A Design and Analysis of Noise Figure Optimization of a Wideband PHEMT Hybrid LNA with Flat Gain for WiMAX Application

Kishor G.
Sawarkar
Research Scholar at
MCT’s RGIT,
Mumbai

Pramod K.B
Student of JAIN
University
Asst Prof. in EXTC
Dept.
at MCT’s RGIT,
Mumbai

Kushal Tuckley
Director R&D AGV
System,
Mumbai

Kumaraswamy
H.V
Dept of
Telecommunication
R.V.C.E, Bangalore
India

ABSTRACT
In this paper, the Noise figure optimization circuit configuration in PHEMT Hybrid LNA design. The optimal noise figure is achieved by minimizing the noise contributions by utilizing of LC resonance at input and output matching networks to maintain transistor noise optimization. Design includes 2 stage cascaded common source PHEMT transistors with inter stage capacitor matching for improvement of gain. An LNA with Bandwidth 2.3-5.8GHz simulation in AWR Microwave office software shows forward gain of 24 dB, noise figure (NF) less than 2 dB and designed amplifier will give the best performance at 5GHz with NF of 0.9 dB and with flat Gain of 24dB.

Keywords
Pseudomorphic High electron mobility transistor (PHEMT), Advancing in Wireless Evolution (AWR), Low Noise Amplifier (LNA) and Noise Figure (NF).

1. INTRODUCTION
LNA design is a crucial and challenging task at the receiver since received signal will always be weaker in amplitude and corrupted by noise in wireless communications. It should provide low noise figure not only at one frequency but an over range of frequencies or bandwidth of interest [1]. Also requirements of minimum noise figure and maximum gain will always be design trade-offs and cannot be met simultaneously. We need an optimization and fine tuning of component values to get the optimum results. For radio astronomy applications, it is desirable to have wider bandwidth, low noise figure and good gain. There is a trade-off between gain, bandwidth and noise figure (NF). High electron mobility transistor (HEMT) plays a crucial role and is extensively used in ultra-low noise amplifiers

2. A BRIEF REVIEW OF EXISTING WIDEBAND LNA WITH NOISE OPTIMIZATION
The key idea of proposed LNA is to get very flat gain throughout the band with minimum noise figure in order to verify and simulating the results AWR Microwave office is used. In this paper [2] SheryAsaadWahbuMarzoukCS topology achieved a high gain but it has tradeoff between gain and matching but CMOS technology offers NF up to 3dB. So for the proposed design as FET technology is used and [3] Ahmed H DC, has tested in microwave the noise performance of GaAsHEMT and InP pHEMT transistors were presented for both room and cryogenic temperatures by this result the proposed work as done on PHEMT Transistor. [4] the inductive peaking technique is used to achieve high and flat value for S21 and good phase linearity is achieved and design include both cascade and cascode. In this paper [5] Pramod K B as simulated the LNA design with I/O matching and intermediate matching network in AWR Microwave office. So proposed work introduced 2 stage cascaded common source PHEMT transistors with I/O matching and capacitive intermediate stage matching networks.

3. MANUFACTURING TECHNOLOGY, MODELS AND RF PERFORMANCE MODELS
With the industry’s most comprehensive and innovative portfolio of process technologies, E-PHEMT technology with a revolutionary chip scale package Transistor: GaAs PHEMT “ATF36163” from Avago technologies passive fitting to S parameter, EM multiple extraction, normal grounding type. A capacitor of 1pF value of Johansson Company was chosen and resistors of 1kΩ and 150Ω of Panasonic Company were chosen. The use of 0.25-micron gates allows an ultra-low noise figure with respectable associated gain. The PCB board material stack used to qualify the device consists of 40 mil thickness FR4 core material with one ounce copper for both top and bottom metal.

