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ABSTRACT 
The processing and analysis of Electroencephalogram (EEG) 

within a proposed framework has been carried out with DWT 

for decomposition of the signal into its frequency sub-bands 

and a set of statistical features was extracted from the sub-

bands to represent the distribution of wavelet coefficients. 

Reduction of the dimension of the data is done with the help of 

Principal component analysis and Independent components 

analysis. Then these features were used as an input to a neural 

network for classification of the data as normal or otherwise. 

The performance of classification process due to different 

methods is presented and compared to show the excellent of 

classification process. These findings are presented as an 

example of a method for training, and testing a normal and 

abnormal prediction method on data from individual petit mal 

epileptic patients.  
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1. INTRODUCTION 
About 1% of the people in the world suffer from epilepsy and 

30% of epileptics are not helped by medication. Research is 

needed for better understanding of the mechanisms causing 

epileptic disorders. Careful analyses of the 

electroencephalograph (EEG) records can provide valuable 

insight into this widespread brain disorder. Wavelet is an 

effective time_/frequency analysis tool for analyzing transient 

signals. Its feature extraction and representation properties can 

be used to analyze various transient events in biological 

signals. In this work, wavelet transform is used to analyze 

epileptiform discharges in recorded brain waves (EEG) for 

patient with absence seizure (petit mal). Absence seizure is one 

of the main types of generalized seizures and the underlying 

pathophysiology is not completely understood. Neurologists 

make the absence seizure epileptic diagnosis primarily through 

visual identification of the so-called 3-Hz spike and wave 

complex. Epileptic seizure is an abnormality in EEG 

recordings and is characterized by brief and episodic neuronal 

synchronous discharges with dramatically increased amplitude. 

This anomalous synchrony may occur in the brain locally 

(partial seizures), which is seen only in a few channels of the 

EEG signal, or involving the whole brain (generalized 

seizures), which is seen in every channel of the EEG signal [2]. 

Electroencephalograms (EEGs) are recordings of the electrical 

potentials produced by the brain. In 1924, Hans Berger 

reported the recording of rhythmic electrical activity from the 

human scalp. In the past, interpretation of the EEG was limited 

to visual inspection to qualitatively distinguish normal EEG 

activity from localized or generalized abnormalities contained 

within relatively long EEG records. This approach left 

clinicians and researchers alike buried in a sea of EEG paper 

records. The advent of computers and the technologies 

associated with them has made it possible to effectively apply a 

host of methods to quantify EEG changes [4]. 

The EEG spectrum contains some characteristic waveforms 

that fall primarily within four frequency bands: delta (<4 Hz), 

theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). Since the 

EEG signals are non-stationary, the parametric methods are not 

suitable for frequency decomposition of these signals. A 

powerful method was proposed in the late 1980s to perform 

time-scale analysis of signals: the wavelet transforms (WT). 

This method provides a unified framework for different 

techniques that have been developed for various applications. 

Since the WT is appropriate for analysis of non-stationary 

signals and this represents a major advantage over spectral 

analysis, it is well suited to locating transient events, which 

may occur during epileptic seizures. Wavelet’s feature 

extraction and representation properties can be used to analyze 

various transient events in biological signals. Adeli et al. [2] 

gave an overview of the discrete wavelet transform (DWT) 

developed for recognizing and quantifying spikes, sharp waves 

and spike-waves. They used wavelet transform to analyze and 

characterize epileptiform discharges in the form of 3-Hz spike 

and wave complex in patients with absence seizure.  

The techniques have been used to address this problem such as 

the analysis of EEG signals for epileptic seizure detection 

using the autocorrelation function; frequency domain features, 

time–frequency analysis, and wavelet transform (WT). The 

results of the studies in the literature have demonstrated that 

the WT is the most promising method to extract features from 

the EEG signals. In this respect, in the present study for 

epileptic seizure detection in patients with absence seizures 

(petit mal), the WT was used for feature extraction from the 

EEG signals belonging to the normal and the patient with 

absence seizure [11].  

