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ABSTRACT 

According to Kronecker, a famous European mathematician, 

only natural numbers, i.e. positive integers like 1, 2, and 3… 

are given by God or belong to nature. All other numbers, like 

negative numbers, fractional numbers, irrational numbers, 

complex numbers, etc., are creations of the human mind. It is 

important to notice that all these other numbers are created 

using the natural numbers. Natural numbers have very 

interesting patterns and those patterns are elegantly simple 

and hence simply beautiful. The idea of this paper is to 

explore different patterns that are created with natural 

numbers, to demystify the connection of the natural numbers 

with nature, and then to use them to teach important concepts 

of software engineering. We will take various examples, 

discuss the teaching methodology used to teach them, and 

uncover different software engineering concepts and best 

practices. The examples that we will use are the Fibonacci 

sequence and other natural number patterns, and we will 

connect them with software engineering concepts like loop 

patterns, recursion, refactoring and decomposition. For the 

last few years we have used this in our software engineering 

classes with much success, particularly in relation to student 

engagement and helping students to think creatively. We are 

confident that this type of teaching approach can be 

seamlessly integrated in tertiary as well as in high school 

software engineering curricula and has no geographical 

boundaries. This novel teaching approach is ready to be tested 

in different cultural settings. Finally, we conclude the paper 

with a desire for future research in cross-cultural, multi-

institutional and multi-national settings.  
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1. INTRODUCTION 
According to Kronecker, a famous European mathematician, 

only natural numbers, i.e. positive integers like 1, 2, and 3… 

are given by God or belong to nature. All other numbers, like 

negative numbers, fractional numbers, irrational numbers, 

complex numbers, etc., are creations of the human mind. It is 

important to notice that all these other numbers are created 

using the natural numbers. Natural numbers have very 

interesting patterns and those patterns are elegantly simple 

and hence simply beautiful.  

1.1 Natural Numbers 
People normally introduce natural numbers via enumeration: 

0, 1, 2, ... The dots at the end say that the series continues in 

this manner. Mathematicians consider 0 as a natural number 

but computer scientists do not. Rather than entering in to that 

debate, let us exclude 0 as a natural number as we are 

discussing computer science in this paper. If n is a natural 

number, then one more than n is a natural number too. While 

this description is still not quite rigorous, it is a good starting 

point for describing natural numbers: 

A natural-number is either 1 or the result of adding 1 to a 

natural number. Let us suppose that an operation add1() adds 

1 to a natural number. Although we are familiar with natural 

numbers from school, it is instructive to construct examples 

from the data definition. Clearly, 1 is the first natural number. 

It follows that: 

(add1 1) is the next one.  

From here, it is easy to see the pattern:  

(add1 (add1 1)) 

(add1 (add1 (add1 1))) 

(add1 (add1 (add1 (add1 1)))) 

This example should remind us of the list construction 

process. We built lists by starting with an empty list and by 

adding more items. Now, we build natural numbers by 

starting with 1 and by adding on 1. In addition, natural 

numbers come with century-old abbreviations. For example, 

(add1 1) is abbreviated as 2, (add1 (add1 1)) as 3, and so on. 

As identified by Mallik [1], we are so used to natural numbers 

that may fail to notice some interesting patterns in them. For 

example, let us observe the simple yet beautiful regularity of 

appearance of all the consecutive natural numbers in the 

following equations: 

1+2 = 3 

4+5+6 = 7+8 

9+10+11+12 = 13+14+15, 

And it continues in this fashion up to infinity. In the next 

section, let us explore some more examples involving natural 

numbers. 

1.2 Natural Numbers in Nature 
There are many situations in nature that involve the Fibonacci 

series: the original problem about rabbits where the series first 

appears, the family trees of cows and bees, the golden ratio 

and the Fibonacci series, the Fibonacci Spiral and sea shell 

shapes, branching plants, flower petal and seeds, leaves and 
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petal arrangements, on pineapples and in apples, pine cones 

and leaf arrangements. All involve the Fibonacci numbers. 

