
Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

11

Engaging Software Engineering Students

 with Natural Numbers

Amitrajit Sarkar
Department of Computing

Christchurch Polytechnic Institute of Technology
Christchurch, New Zealand

Mike Lopez
Department of Computing

Christchurch Polytechnic Institute of Technology
Christchurch, New Zealand

ABSTRACT

According to Kronecker, a famous European mathematician,

only natural numbers, i.e. positive integers like 1, 2, and 3…

are given by God or belong to nature. All other numbers, like

negative numbers, fractional numbers, irrational numbers,

complex numbers, etc., are creations of the human mind. It is

important to notice that all these other numbers are created

using the natural numbers. Natural numbers have very

interesting patterns and those patterns are elegantly simple

and hence simply beautiful. The idea of this paper is to

explore different patterns that are created with natural

numbers, to demystify the connection of the natural numbers

with nature, and then to use them to teach important concepts

of software engineering. We will take various examples,

discuss the teaching methodology used to teach them, and

uncover different software engineering concepts and best

practices. The examples that we will use are the Fibonacci

sequence and other natural number patterns, and we will

connect them with software engineering concepts like loop

patterns, recursion, refactoring and decomposition. For the

last few years we have used this in our software engineering

classes with much success, particularly in relation to student

engagement and helping students to think creatively. We are

confident that this type of teaching approach can be

seamlessly integrated in tertiary as well as in high school

software engineering curricula and has no geographical

boundaries. This novel teaching approach is ready to be tested

in different cultural settings. Finally, we conclude the paper

with a desire for future research in cross-cultural, multi-

institutional and multi-national settings.

General Terms

Pattern Recognition, Algorithms, Software Engineering

Education.

Keywords

Software Engineering, Introductory Programming, Recursion,

Iteration, Natural Numbers.

1. INTRODUCTION
According to Kronecker, a famous European mathematician,

only natural numbers, i.e. positive integers like 1, 2, and 3…

are given by God or belong to nature. All other numbers, like

negative numbers, fractional numbers, irrational numbers,

complex numbers, etc., are creations of the human mind. It is

important to notice that all these other numbers are created

using the natural numbers. Natural numbers have very

interesting patterns and those patterns are elegantly simple

and hence simply beautiful.

1.1 Natural Numbers
People normally introduce natural numbers via enumeration:

0, 1, 2, ... The dots at the end say that the series continues in

this manner. Mathematicians consider 0 as a natural number

but computer scientists do not. Rather than entering in to that

debate, let us exclude 0 as a natural number as we are

discussing computer science in this paper. If n is a natural

number, then one more than n is a natural number too. While

this description is still not quite rigorous, it is a good starting

point for describing natural numbers:

A natural-number is either 1 or the result of adding 1 to a

natural number. Let us suppose that an operation add1() adds

1 to a natural number. Although we are familiar with natural

numbers from school, it is instructive to construct examples

from the data definition. Clearly, 1 is the first natural number.

It follows that:

(add1 1) is the next one.

From here, it is easy to see the pattern:

(add1 (add1 1))

(add1 (add1 (add1 1)))

(add1 (add1 (add1 (add1 1))))

This example should remind us of the list construction

process. We built lists by starting with an empty list and by

adding more items. Now, we build natural numbers by

starting with 1 and by adding on 1. In addition, natural

numbers come with century-old abbreviations. For example,

(add1 1) is abbreviated as 2, (add1 (add1 1)) as 3, and so on.

As identified by Mallik [1], we are so used to natural numbers

that may fail to notice some interesting patterns in them. For

example, let us observe the simple yet beautiful regularity of

appearance of all the consecutive natural numbers in the

following equations:

1+2 = 3

4+5+6 = 7+8

9+10+11+12 = 13+14+15,

And it continues in this fashion up to infinity. In the next

section, let us explore some more examples involving natural

numbers.

1.2 Natural Numbers in Nature
There are many situations in nature that involve the Fibonacci

series: the original problem about rabbits where the series first

appears, the family trees of cows and bees, the golden ratio

and the Fibonacci series, the Fibonacci Spiral and sea shell

shapes, branching plants, flower petal and seeds, leaves and

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

12

petal arrangements, on pineapples and in apples, pine cones

and leaf arrangements. All involve the Fibonacci numbers.

Figure 1: Yellow Chamomile head showing the Fibonacci

sequence
1

The Yellow Chamomile head in Figure 1 shows the

arrangement in 21 (blue) and 13 (aqua) spirals. Such

arrangements involving consecutive Fibonacci numbers

appear in a wide variety of plants [2].