 

2. FEATURE EXTRACTION 

METHODS 
 

2.1 The Wavelet Transform 
 

A signal is said to be stationary if it does not change much over 

time. Fourier transform can be applied to the stationary signals. 

However, like EEG, plenty of signals may contain non-

stationary or transitory characteristics. Thus it is not ideal to 

directly apply Fourier transform to such signals. In such a 

situation time–frequency methods such as wavelet transform 

must be used. In wavelet analysis, a variety of different probing 

functions may be used. This concept leads to the defining 

equation for the continuous wavelet transform (CWT):  
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where b acts to translate the function across x(t), and the 

variable a acts to vary the time scale of the probing function,. 

If a is greater than one, the wavelet function, , is stretched 

along the time axis, and if it is less than one (but still positive) 

it contacts the function. While the probing function  could be 

any of a number of different functions, it always takes on an 

oscillatory form, hence the term ‘‘wavelet.” The normalizing 

factor ensures that the energy is the same for all values of a. In 

applications that require bilateral transformations, it would be 

preferred a transform that produces the minimum number of 

coefficients required to recover accurately the original signal. 

The discrete wavelet transform (DWT) achieves this parsimony 

by restricting the variation in translation and scale, usually to 

powers of 2. For most signal and image processing 

applications, DWT-based analysis is best described in terms of 

filter banks. The use of a group of filters to divide up a signal 

into various spectral components is termed sub-band coding. 

This procedure is known as multi-resolution decomposition of 

a signal x[n]. Each stage of this scheme consists of two digital 

filters and two down-samplers by 2. The first filter, h [] is the 

discrete mother wavelet, high-pass in nature, and the second, 

g[] is its mirror version, low-pass in nature. The down-

sampled outputs of first high-pass and low-pass filters provide 

the detail, D1 and the approximation, A1, respectively [2]. 

Selection of appropriate wavelet and the number of levels of 

decomposition is very important in analysis of signals using 

DWT. The number of levels of decomposition is chosen based 

on the dominant frequency components of the signal. The 

levels are chosen such that those parts of the signal that 

correlate well with the frequencies required for classification of 

the signal are retained in the wavelet coefficients. Since the 

EEG signals do not have any useful frequency components 

above 30 Hz, the number of levels was chosen to be 5. Thus 

the signal is decomposed into the details D1–D5 and one final 

approximation, A5. The ranges of various frequency bands are 

shown in Table 1. The approximation and detail records are 

reconstructed from the Daubechies 4 (DB4) wavelet filter [2]. 

The extracted wavelet coefficients provide a compact 

representation that shows the energy distribution of the EEG 

signal in time and frequency. Table 1 presents frequencies 

corresponding to different levels of decomposition for 

Daubechies order 4 wavelet with a sampling frequency of 

173.6 Hz. 

Table 1.Frequencies corresponding to different levels of 

decomposition for Daubechies 4 filter wavelet with a 

sampling frequency of 173.6 Hz. 

Decomposed 

Signal 

Frequency 

range (Hz) 

D1  43.4–86.8 

D2  21.7–43.4 

D3  10.8–21.7 

D4  5.4–10.8 

D5  2.7–5.4 

A5  0–2.7 

 

 

2.2 Independent component analysis 
 

We assume that we observe n linear mixtures x1,.....,xn of n 

independent components:  

 

                              (1)  

 

In this equation the time has been ignored. Instead, it was 

assumed that each mixture xj as well as each independent 

component si are random variables and xj(t) and si(t) are 

samples of these random variables. It is also assumed that both 

the mixture variables and the independent components have 

zero mean.  

If not subtracting the sample mean can always center the 

observable variables xi. This procedure reduces the problem to 

the model zero-mean:  

 

                                                                 (2) 

 

Let x be the random vectors whose elements are the mixtures 

and let s be the random vector with the components s1,....,sn. 