4. Architecture Circuit design concept

Fig 1: Basic circuit design with ideal elements without using micro strip line.
\[ Z_{in} = S_{L1} + \frac{1}{S_{C_{in}}} \]  

\[ C_{in} = C_1 + C_{gs1} + C_{gd}(1 - Av) \]  

Gain equations with respect to 2 stages

\[ Av = Av1 \times Av2 \]  

\[ Av1 = gm^*1Z_{L1} \]  

\[ Av2 = gm^*2Z_{L2} \]  

\[ gm^* = gme^{-\text{loar}} \]  

\[ \tau = \frac{C_g}{gm} \]  

\[ gm = \frac{\varepsilon_r V_{\text{eff}} w_g}{d_{\text{eff}} \sqrt{1 + \left( \frac{n_c}{n_{\text{sheet}}} \right)^2}} \]  

Where,

- \( gm \) = transconductance
- \( \varepsilon_r \) is the relative dielectric constant
- \( V_{\text{eff}} \) is the effective carrier velocity, \( w_g \) the gate width,
- \( d_{\text{eff}} \) an effective gate-to-channel separation
- \( n_{\text{sheet}} \) is the sheet charge density and
- \( n_c \) a reference sheet concentration defined as:

\[ n_c = \frac{E_{\text{crit}} L_g C_0}{q} \]  

\( E_{\text{crit}} \) is a critical field for the onset of a "saturated" behavior and \( C_0 \) is an effective channel capacity assuming a fixed distance between channel charge and gate in a simple capacitor model.

5. LNA SIMULATION WITH VENDOR COMPONENTS

5.1 Single Transistor

The stability factors of the transistor ATF-36163 given by figure below were found out in the frequency range of 2.3 GHz to 5.8 GHz.

5.2 Two Transistors in cascade

Two transistors, ATF-36163 were connected in cascade as shown in figure 5, and the forward gain (figure 6), stability parameters (figure 6) were calculated again in the frequency range of 2.3 GHz to 5.8 GHz.
The forward gain $S_{21}$ was found out to be greater than 20dB, but the sub circuit was found to be unstable. Thus it was necessary to stabilize the sub circuit.

### 5.3 Stabilized Sub-circuit

The schematic of the stabilized sub-circuit (figure 7) is given below.

![Stabilized sub-circuit schematic](image)

The stability factors (figure 8), $K>1$ and $\beta > 0$, were satisfied for the stabilized sub-circuit in the frequency range of 2.3 GHz to 5.8 GHz.

![Figure Stability of Stabilized Sub-circuit and Noise figure of Stabilized Sub-circuit](image)

### DC Biasing

One of the major advantages of the enhancement mode technology is that it allows the designer to be able to dC ground the source leads and then merely apply a positive voltage on the gate to set the desired amount of quiescent drain current $I_d$.

![DC Biasing](image)

Applying KVL in the output loop we get the following equation:

$$V_{DD} - I_D R_D - V_{DS} = 0$$

Here $V_{DD} = 12V$ and $I_D$ is $10mA$, using this values we get the value of $R_D$ as $1K\Omega$.

### 5.4 Intermediate LNA Schematic

After obtaining the biased sub-circuit, the micro-strip lines are added to connect the lumped elements. Following micro strip lines were then added: “Mlins”, “Mtees”, “Mtaper” etc. After adding micro strip lines, the ideal capacitors and resistors were replaced with industry available comp.
6. MATCHING NETWORKS
The techniques for impedance matching an enhancement mode device are very similar to those for matching a depletion mode device. The matching network (figure 13) consists of matching networks at input and output ends of the intermediate circuit.

![Matching Network Diagram](image)

**Fig 13: Matching network**

The matching equations are,

\[ G_{T_{\text{max}}} = G_{S_{\text{max}}} \times G_{O_{\text{max}}} \]

\[ G_{S_{\text{max}}} = \frac{1}{1 - |S_{11}|^2} \]

\[ G_{O_{\text{max}}} = |S_{21}|^2 \]

\[ G_{S_{\text{min}}} = \frac{1}{1 - |S_{22}|^2} \]

6.1 Input Matching

For input matching,

The source gain circle equations are:

\[ g_s = \frac{G_s}{G_{S_{\text{max}}}} \]

\[ C_{\text{gs}} = \frac{g_s \times S_{11}}{1 - |S_{11}|^2(1 - g_s)} \]

\[ R_{\text{gs}} = \frac{\sqrt{1 - g_s(1 - |S_{11}|^2)}}{1 - |S_{11}|^2(1 - g_s)} \]

Where,

- \( C_{\text{gs}} \) = center of the source gain circle
- \( R_{\text{gs}} \) = radius of the source gain circle

