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ABSTRACT 
The need for intelligent tools for all stages of a product's 

lifecycle is becoming increasingly important with the 

increasing system complexity, shorter product life cycles, 

lower production costs, and changing technologies. This paper 

is a brief review of the features such as characteristic 

linearization, curve fitting, auto-calibration and fault diagnosis 

of Artificial Neural Networks (ANNs) based intelligent sensors 

and design issues for their development. 
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1. INTRODUCTION 

Sensors are fundamental elements in all the instruments and 

circuits which are extensively applied for measurements, as 

well as control, in scientific and industrial fields. For the 

industrial applications, low-cost sensors with high sensitivity 

and resolution, with linear characteristics are required [1]. 

Unfortunately, dynamic nature of the environment, aging, 

inherent noise in the sensor, missing data due to transients or 

intermittent faults, influences the sensor characteristics 

nonlinearly. It bas been observed that the regular mathematical 

approaches do not provide the acceptable non-linearity 

prediction results, since, an accurate mathematical model 

including all error sources is rarely known. Linearization could 

obviously be implemented either by means of a look-up table 

or a specific algorithm. However, in many cases, an accurate 

table may be too large to be realized [2], while the algorithm 

may be time consuming or may need a dedicated computing 

system. Thus a low cost precise schemes for compensation of 

several interfering parameters and linearization are the 
requirements which can be fulfilled achieved by ANNs [3].    

ANNs are used to predict sensor drift because they are 

intrinsically capable to do so [4]. The primary advantages of 

ANNs are the ability to generalize results obtained from known 

situations to unforeseen situations, fast response time in 

operational phase due to a high degree of structural parallelism, 

reliability and  

efficiency [5]. 

They have robustness in presence of noise and are fault 

tolerant. Over the past four decades researchers have shown 

that ANNs do well at learning and adapting. Adaptation in 

ANN is usually based on the modification of interconnection 

strengths between computational elements according to a given 

learning algorithm. Constrained interconnection topologies 

may, however, place a priori upper limit on the ability to adapt. 

For non-linearity estimation and to obtain a direct digital 

readout of a sensor, an ANN based modeling technique has 

been proposed with quite satisfactory performance; with a 

consideration of change in the ambient temperature [6].  

Field-programmable devices couple the benefits of a hardware 

implementation (mainly speed and parallelism) with the 

possibility of implementing ANN with dynamically re-

configurable structures, enabling a system to modify its 

topology and adapt to changing situations.  
 

A scheme for ANN based intelligent sensor is shown in figure 

1. The output of nonlinear sensor is signal conditioned and 

passed to a precise the Analog to Digital Converter (ADC) so 

as to convert it into digital data, which is processed (linearized) 

by micro-controller, PC or Field Programmable Gate Array 

(FPGA) etc, based ANN. The processed output is reconstructed 

using Digital to Analog Converter (DAC). 

 

 

 
 

2.  FEATURES OF INTELLIGENT 

SENSORS 

2.1 Sensor Characteristic Linearization 
The effect of change in environmental conditions on the 

sensors and subsequently upon there output is nonlinear in 

nature therefore a complex signal processing may be required 

to obtain correct readout. To solve this problem, modeling of 

the sensors using ANN can be done with satisfactory results. 

Direct modeling technique shown in figure 2, can be used to 

estimate the nonlinearity parameters of the sensor, whereas, 

inverse modeling technique shown in figure 3, can be used to 

estimate the applied input to the sensor, which is used to 

linearize the sensor, for direct digital readout. The purpose of 

the direct modeling is to obtain an ANN model of sensor in 

such a way that the outputs of the sensor and the ANN match 

closely. When there is a change in the environmental 

conditions, the ANN automatically compensates it based on the 

distributive information stored in its weights, making the 

sensor intelligent [6]. 
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2.2  Curve Fitting 
Constant research is being carried out in the area of optimizing 

analog and digital methods for a transducer's characteristic 

interpolation or linearization. There are no rules to select the 

best curve-fitting method for a given set of data. The ANN is 

one of the most significant and optimal tools for function 

approximation and curve fitting, as compared to classical 

methods for data interpolation. The advantage of ANN based 

approach is its quality of approximations to measurement data 

with particular attention paid to the reduction of the required 

calibration set dimension to obtain a given accuracy [7]. 