Let A be the matrix containing the elements aij. The model can 

now be written: 

  

            x = As         or         
 
                      (3) 

 

The above equation is called independent component analysis 

or ICA. The problem is to determine both the matrix A and the 

independent components s, knowing only the measured 

variables x. The only assumption the methods take is that the 

components si are independent. It has also been proved that the 

components must have nongaussian distribution [10]. ICA 

looks a lot like the “blind source separation” (BSS) problem or 

blind signal separation: a source is in the ICA problem an 

original signal, so an independent component. In ICA case it is 

also no information about the independent components, like in 

BSS problem.  

Whitening can be performed via eigenvalue decomposition of 

the covariance matrix:  

 

                                                    (4)  

 

where V is the matrix of orthogonal eigenvectors and D is a 

diagonal matrix with the corresponding eigenvalues. The 

whitening is done by multiplication with the transformation 

matrix P:  

                             (5)                                

     
 

    

 

The matrix for extracting the independent components from    

is   , where      . 

 

2.3 Fast Ica for N Units  
 

A unit represents a processing element, for example an 

artificial neuron with its weights W. To estimate several 

independent components, the weights w1,....w2 must be 

determined. The problem is that the outputs  
         

   

must be done as independent as possible after each iteration in 

order to avoid the convergence to the same maxima. One 

method is to estimate the independent components one by one 

[1, 8].  

 

Algorithm:  

i) Initialize wi 

ii) Newton phase  
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where g is a function with one of the following form:   

                 

            
 

 
      

                                                   (7) 

iii) Normalization  

                     
 

    
                                        (8) 

 

iv) Decorrelation  

 

                   
     

   
                       (9) 

 

v) Normalization (like in the step iii)  

vi) Go to step ii) if not converged.  

 

2.4 Principal component analysis  

 
Given a set of centered input vectors xt ( t = 1,. . . ,l and 
     ) , each of which is of m dimension                        
                      (usually m < l), PCA linearly 

transforms each vector xt, into a new one st, by  

                                                                    (1) 

where U is the mxm orthogonal matrix whose ith column ui is 

the ith eigenvector of the sample covariance matrix      
 

 
     

  
    . 

In other words, PCA firstly solves the eigenvalue problem                        

(2). 

                                                         (2) 

 

where i is one of the eigenvalues of C . ui is the 

corresponding eigenvector. Based on the estimated ui, the 

components of st are then calculated as the orthogonal 

transformations of xt, 

                 
                                          (3) 

The new components are called principal components. By 

using only the first several eigenvectors sorted in descending 

order of the eigenvalues, the number of principal components 

in st can be reduced. This is the dimensional reduction 

characteristic of PCA [6]. 

 

2.5 Support vector machines 

 

Support vector machines (SVMs) are one of the most recently 

developed classifiers and build on developments in 

computational learning theory. They are finding applications in 

bioinformatic applications, because of their accuracy and their 

ability to deal with a large number of predictors. Most of the 

previous classifiers separate classes using hyperplanes that split 

the classes, using a flat plane, within the predictor space.  

SVMs extend the concept of hyperplane separation to data that 

cannot be separated linearly, by mapping the predictors onto a 

new, higher-dimensional space (called the feature space) in 

which they can be separated linearly. The method’s name 

derives from the support vectors, which are lists of the 

predictor values obtained from cases that lie closest to the 

decision boundary separating the classes and are, therefore, 

potentially the most difficult to classify. 

It is reasonable to assume that these cases have the greatest 

impact on the location of the decision boundary.   