Fibonacci sequences appear in biological settings, in two

consecutive Fibonacci numbers, such as branching in trees,

arrangement of leaves on a stem, the fruitlets of a pineapple,

the flowering of artichoke, an uncurling fern and the

arrangement of a pine cone. In addition, numerous poorly

substantiated claims of Fibonacci numbers or golden sections

in nature are found in popular sources, e.g., relating to the

breeding of rabbits, the seeds on a sunflower, the spirals of

shells, and the curve of waves [2].

The Fibonacci numbers are also found in the family tree of

honeybees. In the Bee Ancestry Code, Fibonacci numbers

appear in the description of the reproduction of a population

of idealized honeybees, according to the following rules:

 If an egg is laid by an unmated female, it hatches a male

or drone bee.

 If, however, an egg was fertilized by a male, it hatches a

female.

Thus, a male bee will always have one parent, and a female

bee will have two. If one traces the ancestry of any male bee

(1 bee), he has 1 parent (1 bee), 2 grandparents, 3 great-

grandparents, 5 great-great-grandparents, and so on. This

sequence of numbers of parents is the Fibonacci sequence.

1 This image is from the Wikimedia Commons. The original

image is from Joaquim Alves Gaspar, licensed under the

Creative Commons Attribution-Share Alike 3.0 Unported

license. It was retouched by RD Bury.

The number of ancestors at each level (Fn) is the number of

female ancestors (which is Fn-1) plus the number of male

ancestors (Fn-2).

Fibonacci numbers are intimately connected with the golden

ratio, for example the ratios of two consecutive numbers in

the Fibonacci sequence are seen to generate the following

sequence: 1, 0.5, 0.666…, 0.6, 0.625, 0.615…, 0.619…,

0.61818.... This sequence converges to the golden ratio.

We recognise good proportion in the same way as we know

how to divide a line in half or erect a perpendicular. We easily

settle that an object of art has good or bad proportion, or that

this face looks too long, or too short and out of proportion.

This magical connecting thread of proportion is none other

than the Golden Proportion, a phenomenon related to beauty.

To the Greeks, who were predominantly geometers, this

Golden Section was a harmonious, almost mystical, constant

of nature [2].

1.3 Iteration
In a landmark paper in 1966 [3], Böhm and Jacopini proved

that any algorithm capable of executing on a Turing machine

could be expressed with just three constructs: sequence,

selection and repetition. The use of these constructs led to

what is now known as structured programming, in contrast to

programs which used a GOTO statement. However, just

because a program could be so expressed does not necessarily

mean it should be. Edsger Dijkstra [4] argued that the GOTO

was harmful, whereas Hopkins [5] made a plea for the

sensible use of GOTO. Using an argument based on graph

isomorphism, Maurer [6] demonstrated that any unstructured

program could be transformed to a structured form.

Nowadays, programmers generally prefer to avoid GOTO

statements in favour of structured programming techniques.

1.4 Recursion
However, although only sequence, selection and repetition are

needed, another widely used technique is that of recursion.

Recursion encapsulates decomposition of a problem into sub-

problems of the same kind [7]. It allows for elegant

definitions and mathematical proofs, but has long been

regarded as difficult for beginning programmers to master [7,

8, 9, 10, 11]. However, Mirolo [10] argues that there is no

empirical evidence for this and that teaching recursion first

should be investigated. Part of the difficulty may be

associated with the choice of language. In functional

languages, such as Haskell or Scheme, recursion is a natural

way of expressing algorithms, whereas in procedural

languages, such as Java or C, it may be less natural. This is

because procedural languages are much closer to the natural

computational model of most computers. In mathematics and

computer science, a class of objects or methods exhibit

recursive behaviour when they can be defined by two

properties:

1. A simple base case (or cases), and

2. A set of rules which reduce all other cases toward the

base case.

For example, the following is a recursive definition of a

person's ancestors:

 One's parents are one's ancestors (base case).

 The parents of one's ancestors are also one's ancestors

(recursion step).

http://commons.wikimedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

13

The Fibonacci sequence is a classic example of recursion:

 Fib(0) is 0 [base case]

 Fib(1) is 1 [base case]

 For all integers n > 1: Fib(n) is (Fib(n-1) + Fib(n-2))

Error! Reference source not found. presents a recursion

example in Scratch.

