
International Journal of Computer Applications (0975 – 8887)

International Conference on Current Trends in Advanced Computing “ICCTAC-2013”

45

What Are the Software Engineering Problems? Are We

With The Right Approach?

M Uma Devi

Assist. Prof., Dept. Of Computer Science
Sri Adi Chunchana Giri Women’s College

Cumbum, India

J Sandeep
Research Scholar, Dept. Of Computer Application

Bharathiar University
Coimbatore, India

ABSTRACT

The recent development of the technologies in the day-today

life has made the people committed with more and more

software’s. The software engineering is centered on a key

attribute the Software Reliability, which is defined as the

probability of failure free executions. In this competing world

of technologies, applications with newer and better solutions

only survive. Developing this modern software with right

approach still remains as one of the main software crisis. Thus

it makes it crucial to follow the right approaches with a good

knowledge of the software engineering problems, their

approaches and expected results. In this paper the software

engineering and their various Approaches are discussed. The

categorization of software engineering problems and their

possible results are made for addressing the issue raised due to

the wideness of software engineering. A view on various

validation methods exist in software engineering are discussed

for making the software more reliable. The paper explores

promising research areas in software engineering for

exclusive upcoming researchers.

General Terms

Software Engineering Problems and various approaches used.

Keywords

Software engineering; result interpretation; validation;

reliability.

1. INTRODUCTION
We Software Engineering [1] is the technological and

managerial discipline which is concerned with systematic

production and maintenance. In software engineering the

production and modifications are made with dependence with

cost and time for the engineering. It serves as the basis for

modern scientific world with the intention of investigation and

problem solving. Making the project achieve success requires

many factors to be considered right simultaneously. Software

project always aims to achieve its highest profitability. A

petty flaw in planning or management can lead to destructive

results. Building effective software involves in-depth

investigations into various aspects. It is important to develop

software with innovative characteristics that make it different

from other things that human beings build. For that, one

should analyze the complexities on software engineering,

however, may result from only one slight problem. It is

obvious how important to analyze the problems when

researching on software engineering. Software engineering

concepts are often characterized by a number of assumptions.

The observations, from both empirical and analytic studies,

show that the predictions made by the concept tend to be too

optimistic and should reformulate to control software

engineering problems [2]. The most prominent limitations of

the concepts are as the software behavior changes because the

software code changes during the testing leads to complexities

in real time. This kind of measurements reflects on the

wideness of areas to improve the system quality. It depends

on different factors as system and user. So, there is some

importance to develop such software has become an

extremely challenging job not only because of inherent

complexity, but also mainly concern with the number of

factors that categorized as adaptability, modularity,

profitability and users’ expectations to perform problem

solving processes. The main contribution of this paper is in-

depth evaluation of wideness of this area and importance of

categorization. This has lead to a number of remarkable

observations concerning the wideness and the importance of

categorization. The basic inspiring task of software

engineering exposed in fig1.

Fig.1. Task of Software Engineering

The remaining sections of this paper are organized as follows.

Section 2, we introduce shows the different types of software

engineering problems that could possibly appeal to be

considered the right approach. Section 3 summarizes the

results and interpretations used to express the proposed

approach. In Section 4 an approach to get results on validation

are discussed. Finally the paper is concluded from the studies

made and discussed.

1.1. Software engineering and its different

types of research Questions
Software has developed to satisfy some specific goal.

Software measurement is based on numeric value derivations

for an attribute of a software product. Here, identified

measured value is mapped from the empirical world to the

formal world. [3] Defines design complexity needs an

iterative process of identifying design problems and solving

design problems. It must be decomposed on projects in a

number of dimensions to get its consistency. The problems

may arise in a number of ways as software development

methods, analyzing methods, how to evaluate software,

integration of software with the whole classes of systems,

about the feasibility and how to implement the developed

product to the systems.