The noise circle equations are:

\[ N = (F - F_{\text{min}})(1 + |\Gamma_{\text{opt}}|^2) \]

\[ C_{\text{f}} = \frac{\Gamma_{\text{opt}}}{N + 1} \]

\[ R_{\text{f}} = \frac{\sqrt{N^2 + N(1 - |\Gamma_{\text{opt}}|)}}{1 + N} \]

Where,

- \( C_{\text{f}} \) = center of the noise circle
- \( R_{\text{f}} \) = radius of the noise circle

**Fig 14: Schematic of Input Matching Network**

6.2 Output Matching

For output matching,

The load gain circle equations are:

\[ g_L = \frac{G_L}{G_{L_{\text{max}}}} \]

\[ C_{\text{gL}} = \frac{g_L \times S_{22}}{1 - |S_{22}|^2(1 - g_L)} \]

\[ R_{\text{gL}} = \frac{\sqrt{1 - g_L(1 - |S_{22}|^2)}}{1 - |S_{22}|^2(1 - g_L)} \]

Where,

- \( C_{\text{gL}} \) = center of the load gain circle
- \( R_{\text{gL}} \) = radius of the load gain circle

**Fig 15: Schematic of Output Matching network**
7. Complete LNA Design
After combining Input Matching circuit, Intermediate sub-circuit and Output Matching circuit into a single circuit, the low noise amplifier was designed.

Fig 16: Schematic of Complete Low Noise Amplifier

7.1 Development of Layout
Layout is facet of the LNA design work will all vendor components is complete and errors have been successfully removed with the additional steps process: Extraction, Layout Versus Schematic (LVS) Check, and Post-Layout Simulations. Extraction involves the creation of a circuit description called a netlist which provides information regarding the transistors and their interconnections. The circuit is terminated with a 50Ω port on the input and output side. The circuit is named LNA

8. SIMULATION RESULTS AND ANALYSIS

8.1 The forward gain (S21)
The forward gain (S21) of the LNA varies from 23.89 dB to 24.46 dB in the frequency range of 2.3 GHz to 5.8 GHz while providing a flatness of 0.57dB. The forward gain takes a maximum value of 24.46 dB at 3 GHz and is considerably high at 4 GHz and 5 GHz.

8.2 Noise Figure (NF)
The noise figure (NF) goes on decreasing with the increase in frequency from 1.56 dB at 2.3 GHz to 1.02 dB at 5.8 GHz, and has the minimum value of 0.96 dB at 5 GHz. The minimum noise figure goes on increasing as the frequency increases from 0.63 dB at 2.3 GHz to 0.81 dB at 5.8 GHz.

8.3 Return Loss
The return loss of the complete LNA circuit.
The input return loss S11 is less than 0 dB throughout the frequency range of 2.3 GHz to 5.8 GHz and is minimum at 5 GHz with -11.96 dB value. The output return loss S22 is less than 0 dB throughout the frequency range of 2.3 GHz to 5.8 GHz and is minimum at around 5 GHz with -13.02 dB value.

8.4 VSWR Limitation

Fig 21: VSWR at Input and Output of the complete LNA circuit.

Design shows very good response at 4.8GHz at input side 1.6 and output side 1.5GHz and there is small limitation at the input since its value is more at lower frequency and optimum value after 3.5 GHz.

9. CONCLUSION

At the system level, receiver sensitivity is dominated by the noise figure, Gain and linearity so in this paper a two stage LNA is designed by adding an input and output matching Network and DC bias, its behavior is carefully analyzed in AWR Microwave office. The results achieved in this work is having I/O matching network which is evaluated and relative performance is compared with below mentioned papers in terms of bandwidth, forward gain and noise figure.

