all the neurons in the

next layer.

Fig 3: Generalized MLP architecture

Generalized MLP architecture is shown in Fig.3 [3].Where

{X1,…Xi,…Xn} neurons available in the input layer,{ Z1,…

Zj,…..Zk } neurons available in the hidden layer,

{Y1,…Yk,…Ym}, , - weight values of bias term. ,

- weight values between neurons.

In forward pass, the input data travelled from the input layer

to output layer to obtain the output value at each processing

element and the corresponding error value is calculated at the

output layer.

During the training phase, the input vectors linearly travel

through the input layer. The synaptic weight in between

neurons determines the strength of the signal to be transferred.

The ease of transmission of signal altered by the weighted

signal is the basic for learning method

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

9

Processing steps involved in forward pass are given below,

(I) Parameter initialization. (weight, learning rate, and

error value used for stopping condition)

(II) Check for the stopping condition. If the error value is

equal to or lesser than the given error value means the current

input vector is dropped and the next input vector is taken for

forward pass. If the stopping condition is false, the

consecutive steps are taken place.

(III)For each training pair do steps IV to IX.

(IV) Each input unit receives the input signal xi and

transmits the signal to all the units in the above layer, where

i = 1to n.

(V) Each hidden unit Zj where j=1 to p have some weight

value; Weighted sum value at each hidden node is calculated

as,

 ------------------ [3]

Applying its activation function to the weighted sum value to

obtain the output of each hidden node and the result is

forwarded to the above layers. The output value at hidden

node is calculated as,

 ------------------- [4]

(VI) Each output unit Yk where k=1 to m have some

weight value; Weighted sum value at each output node is

calculated as

 -------------------- [5]

Applying its activation function to calculate the output signal

as follows,

 --------------------- [6]

Now the output value is compared with the target value to

find the error value. After an error value calculation the values

are fed backed and travel towards the input layer to do the

weight updating process.

3.2 Feedback Pass

In feedback pass of BP algorithm, the error value is back

propagated to do the weight update process for all the nodes

available in the previous layers. Processing steps involved in

feedback pass are given below,

 (VII) For each output unit , where k=1 to m; ‘T’ is the

target pattern corresponding to its input pattern. The error

information calculated as,

 ------------ [7]

 (VIII) For each hidden unit , where j=1 to p; Sums its

inputs from the units in the layers above.

------------ [8]

) ------------ [9]

Where) indicates the derivative of the continuous

activation function.

 (IX) Values of weights and biases are getting updated

based on the back propagated gradient value.

 (A). For each output unit bias and weights are

updated as follows,

 ---------- [10]

 ---------- [11]

 ---------- [12]

 ---------- [13]

 (B). For each hidden unit bias and weights are

updated as follows,

 ---------- [14]

 ---------- [15]

 ---------- [16]

 ---------- [17]

4. XOR STANDARD BENCHMARK

PROBLEM

MLP model is suitable to solve the non -linearly separable

problem. If a straight line is used to classify the given input

problem classes means that problem is called as linearly

separable. In real time applications the problems are non-

linearly separable. So the standard non-linear benchmark

XOR problem [10] is chosen for implementation.

Fig 4: MLP architecture to solve XOR problem

XOR problem have 2 inputs and 1 output. Based on these

requirement structured MLP architecture to solve the XOR

problem is shown in Fig. 4 [6]. By using off-chip training the

weight and number of neurons in each layer are fixed to

construct the MLP architecture.

Table 1. MLP architecture description to solve XOR

problem

Layer Activation function No. of neurons

Input Linear 2

Hidden Sigmoid 2

Output Sigmoid 1

The detailed description of MLP architecture to solve the

XOR problem is given in Table 1.

5. OFF- CHIP TRAINING OF MLP

In off-chip training, learning process relying on sequential

software execution [11]. In this work training was done by

using MATLAB software [8]. After the completion of training

the network structure and weights were fixed. By using that

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

10

architecture and weight value the VHDL code was written to

realize it on hardware [6-7].