Figure 2: Recursion Example in Scratch

1.5 Recursion versus Iteration
However, a more fundamental issue relates to the conceptual

models needed to understand recursion. Kurland and Pea [13]

observed programmers who viewed recursion as iteration, and

several educators [14, 15] studied transfer abilities from

iteration to recursion and vice-versa and concluded that it is

more sensible, pedagogically, to base understanding of

recursion on iteration than iteration on recursion. Kahney and

Eisenstadt [16] examined novices’ judgments of given

recursive programs and concluded that they developed one of

several mental models of recursion, which they named:

copies, loop, odd, null, and syntactic magic. Of these, only the

copies model is regarded is a correct model of recursion. In

the copies model, a recursive procedure can be understood as

a procedure looping over a stack of function calls [15]. With

the syntactic magic model the student has no clear idea of

how recursion works, but is able to match on syntactic

elements. As Sanders and colleagues [17] point out, “It is

interesting to note that a large number of students in both

classes manifest the magic model of recursion” [p. 141].

From the literature, it would appear that the key problem for

students in understanding recursion is the lack of an

appropriate conceptual model. Whereas iterative conceptual

models can be reinforced by techniques such as tracing,

recursive models require the student to work at a higher layer

of abstraction. Starting from this insight, Wu and colleagues

[18] mapped students’ understanding of recursion to a

classification of the student as concrete or abstract learners.

Although abstract learners generally performed better than

concrete learners, they found that concrete models worked

better than abstract models for all learners, and that abstract

learners did not necessarily benefit more from abstract

conceptual models, nor did concrete learners necessarily

benefit more from concrete conceptual models. Moreover,

although recursion was introduced to students in formal terms,

Levi and Talendot [19] found that students did not naturally

use any of the formal terms in their discussions about

recursion. This suggests a disconnection between recursion as

presented by lecturers and recursion as understood by

students.

To illustrate some of these issues, we present two

implementations of a factorial function in Figure 3: Two

Factorial function implementations in C#

3.

Static long iterativeFactorial (long n) {

 long result=1;

 for (long i=n; i > 1; i--) {

 result *= i;

 }

 return result;

}

static long recursiveFactorial (long n) {

 if (n < 2)

 return 1;

 else

 return n * recursiveFactorial(n-1);

}

Figure 3: Two Factorial function implementations in C#

However, there have been only a few attempts to compare

learners' ability to deal with recursion and with iteration.
Among these, Bhuiyan et al. [20] point out the influence of a

looping mental model on the understanding of recursive

computations. Kessler & Anderson [21], and to some extent

Wiedenbeck [11], infer from their analysis that iteration

should be taught before recursion in order to facilitate the

development of a computation model. In contrast, Turbak et

al. [22] have observed an improvement of students'

performance in exams after changing the course structure and

teaching loops as a special case of tail-recursion. Moreover,

according to Benander et al. [23], recursive code does not

seem to impair program comprehension. Recently, Mirolo

[10] conducted a recursion test and an iteration test on first

year computer science major students and observed that

students find recursion and iteration equally difficult to

comprehend. He concluded that, from a teacher's perspective,

more effort should be spent to foster problem solving, plan-

composition and abstraction skills.

2. WHAT WE ARE TRYING TO

ACHIEVE
The objective is to master different looping techniques and to

learn and apply recursion. The introductory programming

students were exposed to interesting problems related to

recursion and looping constructs and as educators we tried to

formulate engaging techniques and thus introduced the natural

number examples. First, we introduced them to two types of

iteration in the form of while or for loops. After that we

exposed them to the technique of recursion. Recursion is a

basic technique that all programmers must understand. Once

they completely understand iteration, replacing iteration with

recursion is not that big a step.

Recursion was certainly a lot more intuitive for the task the

introductory programming students tried to solve, despite their

lack of experience with this style of programming.

As a programmer, learning more techniques give them more

tools to choose from, which means that they can choose the

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

14

approach which is most intuitive given the problem. Whether

it is easy or hard to understand the technique the first time

they encounter it does not really matter.

Figure 4: The in class exercise to create a Diamond Shape

Figure 5: The in class exercise to create the natural number sequence

As part of this learning journey we constantly expose them to

known, not very known and absolutely new problems, and

encourage them to craft creative solutions to those problems

and to understand when to use iteration and when they can use

recursion.

3. HOW WE DID IT
To achieve the learning objectives we have selected a set of

interesting examples that we will discuss in this section. Some

of these examples were used as in-class examples and others

can be a good teaching resource for loops and recursion.