 

2.3 Sensor Fault Detection 
AI has been used in the field of electronic fault diagnosis. 

Various schemes used for fault diagnosis such as Rule-based 

system, Model-based system, Case-based reasoning, Fuzzy 

reasoning, ANN, Hybrid approaches, and IEEE diagnostic 

standards and automated diagnostic tools are described [8]. 

Fault dictionary approach can be used for identification of 

catastrophic faults in sensors. A “fault dictionary “ is a priori 

generated by collecting signatures of different fault conditions. 

Neural classifiers trained on the fault dictionary examples have 

been successfully applied to the diagnosis problem providing 

satisfactory results [9-13, 21]. 

 

ANN based direct modeling may be used for the purpose of on-

line fault detection and quality control of the sensor during its 

manufacturing process [6]. One of the reasons an ANN 

approach is chosen for fault detection is because of their ability 

to extrapolate and to predict the fault also in situations that 

were new or unseen in the learning phase [13,14]. A novel 

wavelet-based approach to the abrupt fault detection and 

diagnosis of sensors can be used. By the use of wavelet 

transforms that accurately localize the characteristics of a 

signal both in the time and frequency domains, the occurring 

instants of abnormal status of a sensor in the output signal can 

be identified by the multi-scale representation of the signal. 

Once the instants are detected, the distribution differences of 

the signal energy on all decomposed wavelet scales of the 

signal before and after the instants can be used to claim and 

classify the sensor faults [15]. 

 

 

 
 

2.4 Auto-calibration 
Calibration of sensors through adaptive technique is another 

feature in intelligent instrumentation. It has been observed that 

in many cases supervision of the calibrator and error handling 

of the calibration process is a complex nontrivial task [16]. A 

fully automatic, fast and more precise calibration of sensor can 

be done with the help of ANN, to allow a non-expert user to 

carry out the calibrations with remarkable accuracy, protecting 

the hardware and rejecting faulty measurements. The optimal 

set points of the characteristic parameters can be identified and 

maintained so that the system behavior can be adapted to the 

specific realization, the components actually used, and the 

surrounding environment. [2]. The ANN based approaches are 

reliable in the determination of malfunctions. Also, 

malfunctions are predicted before the human expert or a 

traditional ruled system had traced a problem. It has been also 

used as a model of the human expert during all trials carried 

out for the development of a rule based system. Neuro-fuzzy 

network structure has been used for calibration of 

semiconductor array for gas measurements (artificial nose 

problem) [17].  

 

3. DESIGN ISSUES FOR INTELLIGENT 

SENSORS:  
 

3.1 Choice and Design of ANN 
There are numerous ANN structures reported in the literature 

but most of them are highly application-specific. The basic 

feedforward multilayer perceptron (MLP) architecture remains 

the most widely applied and analyzed. The capability of 

MLP’s, trained by error-back-propagation, to approximate 

nonlinear functions with any degree of accuracy, has already 

been shown in dozens of successful applications in the fields of 

pattern recognition/classification and image processing. In 

MLP networks, the neurons in a layer are connected to all the 

neurons in the following layer through unidirectional links 

represented by connection weights. The MLP requires the 

determination of the activation functions and the thresholds of 

the neurons, as well as of the connection weights. First, the 

activation function and the thresholds are defined by a 

recursive optimization procedure [3]. Then, the connection 

weights are computed by means of a learning algorithm such as 

back-propagation (BP). The MLP is selected in many 

applications due its simplicity and ease of training for small-

scale problems. The Radial Basis Function Networks (RBF), 

which is a viable alternative to high nonlinearity in parameter, 

has simple architecture, fast learning rate and can achieve 
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global minimum [19]. The RBF network has only one hidden 

layer and no weights connection between input and hidden 

layers.  Each neuron of the output layer has a linear input-

output relationship and performs simple summations. Thus, it 

does not give rise to proliferation of adjustable parameters 

when the dimension of the problem increases. The transfer 

function of the hidden neurons is set according to the 

characteristics of the signal to be processed.   