International Journal of Computer Applications (0975 – 8887)

International Conference on Current Trends in Advanced Computing “ICCTAC-2013”

46

1.2. Problems at the Development Phase
The software engineering research question begins from the

development phase. Here the first question arises is what

product to develop? What is the better way to develop? There

are several entities which affect the development of the

project.A software system progresses towards several state

changes during its development [4]. Thus the method requires

better understanding of those entities. We have to assign the

requirements with suitable structures to ensure flexibility and

robustness [5]. Stepwise refinement, starting from a higher

level description of what the program is intended to do and

then gives various levels of pseudo-code until the low-level

code is in place [6]. A project development concern must have

the concern factors in fig. 2.

Fig. 2. Project Development Concerns

The other problem can be that the communication gap

between the end-users and the software developers is

increased which leads tedious time taken to solve small bug.

Some methods implemented in software confusing like

reliability growth. So there is much necessity of research on

how these technologies really work. A good software

development involves following things as shown in fig. 2

1.3. Problems arise at analysis phase
The Quality or the Correctness of the software result always

remains a question in the software engineering. The use-case

diagram shows the important parameter of software quality in

fig. 3. As it is known that the knowledge gathering differs

from people to people. To satisfy user satisfaction against

quality, it needs to be analyzed much.

Fig. 3. Use-Case Diagram: Software Quality Parameters

Nowadays software is analyzed in a number of aspects in

order to generalize the facts to everyone. First of all, data

analysis [7] is too difficult to find out complete bugs. They

had made 21000 test cases in automatic airplane landing

system. It is difficult to make quantitative predictions, finding

time-consumption and test hypothesis. Sheppard and Kruesi

[SHEPPARD] examined the performance of programmers in

constructing programs from various specification formats. An

analysis of the error data revealed that the major source of

difficulty was related to the control flow. We have analyzed

the software quality parameters against user’s satisfaction

which is exposed using a use - case diagram in fig 3.

1.4. Problems at Evaluation Phase
In testing, test case is a way of doing software activities. It is a

set of procedure in order to find out defects. A different test -

cases make different efficient rate.

Fig.4. Cause – Effect diagram: Project Evaluation

The cause-effect diagram shows how the project evaluation is

done with the step by step activities in testing as shown in

fig.4. It is helping to identify defective in different modules

by point out highly complex and unstructured code. The

ability of the model is evaluated to find defect-free modules.

1.5. Integration with the whole classes of

systems
A complex work decomposed into a number of modules in the

project. There are no communication gap and navigational

problems when using with interfaces between the numbers of

modules which leads to the successful running project.

Integration process needs support of both hardware and

software.

1.6. Feasibility
Feasibility study in software engineering is to determine

whether it is reasonably economically and technically feasible

to develop the product. Feasibility is not only to solve the

problem but to determine whether the problem is worth in

solving. Thus the feasibility will include the verification of

operational, technical and economically feasible.

1.7. Implementation of the system
Post release defects should be removable to get better usage of

products. [22]The investigation of OO software product

metrics is used to predict defects after software releases. This

approach allows early identification of error-prone classes and

direction of quality activities like testing and refactoring. It

collects software internal and defect history metrics, from

Version Control and Issue Tracker systems, and to integrate

measures in a consolidated table, adequate for defect

Prediction. The individual software and real-world concerns

are shown in fig. 4.

International Journal of Computer Applications (0975 – 8887)

International Conference on Current Trends in Advanced Computing “ICCTAC-2013”

47

Fig.4 (a). Narrow Analysis (Individual software concerns)

(b). Broad Analysis (Real World Concerns).

The narrow and broad controls of software engineering are

exposed with the importance of categorization in fig. 4.

Software engineers should implement the users’ specification

as input to get the expected output. A parameterized

complexity in modeling [8] observes the behavior of already

existing system input/output specifications of the to-be-

modeled system.

2. SOFTWARE ENGINEERING

RESULTS & INTERPRETATION
Getting results always direct the fulfillment of expectations.

Training data will be the input and a result comes after the

data flows through different approaches. The result even

depends on the approach interpreted to show the results of

complete work. Thus the results can be based on different

approaches and among which few are discussed below.

2.1 Judgment based result
It is very useful to take a decision in further. Always a right

decision making has been a step towards success. In this

aspect, judgment based results sometimes good [9].