Table 1. Comparison between proposed work and related recent published work

<table>
<thead>
<tr>
<th>Reference</th>
<th>Bandwidth (GHz)</th>
<th>Noise Figure (dB)</th>
<th>Gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6]</td>
<td>Single point at 1</td>
<td>0.6</td>
<td>17.49</td>
</tr>
<tr>
<td>[1]</td>
<td>2-11</td>
<td>1.6-4</td>
<td>15</td>
</tr>
<tr>
<td>[7]</td>
<td>Single point 2.4</td>
<td>1.8</td>
<td>12.09</td>
</tr>
<tr>
<td>[8]</td>
<td>2.1-2.5</td>
<td>1.9-2.1</td>
<td>11.9</td>
</tr>
<tr>
<td>This work</td>
<td>2.3-5.8</td>
<td>&lt;1.5</td>
<td>24</td>
</tr>
<tr>
<td>This work</td>
<td>5</td>
<td>0.9</td>
<td>24</td>
</tr>
</tbody>
</table>

Thus, the designed amplifier have claims the advantages of better matching network yields a Forward flat gain of 24 dB Noise figure less than 1.6 dB over the bandwidth from 2.3 GHz to 5.8 GHz with high linearity and stability. The design shows the best performance at 5GHz providing the Gain 24dB and limiting the Noise figure to 0.9dB.

10. FUTURE SCOPE

This work as opened numerous area for future work with respect to flat gain response in LNA design which could be done better understanding for the LNA measurements in the receiver system. The shown 3-D layout technology is promising in performance of fabrication. In addition to this work followed by the fabrication by using MMIC technology and will be integrated to the receiver system of some of the applications like WiMAX, Digital Audio Radio Satellite (DARS), Amateur radio, Airport surveillance radars and S/C band radars. Also commercially viable wireless application in huge scale.

11. ACKNOWLEDGMENTS

This work is supported by MCT’s Rajiv Gandhi Institute of Technology, Mumbai and also authors would like to thank Dr. Udhav Bhosle, Principal of RGIT, Chairman, Board of Studies in EXTC Engineering, University of Mumbai for significant support and encouragement for this research work. The authors would like to special thanks for Prof. K. T Srirangaraj, Dr. TGS Moorthy, Prof. Chandrashekar K. CET, Jain University, Bangalore and Mr. Manjunatha Reddy H. V Technical Manager, RF and μW division, Icon Design Automation Pvt. Ltd. for their valuable guidance.

12. REFERENCES


13. AUTHOR PROFILE

Mr. Pramod K B was born in Mysore, Karnataka, India in 1989. He is currently working as Assistant Professor in MCT’s RGIT, Mumbai and also working towards Ph.D degree at JAIN University, Bangalore in Electronics Engineering. He received his B.E degree in Electronics and Communication from Dr.Ambedkar Institute of Technology, Bangalore Visvesvaraya Technological University in 2010, M.Tech degree in R F Communication from Jain University, Bangalore, in 2012 and He worked as R F Design trainee at Icon Design and Automation Pvt Ltd and as visiting research scholar at University of Concordia, Montreal, Quebec, Canada. His research includes Design, Characterization And Optimization Of RF Passive Devices , Board Level Tuning And Optimization Of Matching Networks, Low Noise Amplifier , Power Amplifier, Circuit Linearization And High-Efficiency Design Techniques, Circuit Instability And Strategies

K. G. Sawarkar is currently working as head of electronics & telecommunication engg.Dept. RGIT, Mumbai and Research Scholar in Mumbai University. His Area of Interest is Design of analog circuits , design of RF circuits and systems He has done his BE in Electronics and telecommunication under Amravati University and M.E from Mumbai University. Prof. Dr. Kumaraswamy H.V is currently working as Professor & HOD in the Dept of Telecommunication Engineering, RVCE, and Bangalore. His research interests are Digital Signal Processing, Adaptive Signal Processing and Communication. He has got PhD from Visvesvaraya Technological University for the research work on Smart antenna System using Dielectric lens. He is the author of the book titled "Signals & Systems” Published by: Scitech Publication, Chennai, ISBN No.8188429260.

Dr. Kushal R. Tuckley is currently working as Chairman. Head, R&D. agv systems pvt ltd. Mumbai. He is an expert in the field of DSP, Radars and RF/Microwave systems. He has B. Tech, M.Tech and PhD from IIT Bombay. He had a 25 year long career as a scientist in Society for Applied Microwave Electronics Engineering and Research (SAMEER), a premium research institute in microwave systems engineering. He has significant contribution in many of the prestigious projects commissioned by the Govt. of India. He had a stint at Astra Microwave Products Ltd