 

 

Figure 1: Yellow Chamomile head showing the Fibonacci 

sequence
1 

The Yellow Chamomile head in Figure 1 shows the 

arrangement in 21 (blue) and 13 (aqua) spirals. Such 

arrangements involving consecutive Fibonacci numbers 

appear in a wide variety of plants [2]. 

Fibonacci sequences appear in biological settings, in two 

consecutive Fibonacci numbers, such as branching in trees, 

arrangement of leaves on a stem, the fruitlets of a pineapple, 

the flowering of artichoke, an uncurling fern and the 

arrangement of a pine cone. In addition, numerous poorly 

substantiated claims of Fibonacci numbers or golden sections 

in nature are found in popular sources, e.g., relating to the 

breeding of rabbits, the seeds on a sunflower, the spirals of 

shells, and the curve of waves [2].  

The Fibonacci numbers are also found in the family tree of 

honeybees. In the Bee Ancestry Code, Fibonacci numbers 

appear in the description of the reproduction of a population 

of idealized honeybees, according to the following rules: 

 If an egg is laid by an unmated female, it hatches a male 

or drone bee. 

 If, however, an egg was fertilized by a male, it hatches a 

female. 

Thus, a male bee will always have one parent, and a female 

bee will have two. If one traces the ancestry of any male bee 

(1 bee), he has 1 parent (1 bee), 2 grandparents, 3 great-

grandparents, 5 great-great-grandparents, and so on. This 

sequence of numbers of parents is the Fibonacci sequence. 

                                                            
 

 

1 This image is from the Wikimedia Commons. The original 

image is from Joaquim Alves Gaspar, licensed under the 

Creative Commons Attribution-Share Alike 3.0 Unported 

license. It was retouched by RD Bury. 

The number of ancestors at each level (Fn) is the number of 

female ancestors (which is Fn-1) plus the number of male 

ancestors (Fn-2).  

Fibonacci numbers are intimately connected with the golden 

ratio, for example the ratios of two consecutive numbers in 

the Fibonacci sequence are seen to generate the following 

sequence: 1, 0.5, 0.666…, 0.6, 0.625, 0.615…, 0.619…, 

0.61818.... This sequence converges to the golden ratio. 

We recognise good proportion in the same way as we know 

how to divide a line in half or erect a perpendicular. We easily 

settle that an object of art has good or bad proportion, or that 

this face looks too long, or too short and out of proportion. 

This magical connecting thread of proportion is none other 

than the Golden Proportion, a phenomenon related to beauty. 

To the Greeks, who were predominantly geometers, this 

Golden Section was a harmonious, almost mystical, constant 

of nature [2]. 

1.3 Iteration 
In a landmark paper in 1966 [3], Böhm and Jacopini proved 

that any algorithm capable of executing on a Turing machine 

could be expressed with just three constructs: sequence, 

selection and repetition.  The use of these constructs led to 

what is now known as structured programming, in contrast to 

programs which used a GOTO statement.  However, just 

because a program could be so expressed does not necessarily 

mean it should be. Edsger Dijkstra [4] argued that the GOTO 

was harmful, whereas Hopkins [5] made a plea for the 

sensible use of GOTO.  Using an argument based on graph 

isomorphism, Maurer [6] demonstrated that any unstructured 

program could be transformed to a structured form. 

Nowadays, programmers generally prefer to avoid GOTO 

statements in favour of structured programming techniques. 

1.4 Recursion 
However, although only sequence, selection and repetition are 

needed, another widely used technique is that of recursion.  