The first example is the Fibonacci sequence. The Fibonacci

numbers are defined as follows: the first Fibonacci number is

1, the second Fibonacci number is 1, and each subsequent

Fibonacci number is the sum of the previous two. Thus the

sequence starts 1, 1, 2, 3, 5, 8, and so on. Define a recursive

function fib that takes a natural number n and returns the nth

Fibonacci number. (Hint: fib needs two base cases.) Find the

7th number in the Fibonacci sequence.

The second example is the Factorial. Define a recursive

function factorial that takes a natural number n and returns

the product of the first n positive numbers. That is: factorial n

= 1 * 2 * … * (n-1) *n. For example, factorial 6 is 720.

The third example is to create a diamond shape (see Figure 4).

As identified by Mallik [1], we are so used to natural numbers

that we may fail to notice some interesting patterns in them.

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

15

For the fourth example, let us observe the simple yet beautiful

regularity of appearance of all the consecutive natural

numbers in the following equations:

 1+2 = 3

 4+5+6 = 7+8

 9+10+11+12 = 13+14+15,

It continues in this fashion up to infinity. Based on this natural

number pattern we formulated the question:

 Find the sequence of the 5th row (See Figure 5).

A fifth example was Sierpinski’s Triangle. Students were

asked to describe the recursive structure of a Sierpinski's

triangle. In particular, students had to identify the base case(s)

and which operations could be applied to increase the

recursion depth by 1.

A sixth interesting example could be Lucas Numbers or Lucas

Series. Like the Fibonacci numbers, each Lucas number is

defined to be the sum of its two immediate previous terms, i.e.

it is a Fibonacci integer sequence. However, the first two

Lucas numbers are L0 = 2 and L1 = 1 instead of 0 and 1, and

the properties of Lucas numbers are therefore somewhat

different from those of Fibonacci numbers. A Lucas number

may thus be defined as follows: The sequence of Lucas

numbers begins: 2,1,3,4,7,11,18,29,47, ... Also like all

Fibonacci integer sequences, the ratio between two

consecutive Lucas numbers converges to the golden ratio.

The last example (Figure 6) we want to share is the Collatz

conjecture, named after Lothar Collatz, who first proposed it

in 1937. The conjecture is also known as the 3n + 1

conjecture. It states:

 Take any natural number n.

 If n is even, divide it by 2 to get n / 2.

 If n is odd, multiply it by 3 and add 1 to obtain 3n + 1.

 Repeat the process indefinitely.

The Collatz conjecture

Consider the following operation on an arbitrary positive

integer:

 If the number is even, divide it by two.

 If the number is odd, triple it and add one.

Examples

Starting with n = 6, one gets the sequence

 6, 3, 10, 5, 16, 8, 4, 2, 1.

With n = 11, for example, takes longer to reach 1:

 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

This program halts when the sequence reaches 1. If the

Collatz conjecture is true, the program will always halt (stop)

no matter what positive starting integer is given to it.

Figure 6: The Collatz conjecture

The conjecture is that no matter what number you start with,

you will always eventually reach 1. The property has also

been called oneness.

A pseudo code solution of the Collatz conjecture is shown in

Figure 6.

Finally, we note that computing compound interest and The

Tower of Hanoi game are also good exercises that can be

used.

4. HOW WELL IT WENT
Students enjoyed the examples and the challenges of

identifying patterns and crafting creative solutions. They were

fully engaged during and learnt that:

 A "while" loop has two visually distinct parts: a body

and a termination condition.

 A "for" loop has more parts: initialization, increment,

termination condition, body.

A tail-recursive function does not have a standard, visually

distinct way of code organization. It is functionally

equivalent, and crystal clear in simple cases (like factorial or

Fibonacci numbers), but not as clear in more general cases.

For example, if we are iterating over a list, a tail-recursive

function is fine. But when we need to increment a counter

along the way, we need to change the code in a non-obvious

way. That suggests the requirements of more structured forms

of looping. They also learnt about a common computer

programming tactic that is to divide a problem into sub-

problems of the same type as the original, solve those

problems, and combine the results. This is often referred to as

the divide-and-conquer method.

5. CONCLUSION AND FUTURE

RESEARCH
There are basically two types of iteration. There is the foreach

style of iteration which just iterates over a collection of things,

and then there is the type of iteration that has many conditions

that can affect the next step in the iteration. This latter form of

iteration fits very nicely with use of pattern matching and

recursion. As students started getting used to this way of

thinking, they found that the code became surprisingly easy to

write. The divide and conquer method that it naturally leads to

is very powerful.