2.2 Prediction based result
Sometimes prediction based results produce irregular depends

on system. For example, weather casting. The forecasting

values checked with already predicted values [9]. The

researchers believe they can further improve the prediction

accuracy of these models by adding other important factors

which affect the final software quality [10] [11]. Software

engineering, like other engineering fields, needs to formalize,

standardize, create uniformity and have certain level of

predictable functionality [12]. Statistical debugging

approaches [13] [14] identify software faults with

probabilistic modeling of program predicates. It is the kind of

assessment of codes with respect to software faults.

2.3 Empirical results
They[15] have identified empirical evaluations of commercial

software systems in terms of size, customer usage and

economic value.[16] empirically identified object oriented

models with specific characteristics structural aspects,

behavioral aspects, combination of structural and behavioral

aspects.

2.4 Evolution based result
These kinds of result always produce the merits and demerits

of our thoughts. [17] Presents the strength and weakness of

different models by criteria-based evaluation method.

2.5 Estimated result
The different experiments conducted to evaluate the

performance of our transliteration algorithm [18] and

compared the performance against the statistical CRF-HMM

system by Surya et.al [19].

2.6 Report generation
The number of data used for training to optimize the particular

output. For that, the collection of statistical data was

experimented for obtaining consistent result in the form of a

report [20].

2.7 Specific solutions
 The particular solutions obtains always depends with some

models and its architecture. So the model [21] performs some

statistical methods and produces the results with significance.

3. SOFTWARE ENGINEERING

RESULT VALIDATIONS
A research is not only needs its results but also clean evidence

or proofs that the generated output result is good. There are

several methods used for validating the result which is

discussed below.

3.1 Comparisons
The software results validation of this method is done based

on the comparisons with similar existing or with the sample

from the model. The results are normally analyzed for the

satisfactory with rigorous derivations and proofs.

3.2 Experience
In this method, the results are validated by someone with his

experience of similar work and results. Here the real examples

are taken for the correctness and effectiveness of the

developed model compare to the alternative ones. The

experience based models compare the method and techniques

of similar results. In this model statistical and on practice

comparisons are made after the data.

3.3 Evaluation
One of the software results validating method is the

evaluation method were stated criteria are developed and the

results are validated as per the phenomena of interest.

Example of this method is the use of the descriptive model

where it adequately describes the phenomena of the interest

and then the results in real time validated with this interested

phenomena.

4. CONCLUSION
Software Engineering is the management of discipline

concerned with systematic and advance approaches for

production and maintenance to utilize the cost and time with

minimal risk and maximum gains. In this paper from the

studies and discussions it is concluded that software

engineering will be benefited with the better understanding of

various strategies and successful research approaches. Every

research question varies with its type and same time it needs

different research strategy to resolve. Software engineering

projects need to select an in proper approach to obtain a result

and validation strategy appropriate to the question.

5. ACKNOWLEDGMENTS
The authors are thankful of their parents and to the faculty

members of the academic college and university for their

support. The Authors wish to thank the reviewers and the

editors for their valuable suggestions and comments that

helped to improve the paper.

International Journal of Computer Applications (0975 – 8887)

International Conference on Current Trends in Advanced Computing “ICCTAC-2013”

48

6. REFERENCES
[1] R. Fairly, “Software Engineering Concepts”, McGraw-

Hill, 2010.

[2] A.S. Kalaji, R.M. Hierons and S. Swift, “An Integrated

Search-Based Approach for Automatic Testing from

Extended Finite State Machine (EFSM) Models”,

Information and Software Technology, Vol. 53 Issue 12,

Dec. 2011.

[3] A. Tang and A. Aleti, J Burge, and H V Vliet, “What

makes software design effective? ”, Design Studies Vol.

31 Nov. 2010.

[4] Fujitsu and I. Jacobson, “Essence – Kernel and Language

for Software Engineering Methods”, 13 Aug. 2012.

[5] M. Selvam and A. M. Natarajan, “Language model

adaptation in Tamil language using cross-lingual latent

semantic analysis with document aligned corpora”,

Current Science, Vol. 98, No. 7, 10 Apr. 2010.