Recursion encapsulates decomposition of a problem into sub-

problems of the same kind [7]. It allows for elegant 

definitions and mathematical proofs, but has long been 

regarded as difficult for beginning programmers to master [7, 

8, 9, 10, 11].  However, Mirolo [10] argues that there is no 

empirical evidence for this and that teaching recursion first 

should be investigated. Part of the difficulty may be 

associated with the choice of language. In functional 

languages, such as Haskell or Scheme, recursion is a natural 

way of expressing algorithms, whereas in procedural 

languages, such as Java or C, it may be less natural. This is 

because procedural languages are much closer to the natural 

computational model of most computers. In mathematics and 

computer science, a class of objects or methods exhibit 

recursive behaviour when they can be defined by two 

properties: 

1. A simple base case (or cases), and  

2. A set of rules which reduce all other cases toward the 

base case. 

For example, the following is a recursive definition of a 

person's ancestors: 

 One's parents are one's ancestors (base case). 

 The parents of one's ancestors are also one's ancestors 

(recursion step). 

 

 

 

http://commons.wikimedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
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The Fibonacci sequence is a classic example of recursion: 

 Fib(0) is 0 [base case] 

 Fib(1) is 1 [base case] 

 For all integers n > 1: Fib(n) is (Fib(n-1) + Fib(n-2))   

   

Error! Reference source not found. presents a recursion 

example in Scratch. 

 

Figure 2: Recursion Example in Scratch 

1.5 Recursion versus Iteration 
However, a more fundamental issue relates to the conceptual 

models needed to understand recursion. Kurland and Pea [13] 

observed programmers who viewed recursion as iteration, and 

several educators [14, 15]  studied transfer abilities from 

iteration to recursion and vice-versa and concluded that it is 

more sensible, pedagogically, to base understanding of 

recursion on iteration than iteration on recursion. Kahney and 

Eisenstadt [16] examined novices’ judgments of given 

recursive programs and concluded that they developed one of 

several mental models of recursion, which they named: 

copies, loop, odd, null, and syntactic magic. Of these, only the 

copies model is regarded is a correct model of recursion.  In 

the copies model, a recursive procedure can be understood as 

a procedure looping over a stack of function calls [15]. With 

the syntactic magic model the student has no clear idea of 

how recursion works, but is able to match on syntactic 

elements.  As Sanders and colleagues [17] point out, “It is 

interesting to note that a large number of students in both 

classes manifest the magic model of recursion” [p. 141]. 

From the literature, it would appear that the key problem for 

students in understanding recursion is the lack of an 

appropriate conceptual model. Whereas iterative conceptual 

models can be reinforced by techniques such as tracing, 

recursive models require the student to work at a higher layer 

of abstraction. Starting from this insight, Wu and colleagues 

[18] mapped students’ understanding of recursion to a 

classification of the student as concrete or abstract learners. 

Although abstract learners generally performed better than 

concrete learners, they found that concrete models worked 

better than abstract models for all learners, and that abstract 

learners did not necessarily benefit more from abstract 

conceptual models, nor did concrete learners necessarily 

benefit more from concrete conceptual models. Moreover, 

although recursion was introduced to students in formal terms, 

Levi and Talendot [19] found that students did not naturally 

use any of the formal terms in their discussions about 

recursion. This suggests a disconnection between recursion as 

presented by lecturers and recursion as understood by 

students.  

To illustrate some of these issues, we present two 

implementations of a factorial function in Figure 3: Two 

Factorial function implementations in C# 

3. 

Static long iterativeFactorial (long n) { 

        long result=1; 

        for (long i=n; i > 1; i--) { 

                result *= i; 

        } 

        return result; 

} 

 

static long recursiveFactorial (long n) { 

        if (n < 2) 

                return 1; 

        else 

                return n * recursiveFactorial(n-1);  

