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ABSTRACT 

The real world objects are too irregular to be modeled with 

the help of traditional interpolation methods. M. F. Barnsley 

in 1986 proposed the concept of fractal interpolation function 

(FIF) using iterated function systems (IFS) to describe such 

real world data. In many cases these data sets represent a 

curve rather than a function i.e. the data points are not linearly 

ordered with their abscissa and self affinity is not satisfied in 

the whole range. The recurrent fractal interpolation function 

(RFIF) has a role to play in such cases. The purpose of this 

paper is to apply recurrent fractal interpolation function to fit 

the piecewise self affine data. 
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1. INTRODUCTION 
Most of the natural objects such as coastline, fracture surface 

etc are generally rough, unsmoothed in nature and have some 

degree of self-similarity. In 1975, Mandelbrot [10] introduced 

fractals to study such objects. Thereafter, fractals are widely 

studied by a number of authors. Barnsley [1-4], Dalla and 

Drakopoulos [6], Hutchinson [9], Mandelbrot [10], 

Manousopoulos et al. [14], Navascues et al [15],  Mazel et al. 

[11-13], Prasad and Katiyar [16], Singh et al. [18] and many 

others have enriched the theory of fractals by identifying the 

diverse domain of applications of fractals. Barnsely [1] 

proposed the method of fractal interpolation in the year 1986 

and studied the continuity and the fractal dimension of fractal 

interpolation function. Fractal interpolation method, different 

from the traditional interpolation method, is a numerical 

method in the fractal geometry which uses the concepts of 

iterated function system (IFS). The FIFs are very efficient to 

approximate unsmoothed curves. Such curves can be 

described by means of a fractal interpolation functions due to 

the unique characteristic applied in unsmoothed curve fitting. 

The graphs of fractal interpolating functions can also be used 

to approximate image components of many natural objects 

such as the profiles of mountain ranges, the tops of clouds, 

stalactite-hung roofs of caves and horizons over forests. This 

technique is widely used in simulation, modelling and 

computer graphics. The fractal interpolation functions (FIF) 

have opened a new research field in the approximation theory 

of functions. In the recent years, it had gained an appreciable 

attention of researchers working in these areas. There are 

many papers in the literature about the applications and 

properties of such functions, see for instance [1]-[5], [8], [17], 

[19] and references thereof.  

Barnsley et al. [2] generalized FIF in the form of recurrent 

fractal interpolation function (RFIF) to fit data set which is 

piecewise self-affine. In practice, we find there are many 

cases where the data set defines a curve rather than a function. 

Therefore one can not apply fractal interpolation directly, for 

example, in modeling coastlines or plants. A number of 

methods are used in the literature for fractal fitting of self 

affine data sets. The methods based on generalizations to 

higher dimensions are introduced in [5], [11] and [13]. 

Uemura et al [19] proposed a method based on index 

coordinates. Various combinations of IFS models and free 

form curves are proposed by Guerin et al. [7-8].  

Manpusopoulos et al. [14] introduced a method in which FIF 

is obtained from the transformed data set. In many practical 

situations, the interpolating curve may not be self affine in the 

entire range. Piecewise self affinity can be easily explored in 

such cases. This motivates us to introduce a new algorithm for 

modeling curves which are piecewise self-affine. 

2. PRELIMINARIES 
In this section we present the basic definitions and concepts 

required for our study. 

Definition 2.1 [3]. Let (X, d) be a metric space. A 

transformation w: X → X is said to be Lipschitz with Lipschitz 

constant s ∈ R iff d(w(x), w(y)) ≤ s d(x, y) for all x, y ∈ X. A 

transformation f: X → X is called contractive iff it is Lipschitz 

with Lipschitz constant s ∈ [0, 1). A Lipschitz constant s ∈ [0, 

1) is also called a contraction factor.  

Definition 2.2 [3]. A hyperbolic iterated function system 

(IFS) consists of a complete metric space (X, d) together with 

a finite set of contraction mappings wn: X → X, with 

respective contractivity factors sn for n = 1, 2, ..., N. This IFS 

is represented by {X; wn: n = 1, 2, ..., N} with contractivity 

factor s = max{sn: n = 1, 2, ..., N}. 