Computationally, finding the best location for the decision 

plane is an optimisation problem that makes uses of a kernel 

function constructs linear boundaries through non-linear 

transformations, or mappings, of the predictors. The ‘clever’ 

part of the algorithm is that it finds a hyperplane in the 

predictor space which is stated in terms of the input vectors and 

dot products in the feature space. A dot product is the cosine of 

the angle between two vectors (lists of predictor values) that 

have normalised lengths. The dot product can then be used to 

find the distances between the vectors in this higher 

dimensional space. A SVM locates the hyperplane that 

separates the support vectors without ever representing the 

space explicitly. Instead a kernel function is used that plays the 

role of the dot product in the feature space. 

The support vector classifier has many advantages. A unique 

global optimum for its parameters can be found using standard 

optimization software. Nonlinear boundaries can be used 

without much extra computational effort. Moreover, its 

performance is very competitive with other methods. A 

drawback is that the problem complexity is not of the order of 

the dimension of the samples, but of the order of the number of 

samples. 

 

3. Experimental Result 
The datasets used in this research are selected from the 

Epilepsy center in Bonn, Germany by Ralph Andrzejak. Five 

data sets(A-E) containing quasi-stationary, artifact, e.g., due to 

muscle activity or eye movements, free EEG signals both in 

normal subjects and epileptic patients. All EEG signals were 

recorded with the same 128-channel amplifier system, using an 

average common reference. The data were digitized at 173.61 

samples per second using 12 bit resolution. Band-pass filter 

settings were 0.53–40 Hz (12 dB/oct). In this study, we used 

two dataset (A and E) of the complete dataset [3]. 

The data taken from the dataset A & E is being decomposed 

using DWT. Fig. 1 & 2 shows the detailed & approximate 

decomposed coefficients of healthy & unhealthy patients using 

DWT.  
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Fig. 1 Approximate and detailed coefficients of EEG signal 

taken from a healthy subject. 

 

Fig. 2 Approximate and detailed coefficients of EEG signal 

taken from unhealthy subject (epileptic patient). 

The dimension of the data is reduced using feature extraction 

techniques. The statistical features such as mean, variance, 

standard deviation of component vectors are extracted which 

are used to train the neural network which classifies the data as 

normal or epileptic. Two layered, five perceptron neural 

network classifier was trained with feed forward algorithm. 

The training was implemented to distinguish between 

identification of normal and abnormal electroencephalograph 

on the basis of comparison of coefficients. Table 2 shows the 

comparison of the two feature extraction techniques used along 

with neural network. Table 3 shows the improvement in result 

with support vector machine. 

 

Table2. The values of statistical parameters of the PCA, 

ICA models for EEG signal classification using neural 

network 

Feature 

extraction 

method 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PCA     93.63 62.93 98.83 

ICA     96.75 96.75 96.75 
 

Table3. The values of statistical parameters of the PCA, 

ICA models for EEG signal classification using SVM. 

Feature 

extraction 

method 

Accuracy  

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PCA 97.75 96.15 99.48 

ICA 99.50 99.50 97.05 

4. CONCLUSION 
 

Diagnosing epilepsy is a difficult task requiring observation of 

the patient, an EEG, and gathering of additional clinical 

information. Conventional classification methods of EEG 

signal using mutually exclusive time and frequency domain 

representations shows in-efficient results. In proposed 

framework, DWT was used to decompose the EEG into time–

frequency representations. Statistical features were calculated 

to represent the distribution of coefficients. Using statistical 

features extracted from the DWT sub-bands of EEG signals, 

two feature extraction method; namely PCA, ICA, were used 

with ANN and cross-compared in terms of their accuracy 

relative to the observed epileptic/normal patterns. The 

comparisons were based on two scalar performance measures 

derived from the test vectors; namely specificity and 

sensitivity. The result of EEG signal classification shows that 

nonlinear feature extraction can improve the performance of 

classifier. The result of EEG signal classification using SVMs 

shows that nonlinear feature extraction can improve the 

performance of classifier with respect to reduction in the 

number of support vectors. According to this result, the 

application of nonlinear feature extraction can serve as a 

promising alternative for intelligent diagnosis system in the 

future. 
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