For the last few years we have used this in our software

engineering classes with much success, particularly in relation

to student engagement and helping students to think

creatively. We are confident that this type of teaching

approach can seamlessly be integrated in tertiary as well as in

high school software engineering curriculum and has no

geographical boundary. This novel teaching approach is ready

to be tested in different cultural settings.

Further work is needed to explore the conceptual models

students actually use to understand recursion. It is still an

open question whether providing students from the outset with

an expert conceptualisation is the best way for them to learn,

or whether there are intermediate conceptual models that

could provide useful scaffolding as they develop their

understanding. Finally, we conclude the paper with a desire

for future research in cross-cultural, multi-institutional and

multi-national settings.

6. REFERENCES
[1] Mallik, A. K. 2004. From Natural Numbers to Numbers

and Curves in Nature-I. RESONANCE, September 2004.

[2] Mallik, A. K. 2004. From Natural Numbers to Numbers

and Curves in Nature-II. RESONANCE, October 2004.

[3] C. Böhm and G. Jacopini, “Flow diagrams, turing

machines and languages with only two formation

rules,” Communications of the ACM, vol. 9, no. 5, pp.

344-371, 1966.

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

16

[4] E. Dijkstra, “Go to statement considered harmful,”

Communications of the ACM, vol. 11, no. 3, pp. 147-

148, 1968.

[5] M. Hopkins, “A case for the GOTO,” ACM SIGPLAN

Notices - Special issue on control structures in

programming languages, vol. 7, no. 11, pp. 59-62,

1972.

[6] W. Maurer, “Generalized structured programs and loop

trees,” Science of Computer Programming, vol. 67, no.

3, pp. 223-246, 2007.

[7] D. Ginat and E. Shifroni, “Teaching recursion in a

procedural environment: How much should we...?,” in

Proceedings of the 30th SIGCSE conference, 1999.

[8] B. Haberman and H. Averbuch, in Proceedings of the

7th ITiCSE conference, 2002.

[9] H. Kahney, “What do novice programmers know about

recursion,” in Proceedings of the SIGCHI conference,

1983.

[10] R. Sooriamurthi, “Problems in comprehending

recursion and suggested solutions,” in Proceedings of

the 6th ITiCSE conference, 2001.

[11] S. Wiedenbeck, “Learning recursion as a concept and as

a programming technique,” in Proceedings of the 19th

SIGCSE conference, 1988.

[12] C. Mirolo, “Is iteration really easier to learn than

recursion for CS1 students?,” in Proceedings of the

ICER conference 2012, Auckland, 2012.

[13] D. Kurland and R. Pea, “Children’s mental models of

recursive logo programs,” in Proceedings of the Fifth

Annual Conference of the Cognitive Science Society,

1983.

[14] Y. Anazi and Y. Uesato, “Learning recursive

procedures by middle-school children,” in Proceedings

of the fourth annual conference of the Cognitive

Science Society, 1982.

[15] A. Kessler and J. Anderson, “Learning flow of control:

Recursive and iterative procedures,” Human-Computer

Interaction, vol. 2, pp. 135-166, 1986.

[16] H. Kahney and M. Eisenstadt, “Programmers’ mental

models of their programming tasks: The interaction of

real world knowledge and programming knowledge,” in

Proceedings of the Fourth Annual Conference of the

Cognitive Science Society, 1982.

[17] I. Sanders, V. Galpin and T. Götschi, “Mental Models

of Recursion Revisited,” in Procceedings of the ITiCSE

conference '06, Bologna, Italy., 2006.

[18] C. Wu, N. Dale and L. Bethel, “Conceptual models and

cognitive learning styles in teaching recursion,” in

Proceedings of the SIGCSE Conference '98, Atlanta,

GA, 1998.

[19] D. Levi and T. Lapidot, “Recursively speaking:

Analyzing students' discourse of recursive phenomena,”

in Proceedings of the SIGCSE conference, Austin, TX,

2000.

[20] S. Bhuiyan, J. E. Greer, and G. I. Mccalla. Supporting

the learning of recursive problem solving. Interactive

Learning Environments, 4(2):115{139, 1994.

[21] C. M. Kessler and J. R. Anderson. Learning flow of

control: recursive and iterative procedures. Human-

Computer Interaction, 2(2):135{166, 1986.

[22] F. Turbak, C. Royden, J. Stephan, and J. Herbst.

Teaching recursion before loops in CS1. J. Computing in

Small Colleges, 14(4):86{101, 1999.

[23] A. Benander, B. Benander, and H. Pu. Recursion vs.

iteration: An empirical study of comprehension. J. of

Systems and Software, 32(1):73{82, 199