ANN design mainly consists of defining the topology and the 

architecture of the networks. A major obstacle in using the 

ANN in many applications is the lack of clear methodology to 

determine the network topology before training starts and the 

slow training. It is then desirable to speedup the training and 

allows fast experimentation with various topologies. When a 

network topology has been selected, the specific neural model 

must be defined: the number of layers, the numbers of neurons 

per layer, and the interconnection weights. Sample guidelines 

are available in the literature for choosing the number of layers 

and the number of neurons within each layer [2]. MATLAB 

and the ANN toolbox may be used to characterize and optimize 

the ANN architecture. A routine can be developed to select the 

ANN structure, number of layers and number of neurons in 

each layer, that minimizes error between calibration and ANN 

modeled data. 

 

The next step is to configure the network weights by applying a 

learning procedure may be supervised and unsupervised [18]. 

The weights configuration is obtained by optimizing a 

discrepancy function (e.g., a mean-squared error function) 

defined over the available examples. During learning, the error 

decreases as long as the network has unexploited degrees of 

freedom. On the other hand, learning in the long run 

(overtraining) has many side effects if the network is 

overdimensioned (in terms of the number of degrees of 

freedom) with respect to the application. In such case, the 

network may perform badly on new examples. This problem 

can be reduced by analyzing errors in both the learning and the 

test sets versus the number of learning cycles [18]. The 

learning procedure needs to be terminated as soon as a 

reasonable learning error has been achieved, before the 

network loses its generalization capability [2]. Network 

training time can be reduced with the appropriate 

implementation of fuzzy reasoning [17].  

 

 

3.2 Mathematical Modeling and Simulation 
The nonlinear sensors as shown in  

figure 4 can be expressed as a polynomial (Mathematical 

model for nonlinearity) whose coefficients can be estimated 

[20]. The estimated coefficients are the measure of sensor 

characteristics, which are helpful to identify the deviation in 

the characteristics due to environmental conditions and aging, 

etc. Mathematical modeling and of response curves of a sensor 

can be done using virtual instrumentation, in the initial stage. 

Graphical programming languages and tools such as, 

LabVIEW, SPICE etc. can be used to develop the virtual 

instrumentation station. The virtual instrumentation can also be 

used for the sensor testing and calibration. Simulation results 

can be presented to support the various techniques of modeling 

and simulation for the sensor. 

 

3.3 Digital Hardware Implementation 
Neural Networks can be implemented on a re-configurable 

computing platform, such as, FPGAs with performance speeds, 

fabrication area and precision closer to Application Specific 

Integrated Circuits [22,26-28]. The advancement of FPGAs in 

recent years, allowing millions of gates on a single chip and 

accompanying with high-level design tools has allowed the 

implementation of very complex networks [23]. It allows the 

fast design of complex systems with the highest 

performance/cost ratio [24]. FPGA implementation of the 

Flexible Adaptable-Size Topology architecture, ANN that 

dynamically changes its size is possible.  

The ANNs can be tested and validated first using simulation 

software such as ModelTech’s ModelSIM. Electronic Design 

Automation (EDA) tools such as Xilinx Foundation ISE can be 

used to synthesize and map (i.e. place and route) the FPGA 

based ANN. [22, 25]. The architecture implementing the 

algorithm can be mapped on a real current-generation FPGA 

(Xilinx 90 nm Spartan-3) [30]. Its effectiveness is then tested 

on the problem, where real-time performances are of 

paramount importance. 

 

4. CONCLUSION 
In traditional sensors, including those based on complex 

techniques for digital signal processing, operations performed 

on input signals usually follow strictly deterministic 

algorithms. With the universal approximation property and 

learning capability, ANNs have proven to be a powerful tool 

for the development of intelligent sensors. 

The slow convergence of the tracking error is usually due to 

the smallness of the network size. Moreover, if the chosen size 

is too large, the computation burden increases. Common 

approach is to start with the smaller ANN size, and gradually 

increase it until satisfactory performance is achieved. Well-

constructed ANNs have good interpolation properties. ANN 

algorithms are used as an alternative to the nonlinear and 

generalized linear regressions because the ANNs can model a 

nonlinear behavior of the transfer function better than the 

regressions. Also, its extrapolation capability can allow the 

drift compensation, auto-calibration and fault diagnosis of 

sensors to be made even in the situations that were unforeseen 

in the learning phase. 

In the future, remarkable advantages and advancements of 

these techniques with hybrid systems and VLSI technology, 

might be achieved for the design of intelligent sensors based on 

knowledge and learning. 
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