}  

Figure 3: Two Factorial function implementations in C# 

However, there have been only a few attempts to compare 

learners' ability to deal with recursion and with iteration. 
Among these, Bhuiyan et al. [20] point out the influence of a 

looping mental model on the understanding of recursive 

computations. Kessler & Anderson [21], and to some extent 

Wiedenbeck [11], infer from their analysis that iteration 

should be taught before recursion in order to facilitate the 

development of a computation model. In contrast, Turbak et 

al. [22] have observed an improvement of students' 

performance in exams after changing the course structure and 

teaching loops as a special case of tail-recursion. Moreover, 

according to Benander et al. [23], recursive code does not 

seem to impair program comprehension. Recently, Mirolo 

[10] conducted a recursion test and an iteration test on first 

year computer science major students and observed that 

students find recursion and iteration equally difficult to 

comprehend. He concluded that, from a teacher's perspective, 

more effort should be spent to foster problem solving, plan-

composition and abstraction skills. 

 

2. WHAT WE ARE TRYING TO 

ACHIEVE 
The objective is to master different looping techniques and to 

learn and apply recursion. The introductory programming 

students were exposed to interesting problems related to 

recursion and looping constructs and as educators we tried to 

formulate engaging techniques and thus introduced the natural 

number examples. First, we introduced them to two types of 

iteration in the form of while or for loops. After that we 

exposed them to the technique of recursion. Recursion is a 

basic technique that all programmers must understand. Once 

they completely understand iteration, replacing iteration with 

recursion is not that big a step. 

Recursion was certainly a lot more intuitive for the task the 

introductory programming students tried to solve, despite their 

lack of experience with this style of programming.  

As a programmer, learning more techniques give them more 

tools to choose from, which means that they can choose the 
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approach which is most intuitive given the problem. Whether 

it is easy or hard to understand the technique the first time 

they encounter it does not really matter. 

 

  

Figure 4: The in class exercise to create a Diamond Shape 

 

Figure 5: The in class exercise to create the natural number sequence 

 

As part of this learning journey we constantly expose them to 

known, not very known and absolutely new problems, and 

encourage them to craft creative solutions to those problems 

and to understand when to use iteration and when they can use 

recursion. 

 

3. HOW WE DID IT 
To achieve the learning objectives we have selected a set of 

interesting examples that we will discuss in this section. Some 

of these examples were used as in-class examples and others 

can be a good teaching resource for loops and recursion. 

The first example is the Fibonacci sequence. The Fibonacci 

numbers are defined as follows: the first Fibonacci number is 

1, the second Fibonacci number is 1, and each subsequent 

Fibonacci number is the sum of the previous two. Thus the 

sequence starts 1, 1, 2, 3, 5, 8, and so on. Define a recursive 

function fib that takes a natural number n and returns the nth 

Fibonacci number. (Hint: fib needs two base cases.) Find the 

7th number in the Fibonacci sequence. 

 

The second example is the Factorial. Define a recursive 

function factorial that takes a natural number n and returns 

the product of the first n positive numbers. That is: factorial n 

= 1 * 2 * … * (n-1) *n. For example, factorial 6 is 720. 

 

The third example is to create a diamond shape (see Figure 4).  

 

As identified by Mallik [1], we are so used to natural numbers 

that we may fail to notice some interesting patterns in them.  
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For the fourth example, let us observe the simple yet beautiful 

regularity of appearance of all the consecutive natural 

numbers in the following equations: 

 1+2 = 3 

 4+5+6 = 7+8 

 9+10+11+12 = 13+14+15, 

 

It continues in this fashion up to infinity. Based on this natural 

number pattern we formulated the question: 

 Find the sequence of the 5th row (See Figure 5). 

 

A fifth example was Sierpinski’s Triangle. Students were 

asked to describe the recursive structure of a Sierpinski's 

triangle. In particular, students had to identify the base case(s) 

and which operations could be applied to increase the 

recursion depth by 1. 