Definition 2.3 [3]. A recurrent iterated function system 

(RIFS) consists of an IFS {X; wn: n = 1, 2, ..., N} together 

with a matrix {pmn ∈ [0, 1]: m, n = 1, 2, ..., N}, such that 

(i) pm l + pm 2  + pm 3 + ··· + pm N = 1 for m = 1, 2, ..., N;  

(ii)  for any m and n, there exists a finite sequence of integers 

k, l, ..., q ∈ {1, 2, ..., N} so that  

pm k  pk l … pq n > 0. 

The RIFS is represented by {X, wn, pm n, m, n = 1, 2, ..., N}. 

Definition 2.4 [3]. Let (X, d) be a metric space and H(X) 

denote the nonempty compact subsets of X. Then the 

Hausdorff metric h in H(X) is defined as 
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h(A, B) = max {d(A, B), d(B, A)} for all A, B ∈ 

H(X),  

where d(A, B) = max(min(d(a, b): b ∈ B): a ∈ A). 

 

We now state a lemma of Barsnley [3] which guarantees a 

contraction map in {H(X), h} out of a contraction map on (X, 

d). 

Lemma 2.5 [3]. Let w: X → X be a contraction on a metric 

space (X, d) with contractivity factor s. Then w: H(X) → H(X) 

defined by 

)(}:)({)( XHBBxxwBw   

is a contraction on }),({ hXH with contractivity factor s.  

The following theorem ensuring the existence of a unique 

fixed point (also called an attractor) of the IFS, is fundamental 

to our results.  

Theorem 2.6 [2]. Let {X; wn, n = 1, 2, ..., N} be a hyperbolic 

iterated function system with contractivity factor s. Then the 

transformation W: H(X) → H(X) defined by 


N

n n BwBW
1

)()(


  for all B ∈ H(X) is a contraction 

mapping on the complete metric space (H(X), h) with 

contractivity factor s. That is, h(W(B), W(C)) ≤ s h(B, C) for 

all B, C ∈ H(X). Its unique fixed point, A ∈ H(X) obeys 

N
n n AwAWA 1 )()(   and is given 

by )(lim BWA n
n  for any B ∈ H(X). 

2.1 Recurrent Fractal Interpolation 

Function 

Let ∆1 = {(xn, yn) ∈I×R: n = 0, 1, …. , N} be the data set, 

where  I = [x0, xN]   R and x0 < x1 <  … < xN.  The 

interpolation points divide I into N intervals In= [xn-1, xn], n 

=1, 2, …, N. Let           

12 }...,,1,0:)~~{(   M  m = y,x mm , divides I into M 

sections NMmxxS mmm   ...,,2,1],~ ,~[ 1 such that 

NM xxxxxx  ~...~~~
2100  and there is at least one 

n such that 1
~~

 mnm xxx  for every m. We associate each 

interpolation interval to a pair of data points called address 

points. Let the nth interval In is associated with the data points 

),( 1,1, nn yx  and ),( 2,2, nn yx  for n = l, 2, ..., N, where 

)~,~(),( ,, mmknkn yxyx  for m =1, 2, … M and k=1, 2. Each 

pair of address points defines a section ],[ 2,1, nn xx   with 

2,1, nn xx   for n =1, 2, … N. 

Let Nnxx nnn ...,,2,1, =  - 1-  and 

Mmxx mmm ...,,2,1, = ~ - ~
1-  such that ψm < δn for n =1, 

2, … N,  m =1, 2, … M.  

 

Now we define wn: I×R → R2, n = l, 2, ..., N  in the following 

manner: 
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The constants are chosen such that each map wn is constrained 

to map the endpoints of the section Sm to the endpoints of the 

interval In. That is, 
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From which we obtain 
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for every n = 1, 2, 3, …, N. The real numbers an, bn, cn, en are 

completely determined by the interpolation and address 

points, while the dn (called vertical scaling or contractivity 

factors) are free parameters of the transformations wn 

satisfying |dn| < 1, so that the transformations wn are 

contractive with respect to a metric equivalent to Euclidean 

metric. 

Moreover, let N
n

n
n BwBW 1

][ )()(  , where B ∈ H(R2) and 

}:),{( 2,1,
][

nn
n xxxByxB  , for n = 1, 2, ..., N. The 

unique set )(lim BWAG k
k   for every starting set       

B ∈ H(R2), is the graph of a continuous function f: I → R that 

passes through the interpolation points (xn, yn), for all n = 0, 1, 

..., N (see[2, 3, 12]). We call such a function a recurrent fractal 

interpolation function (RFIF) or piecewise self affine fractal 

interpolation function. 