Table 2.Initial and updated value of parameters

Parameter Initial Value Updated Value

v11 0.8147 5.6301

v12 0.1270 3.6205

v21 0.9058 5.6243

v22 0.9134 3.6052

w11 0.6324 6.9970

w12 0.0975 -7.5544

b1-1 0.2785 -2.2974

 b1-2 0.5469 -5.5193

b2 0.9575 -3.1571

Table 3. Learning rate and error value

Parameter Value

Learning rate 0.9

Error value 0.01

The network was trained by using back propagation algorithm,

the obtained final updated weight value to solve the XOR

problem is given in Table 2. The performance of the network

was tested by given an unseen input vector to the network. This

process output is shown in Table 4.

Table 4.Testing phase of the network

Test set Net output Final output

[1,1] -2.5536 0.0722

During the feedback pass of back propagation algorithm

weight updating process take place by reducing the MSE

value till reach the specified error value given in Table 3.

The plot for epoch VS MSE (Mean Square Error) is shown

in Fig 5. The given learning rate determines the fast of

convergence.

Fig 5: Epoch Vs MSE plot

From this plot it may clear that for XOR problem the

specified MLP structure may take 950 epochs to solve the

problem.

6. HARDWARE IMPLEMENTATION

OF MLP

After the completion of training, the network structure is

fixed. To do the hardware implementation of the structure the

final updated weights value obtained during the training

process will be used. Design entry to do the hardware

implementation was done by using VHDL [6-7].

6.1. Device utilization

Device utilized by the simple classical XOR problem on

FPGA device is shown in Table 5.

Table 5. Device utilized by XOR problem

Logic Utilization Need for XOR Problem

No. of Slices 2464

No. of 4 input LUTs 4378

No. of bonded IOBs 96

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

11

Fig 6.a: RTL Schematic View

Fig 6.b: RTL Schematic View

Fig.6.a, b shows the RTL schematic view of the synthesized

XOR problem. RTL schematic view shows the hardware area

required to solve the XOR problem. From this it is clear that

the inherent parallelism property of ANN is preserved. Fig.7.

shows the simulation result for XOR problem on Modelsim
simulator tool. So it is clear that off-chip trained MLP to

solve the XOR problem is easily implemented in FPGA.

Fig 7: Simulation result

During FPGA implementation, to preserve the precision of

network single precision floating point representation is used.

It may give better accurate result.

7. ON-CHIP LEARNING

In section VI off-chip learned MLP network implementation

for the classical XOR problem is given. In off-chip learning

the process is easy to realize, because once the training and

testing is completed using software simulation, the

architecture and weights are fixed. Realizing this in hardware

is easy. But this is not suited for real time applications and

high dimensional problems such as bio-informatics and image

processing [15]. Because different real time tasks need

different architecture to solve the given task and the

computation speed also should be high. The solution provided

by on-chip learning is useful for adaptive control and system

modelling for real time applications. On-chip back

propagation learning is a standard bench mark learning for

hardware based learning, because it preserves the inherent

parallelism properties of ANN and the execution speed also

high[11].

7.1 Hardware Platform for On-Chip

Learning

Hardware based learning is well-suited for real world

application [15-16], because the hardware may train itself to fix

the architecture and weight to obtain the required performance

based on the given training vector space. Also it provides

device portability.

Implementation complexity is somewhat high in hardware

based learning, because huge number of arithmetic operation

and updating process will be take place during the back

propagation algorithm execution [14]. Table 6 Shows the

Comparison of Device utilization summary of off-chip based

learning of XOR problem on different device environment.

From the comparison table it is clear that for the same problem

xc3s4000I-4fg900 device environment is over fitted and the

higher version is needed for the implementation.

Table 6. Comparison of device utilization percentage

summary

Logic

Utilization

xc3s4000I-

4fg900

xc3s400-

4pq 208

xc3s1000-

fg456

No. of Slices Over fitted 61% 8%

No. of 4 input

LUTs
89% 63% 7%

No. of

bonded IOBs
60% 68% 15%

 In off-chip learning this may easy, because the architecture is

fixed and every needed for the given task implementation is

known in advance. But in on-chip learning this is not a case,

because more devices may make use of more resources but

some may require less compared to others.

Latest Xilinx platform suited for on-chip learning is the Xilinx

Virtex-5 SX50T FPGA. This model of the Virtex-5 contains

4080 CLBs and CLBs hold 8 logic function generator, 8

storage elements, a number of multiplexers and carry logic.

Now this platform is large enough to test a range of online

neural network of varying size [14], [18].