 

A sixth interesting example could be Lucas Numbers or Lucas 

Series. Like the Fibonacci numbers, each Lucas number is 

defined to be the sum of its two immediate previous terms, i.e. 

it is a Fibonacci integer sequence. However, the first two 

Lucas numbers are L0 = 2 and L1 = 1 instead of 0 and 1, and 

the properties of Lucas numbers are therefore somewhat 

different from those of Fibonacci numbers. A Lucas number 

may thus be defined as follows: The sequence of Lucas 

numbers begins: 2,1,3,4,7,11,18,29,47, ...  Also like all 

Fibonacci integer sequences, the ratio between two 

consecutive Lucas numbers converges to the golden ratio. 

 

The last example (Figure 6) we want to share is the Collatz 

conjecture, named after Lothar Collatz, who first proposed it 

in 1937. The conjecture is also known as the 3n + 1 

conjecture. It states: 

 Take any natural number n.  

 If n is even, divide it by 2 to get n / 2.  

 If n is odd, multiply it by 3 and add 1 to obtain 3n + 1.  

 Repeat the process indefinitely.  

 

The Collatz conjecture 

 

Consider the following operation on an arbitrary positive 

integer: 

 If the number is even, divide it by two. 

 If the number is odd, triple it and add one. 

 

Examples 

Starting with n = 6, one gets the sequence  

       6, 3, 10, 5, 16, 8, 4, 2, 1. 

With n = 11, for example, takes longer to reach 1:  

     11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. 

 

This program halts when the sequence reaches 1. If the 

Collatz conjecture is true, the program will always halt (stop) 

no matter what positive starting integer is given to it. 

Figure 6: The Collatz conjecture 

The conjecture is that no matter what number you start with, 

you will always eventually reach 1. The property has also 

been called oneness.   

 

A pseudo code solution of the Collatz conjecture is shown in 

Figure 6. 

 

Finally, we note that computing compound interest and The 

Tower of Hanoi game are also good exercises that can be 

used. 

4. HOW WELL IT WENT 
Students enjoyed the examples and the challenges of 

identifying patterns and crafting creative solutions. They were 

fully engaged during and learnt that:  

 A "while" loop has two visually distinct parts: a body 

and a termination condition. 

 A "for" loop has more parts: initialization, increment, 

termination condition, body. 

 

A tail-recursive function does not have a standard, visually 

distinct way of code organization. It is functionally 

equivalent, and crystal clear in simple cases (like factorial or 

Fibonacci numbers), but not as clear in more general cases. 

For example, if we are iterating over a list, a tail-recursive 

function is fine. But when we need to increment a counter 

along the way, we need to change the code in a non-obvious 

way. That suggests the requirements of more structured forms 

of looping. They also learnt about a common computer 

programming tactic that is to divide a problem into sub-

problems of the same type as the original, solve those 

problems, and combine the results. This is often referred to as 

the divide-and-conquer method.  

5. CONCLUSION AND FUTURE 

RESEARCH 
There are basically two types of iteration. There is the foreach 

style of iteration which just iterates over a collection of things, 

and then there is the type of iteration that has many conditions 

that can affect the next step in the iteration. This latter form of 

iteration fits very nicely with use of pattern matching and 

recursion. As students started getting used to this way of 

thinking, they found that the code became surprisingly easy to 

write. The divide and conquer method that it naturally leads to 

is very powerful.  

For the last few years we have used this in our software 

engineering classes with much success, particularly in relation 

to student engagement and helping students to think 

creatively. We are confident that this type of teaching 

approach can seamlessly be integrated in tertiary as well as in 

high school software engineering curriculum and has no 

geographical boundary. This novel teaching approach is ready 

to be tested in different cultural settings.  

Further work is needed to explore the conceptual models 

students actually use to understand recursion.  It is still an 

open question whether providing students from the outset with 

an expert conceptualisation is the best way for them to learn, 

or whether there are intermediate conceptual models that 

could provide useful scaffolding as they develop their 

understanding. Finally, we conclude the paper with a desire 

for future research in cross-cultural, multi-institutional and 

multi-national settings.  
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