3. PIECEWISE SELF AFFINE 

FRACTAL INTERPOLATING CURVE 
We extend the idea of fractal interpolating curve given by 

Manousopoulos et al. [14] for piecewise self affine maps. We 

apply Mazel and Hayes [12] algorithm to calculate the vertical 

scaling factors and identify the best matching section for a 

given interpolating points. Let ∆ = {(un, vn) ∈ I×R: n = 0, 1, 

…. , N} be the given set of data point.  

Transform the given set of data ∆ to ),( nn yx , n = 1, 2, 3, …, 

N  using method given by Manousopoulos et.al. [14].  

First label it as },...,,2,1,0:),{( 2
)()( LiRvu iJiJ  where 

the labeling function J:{0, 1, ..., L} → {0, 1, ..., N} defines the 

indices of the interpolation points. After this apply the 

transform ,...,,2,1,0),,(),(1 NnyxvuT nnnn  where 
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and  ε > 0 is an arbitrary constant necessary when all points in 

an interpolation interval have equal x-coordinates, i.e. un = un-1 

for every n = J(i)+1,..., J(i+1) and some i ∈{0, 1,..., L}. 

Otherwise, we set ε = 0.  
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Now apply the following algorithm to select the best matching 

section for every interpolation interval In and corresponding 

contractivity factors dn.  

1. Choose δn, ψm with ψm < δn. 

2. For each interpolating interval n do:  

a) for each section m do:  

(i) Use least square method to compute the 

contraction factor for the map associated with 

the nth interval and mth section (see Mazel and 

Hzyes [12]).  

(ii) If |d| ≥ 1, go to (vi). 

(iii) Form the map 








y

x
w associated with the nth 

interval and mth section. 

(iv) Apply 



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



y

x
w to function values between mth 

section and call this Ĥ . 

(v) Compute the distance hm between Ĥ and the 

function values over the support [xn-1, xn] i.e. 

 
]~,~[ 1

,ˆ
mm xxxm HHhh


 .  

(vi) Next section. 

b) Find the m for which h, is a minimum.  

c) Store the map parameters for the nth interval 

associated mth section as the map parameters for the 

nth interval.  

d) Next interval. 

Now, apply an affine RFIF to create an RIFS whose attractor 

is the graph G’ of a function that interpolates the points (uJ(n), 

vJ(n)) n = 0, 1,..., N. 

The final step is to apply a transformation to G’ in order to 

obtain the graph G of a curve that interpolates the initial 

points {(un, vn): n = 0, 1, ..., N}. Let (x, y) ∈ G’ be a point of 

the attractor. We apply the transformation T2: G’ → G with (x, 

y) → (u, v), where 

.
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Fractal interpolated curves (FICs) of this kind are depicted in 

Fig. 1, which are constructed on a simple, manually selected 

set of 10 interpolation points. Specifically, we select the 

following data points 

{(3, 1), (2, 2), (1, 4), (0, 3), (-1, 3), (-2, 1), (-1, -1), (0, -

2), (2, -1), (3.5, -0.5)} 

The contractivity factors dn have been calculated using least 

square method. 

Fig.1 shows the graphs of piecewise self affine curves as an 

attractor of RIFS. In figure 1(a) we use fractal interpolation 

function with contractivity factors dn = 0.1 for all n, to fit the 

graph as used by Manousopoulos et al. [14].  

In Fig. 1(b) – (d), we consider the partition ∆2 as follows: 

Fig. 1(b) - {[x1, x5], [x5, x7], [x7, x11]}, 

Fig. 1(c) - {[x1, x4], [x4, x9], [x9, x11]}, 

Fig. 1(d) - {[x1, x4], [x4, x11]}, 

  

     (a)      (b) 
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     (c)      (d) 

Fig 1: Fractal interpolated curves

4. CONCLUSIONS 
While modeling various problems natural or otherwise, it is 

not always possible to have the self affinity condition fully 

satisfied in the entire range of the data set. In such cases our 

approach of recurrent fractal interpolating function (RFIF) is 

better than the usual fractal interpolating function (FIF). We 

explore the sub intervals of the data sets showing self affinity 

to use the proposed algorithm to fit the data set. 
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