Special Issue of International Journal of Computer Applications (0975 – 8887)

on International Conference on Electronics, Communication and Information Systems (ICECI 12)

12

8. CONCLUSION

From the proposed work finally concluded that, FPGA based

hardware implementation of ANN preserves the parallelism

property of ANN. Then the need for hardware based learning

and the platform specification for hardware based learning

were discussed. Hardware based learning is well-suited for

real time application and it provide device portability.

9. FUTURE WORK

Based on the completed work it is planned to design a

hardware based trained network to do the diabetic retinopathy

classification.

10. ACKNOWLEDGMENTS

I would like to gratefully acknowledge the enthusiastic

support of our College Management, Principal, and Einstein

College of Engineering for providing me a platform where

learning has known no margins.

11. REFERENCES

[1] M. Gopal. “Digital Control And Static Variable

Methods”, Tata McGraw Hill, New Delhi, 1997.

[2] Sathish Kumar, “Neural Networks: A Classroom

Approach”, Tata McGraw-Hill Publishing Company

Limited, New Delhi, 2004.

[3] S.N.Sivanandam, Sumathi, Deepa.m, “Introduction to

Neural Networks Using Matlab 6.0”, Tata McGraw-Hill,

ISBN 0-07-059112-1.

[4] Jagath C. Rajapakse, Amos R. Omondi, “FPGA

implementation of Neural Networks”. ISBN-10 0-387-

28487-7 (e-book) @2006 Sprinker.

[5] David E. Rumelhart, Yves Chauvin, “BackPropagation:

Theory, Architectures, and Applications”, google

preview.

[6] Martin T. Hagan, Howard B. Demuth, and Mark Beale,

“Neural Network Design”, Thomson Learning, New

Delhi,2003,.

[7] J. Bhaskar, “VHDL Primer”, P T R Prentice Hall.

[8] Volnei A.Pedroni, “Circuit Design with VHDL”, ISBN

0-262-16224-5,Library of Congress Cataloging-in-

Publication Data.

[9] R.Hunt,L.Lipsman, M.Rosenber, “A Guide to MATLAB

for Beginners and Experienced Users”, Cambridge

University Press, ISBN-I3 978-0-511-07792-0 eBook.

[10] Simon Haykin, “Neural Networks: A Comprehensive

Foundation”, 2ed., Addison Wesley Longman

(Singapore) Private Limited, Delhi, 2001.

[11] Antonio de Padua Braga, Tiago Mendonca Dasilva,

Willian Soares Lacerda, “Pipelined on-line Back-

propagation training of an artificial neural network on a

parallel multiprocessor system”, Learning and Nonlinear

Module(L&NLM)-Journal of the Brazillian Society on

Neural Networks, Vo1.8,I.No.2,P.No.120-123,2010.

[12] Himavathu.s, Muthuramalingam.A, Srinivasan.E,

“Neural Network Implementation Using FPGA: Issues

and Application” World Academy of Science,

Engineering and Technology,I.No.48, P. No. 625-

631,2008.

[13] Rafid Ahmed Khalil, “Hardware Implementation of Back

propagation Neural Networks on Field programmable

Gate Array(FPGA)”, Al-Rafidain

Engineering,Vol.16,No.3,Aug. 2008.

[14] Alexander Gomperts, Aghisek Ukil, “ Development and

Implemenation of Parameterized FPGA-Based General

Purpose Neural Networks for Online Applications”,

IEEE Transaction on industrial informatics, Vol.

7,No.1,Feb.2011.

[15] Mark Pethick, Michael Liddle, Paul Werstein, and Zhiyi

Huang , “Parallelization of a Backpropagation Neural

Network on a Cluster Computer”, 15th IASTED

International Conference on Parallel and Distributed

Computing and Systems,P.No.574-582, 2003.

[16] Zhu and Sutton. P, “FPGA implementation of Neural

Networks: A Survey of a Decade of Progress”, Lecture

Notes in Computer Science,Vol. 2778/2003, P. No.

1062-1066,2003

[17] Yihua Liao, “Neural Network In Hardware-Survey”,

http://bit.csc.lsu.edu/~jianhua/shiv2.pdf,liaoy@cs.ucdavi

s.edu,

[18] http://alexandria.tue.nl/repository/books/644229.pdf

[19] http://business.highbeam.com/articles/436704/internatio-

nal-journal-information-technology.