[6] K. Rustan M. Leino and Kuat Yessenov, “Automated

Stepwise Refinement of Heap-Manipulating Code”,

2010.

[7] Y.K. Malaiya, Senior Member, IEEE, Michael Naixin Li,

James M. Bieman, Senior Member, IEEE, and Rick

Karcich, “ Software Reliability Growth With Test

Coverage”, 420 IEEE Transactions On Reliability, Vol.

51, No. 4, Dec. 2002.

[8] I.V. Rooij and T. Wareham, “Parameterized in Cognitive

Modeling: Foundations, Applications, Opportunities”,

the Computer Journals, Vol. 51, No. 3, 2008.

[9] S.H. Aljahdali and Khalid A. Buragga, “Employing four

ANNs Paradigms for Software Reliability Prediction: an

Analytical Study”, ICGST-AIML Journal, ISSN: 1687-

4846, Vol 8, Issue II, Sept. 2008.

[10] M. Chen, M.R. Lyu, and E. Wong, “Effect of Code

Coverage on Software Reliability Measurement”, IEEE

Transactions on Reliability, vol. 50, no. 2, Jun 2001, pp.

165-170.

[11] Y.K. Malaiya, N. Li, J.M. Bieman, and R. Karcich,

“Software Reliability Growth with Test Coverage”, IEEE

Transactions on Reliability, vol. 51, no. 4, Dec 2002, pp.

420-426

[12] B.K. Olorisade, “Informal Aggregation Technique for

Software Engineering Experiments”, IJCSI International

Journal of Computer Science Issues, Vol. 9, Issue 5, No

1, Sept. 2012.

[13] C. Liu, L. Fei, X. Yan, J. Han, and S. Midkiff,

“Statistical Debugging: A Hypothesis Testing-based

Approach,” IEEE Transaction on Software Engineering,

vol. 32, no. 10, Oct, 2006, pp. 831-848.

[14] A.X. Zheng, M.I. Jordan, B. Libit, M. Naik, and A.

Aiken, “Statistical Debugging: Simultaneous

Identification of Multiple Bugs,” Proceedings of the 23rd

International Conference on Machine Learning,

Pittsburgh, PA, 2006, pp. 1105-1112.

[15] T. Bhat, N. Nagappan, “Building Scalable Failure-

proneness Models Using Complexity Metrics for Large

Scale Software Systems”, 2006.

[16] N. F. Schneidewind, “Analysis of object-oriented

software reliability model development”, Innovations

System Software Engineering, 2009.

[17] R. Ramsin, “The Engineering of an Object-Oriented

Software Development Methodology”, Apr, 2006.

[18] S. Sethuramalingam, “Effective Query Translation

Techniques For Cross-Language Information Retrieval”,

International Institute of Information Technology,

Hyderabad, India, Sept. 2009.

[19] S. Ganesh, S. Harsha, P. Pingali., And V. Varma,

“Statistical transliteration for cross language information

retrieval using hmm alignment and surf”, Proceedings of

the 2nd workshop on Cross Lingual Information Access

(CLIA) Addressing the Information Need of Multilingual

Societies. ACL, 2008.

[20] A. Das, T. Saikh, T. Mondal, A. Ekbal, S.

Bandyopadhyay, “English to Indian Languages Machine

Transliteration System at NEWS 2010”, Proceedings of

the 2010 Named Entities Workshop, ACL 2010,

pages71–75, July, 2010.

[21] N. Salman, “complexity Metrics AS Predictors of

Maintainability and Integrability of Software

Component”, Journal of Arts and Sciences, 2006.

[22] Gabriel de Souza Pereira Moreira,, Roberto Pepato

Mellado, Robson Luis Monteiro Junior, Adilson Marques

da Cunha and Luiz Alberto Vieira Dias, “Predicting Post-

Release Defects in OO Software usingProduct Metrics”,

Proceeding of IX Experimental Software Engineering

Latin American Workshop,2012.

IJCATM : www.ijcaonline.org

